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Communication is Crucial

Performance 

As SSD-based and in-memory systems proliferate,
the network is likely to become the primary bottleneck

1. Based on a month-long trace with 320,000 jobs and 150 Million tasks, collected from a 3000-machine Facebook production MapReduce cluster.

Facebook jobs spend ~25% of runtime 
on average in intermediate comm.1
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Flow-Based Solutions

GPS RED

WFQ CSFQ

ECN XCP D2TCPDCTCP

PDQD3

FCP

DeTail pFabric

2005 2010 20151980s 1990s 2000s

RCP

Per-Flow Fairness Flow Completion Time 

Independent flows cannot capture the collective communication 
patterns (e.g., shuffle) common in data-parallel applications



Cof low 

Communication abstraction for 
data-parallel applications to 
express their performance goals

1.  Minimize completion times,
2.  Meet deadlines, or 
3.  Perform fair allocation
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Inter-Coflow Scheduling

Benefits increases with the number of coexisting coflows



Varys Efficiently schedules 
coflows leveraging 
complete and future 
information

1 

1. Efficient Coflow Scheduling with Varys, SIGCOMM’2014.

1.  The size of each flow, 
2.  The total number of flows, and 
3.  The endpoints of individual flows



1.  The size of each flow, 
2.  The total number of flows, and 
3.  The endpoints of individual flows

ç Pipelining between stages
ç Speculative executions
ç Task failures and restarts

Varys Efficiently schedules 
coflows leveraging 
complete and future 
information



1.  The size of each flow, 
2.  The total number of flows, and 
3.  The endpoints of individual flows

ç Pipelining between stages
ç Speculative executions
ç Task failures and restarts

Aalo Efficiently schedules 
coflows without 
complete and future 
information



Coflow Scheduling

Minimize Avg. Comp. Time Flows on a Single Link

With complete knowledge Smallest-Flow-First

Without complete knowledge
Least-Attained Service 
(LAS)



Coflow Scheduling

Minimize Avg. Comp. Time Flows on a Single Link Coflows  in the Entire Network

With complete knowledge Smallest-Flow-First Varys1, Smallest-Coflow-First1

Without complete knowledge Least-Attained Service (LAS) ?

1. Efficient Coflow Scheduling with Varys, SIGCOMM’2014.



Coflow Scheduling

Minimize Avg. Comp. Time Flows on a Single Link Coflows  in the Entire Network

With complete knowledge Smallest-Flow-First Varys1, Smallest-Coflow-First1

Without complete knowledge Least-Attained Service (LAS) ?

LAS: prioritize flow that has sent the least amount of data 

1. Efficient Coflow Scheduling with Varys, SIGCOMM’2014.



Coflow-Aware LAS (CLAS)

Prioritize coflow that has sent the least total number of bytes
•  The more a coflow has sent, the lower its priority
•  Smaller coflows finish faster



Coflow-Aware LAS (CLAS)

Prioritize coflow that has sent the least total number of bytes
•  The more a coflow has sent, the lower its priority
•  Smaller coflows finish faster

Challenges (also shared by LAS)
•  Can lead to starvation
•  Suboptimal for similar size coflows



Suboptimal for Similar Coflows

Reduces to fair sharing
•  Doesn’t minimize average completion time

FIFO works well for similar coflows
•  Optimal when cflows are identical

Coflow 1 Coflow 2
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Coflow1 comp. time = 3
Coflow2 comp. time = 6



Between a “Rock” and a “Hard Place”

Prioritize across 
dissimilar coflows

FIFO schedule 
similar coflows



Discretized Coflow-Aware LAS (D-CLAS)

Priority discretization
•  Change priority when total # of bytes sent 

exceeds predefined thresholds

Scheduling policies
•  FIFO within the same queue
•  Prioritization across queue

Weighted sharing across queues
•  Guarantees starvation avoidance
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How to Discretize Priorities?

…
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•  A, E : constants
•  1 ≤ i ≤ K : threshold constant
•  K : number of the queues
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Computing Total # of Bytes Sent

D-CLAS requires to know total # of bytes sent over all flows of a coflow
•  Distributed computation over small time scales à challenging



Computing Total # of Bytes Sent

D-CLAS requires to know total # of bytes sent over all flows of a coflow
•  Distributed computation over small time scales à challenging

How much do we loose if we don’t compute total # of bytes sent?
•  D-LAS: make decisions based on total number of bytes sent locally 



D-LAS Far From Optimal!
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1.  Implement D-CLAS using a centralized architecture
2.  Expose a non-blocking coflow API

Aalo Efficiently schedules 
coflows without 
complete and future 
information
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Details

Non-blocking: when a new coflow arrives at an output port 
•  Put its flow(s) in lowest priority queue and schedule them immediately
•  No need to sync all flows of a coflow as in Varys



Details

Non-blocking: when a new coflow arrives at an output port 
•  Put its flow(s) in lowest priority queue and schedule them immediately
•  No need to sync all flows of a coflow as in Varys

Compute total number of bytes sent
•  Workers send info about active coflows periodically
•  Coordinator computes total # of bytes sent, and relay this info back to workers
•  Workers use this info to move coflows across queues

Minimal overhead for small flows



1.  Can it approach clairvoyant solutions?
2.  Can it scale gracefully? YES 

Evaluation 
A 3000-machine trace-driven 
simulation matched against a 
100-machine EC2 deployment



On Par with Clairvoyant Approaches [EC2]

Varys 

Per-Flow 1.93X 1.18X 

0.89X 0.91X 

Comm. Improv. Job Improv.



Performance Breakdown [EC2]
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What About Scalability? [EC2]
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Aalo Efficiently schedules 
coflows without 
complete information

• Makes coflows practical in presence of failures and DAGs
•  Improved performance over flow-based approaches
•  Provides a simple, non-blocking API

https://github.com/coflow
Mosharaf Chowdhury – mosharaf@umich.edu


