Aalo

Efficient Coflow Scheauling Without Prior Knowledge

Mosharaf Chowdhury, |
mplab

lon Stoica |
UC Berkeley

Communication 1s Crucial

_—O
O—0
Performance (O < 0
. . - 0"’\00 O—(1
Facebook jobs spend ~25 % of runtime — "A‘,‘
on average in intermediate comm.! . " O—U

Map Stage Reduce Stage

As SSD-based and in-memory systems proliferate,
the network is likely to become the primary bottleneck

|. Based on a month-long trace with 320,000 jobs and |50 Million tasks, collected from a 3000-machine Facebook production MapReduce cluster.

Flow-Based Solutions

WFQ CSFQ D3 | [DeTail || PDQ || pFabric
GPS RED || ECN XCP 1| RCP DCTCP D2TCP || FCP
1980s 1990s 2000s 2005 2010 2015

Per-Flow Fairness

[
I
[
- Flow Completion Time
I

Independent flows cannot capture the collective communication
patterns (e.g., shuffle) common in data-parallel applications

Communication abstraction for
data-parallel applications to
express their

|. Minimize completion times,

2. Meet deadlines, or

3. Perform fair allocation

Benefits of Inter-Coflow Scheduling

Link 2

Benefits of Inter-Coflow Scheduling

Coflow | Coflow 2

\
Link 2 {

Fair Sharing Smallest-Flow First Smallest-Coflow First
L2 L2 - L2 [
L] — L T L/
1 | | | | | > - | | | | | > | | I | l |
2 time ¢ 2 time ° ? time * °
Coflow | comp. time = 5 Coflow | comp. time = 5 Coflow | comp. time = 3
Coflow?2 comp. time = 6 Coflow?2 comp. time = 6 Coflow?2 comp. time = 6

Benefits increases with the number of coexisting coflows

Efficiently schedules
coflows leveraging

|. The size of each flow,

2. The total number of flows, and

3. The endpoints of individual flows

|. Efficient Coflow Scheduling with Varys, SIGCOMM’201 4.

Efficiently schedules
coflows leveraging

€ Pipelining between stages

€ Speculative executions

3. lhe—eﬂéﬁaﬂﬂés—ef—méﬁvqéaﬁl—ﬂe% € Task failures and restarts

Efficiently schedules
coflows

complete and future
information

| —thesize-ofeachHows € Pipelining between stages

2. —thetotalrumber-of-flowsand € Speculative executions
3. —Fhe-endpoints-ofindividual-flows € Task failures and restarts

Coflow Scheduling

Minimize Avg. Comp.Time Flows on a Single Link

With complete knowledge Smallest-Flow-First

Coflow Scheduling

Minimize Avg. Comp.Time Flows on a Single Link Coflows in the Entire Network

With complete knowledge Smallest-Flow-First Varys', Smallest-Coflow-First!

|. Efficient Coflow Scheduling with Varys, SIGCOMM’201 4.

Coflow Scheduling

Minimize Avg. Comp.Time Flows on a Single Link Coflows in the Entire Network

With complete knowledge Smallest-Flow-First Varys', Smallest-Coflow-First!

Without complete knowledge Least-Attained Service (LAS)

LAS: prioritize flow that has sent the least amount of data

|. Efficient Coflow Scheduling with Varys, SIGCOMM’201 4.

Coflow-Aware LAS (CLAS)

Prioritize coflow that has sent the least total number of bytes
* The more a coflow has sent, the lower its priority

 Smaller coflows finish faster

Coflow-Aware LAS (CLAS)

Prioritize coflow that has sent the least total number of bytes
* The more a coflow has sent, the lower its priority

 Smaller coflows finish faster

Challenges (also shared by LAS)

e Can lead to starvation

* Suboptimal for similar size coflows

Suboptimal for Similar Coflows

I I I I
Coflow | Coflow 2
Reduces to fair sharing
* Doesn't minimize average completion time
’ time ¢ e

Coflow | comp. time = 6
Coflow?2 comp. time = 6

FIFO works well for similar coflows

* Optimal when cflows are identical

2 4 6

time

Coflow | comp. time = 3
Coflow2 comp. time = 6

Between a "‘Rock’ and a ""Hard Place”

Prioritize across FIFO schedule
dissimilar coflows similar coflows

Discretized Coflow-Aware LAS (D-CLAS)

Priority discretization

* Change priority when total # of bytes sent
exceeds predefined thresholds

Scheduling policies
* FIFO within the same queue
* Prioritization across queue

Weighted sharing across queues

 Guarantees starvation avoidance

FIFO

FIFO

FIFO

Qk

Q

Q

Lowest-

Priority

Queue
A

Highest-
Priority
Queue

How to Discretize Priorities?

Lowest-
Priority

Queue
FIFO|lQ, 4

Exponentially spaced thresholds: A XE" -
e 4, E:constants
e | <i<K:threshold constant

* K:number of the queues

A EK-/

FIFO|Q,

A E? AE

FIFO|Q,

AE o Highest-
Priority
Queue

Computing t# of Bytes Sent

D-CLAS requires to know total # of bytes sent over all flows of a coflow

* Distributed computation over small time scales = challenging

Computing t# of Bytes Sent

D-CLAS requires to know total # of bytes sent over all flows of a coflow

* Distributed computation over small time scales = challenging

How much do we loose if we don’t compute total # of bytes sent!?
* D-LAS: make decisions based on total number of bytes sent /ocally

D-LAS Far From Optimall

Coflow | Coflow 2
(- R
Link 2 : I
—— U —— 2 uns
S Unis e 1.
D-LAS
D-CLAS
(decision on # of bytes sent locally)
L2 R L2 [
L [—— - |
— I | | | | > — | | | | | >
? time * ¢ 2 time ¢ °
Coflow!| comp. time = 6 Coflow!| comp. time = 3

Coflow?2 comp. time = 6 Coflow?2 comp. time = 6

Efficiently schedules
coflows

complete and future
information

| Implement D-CLAS using a centralized archrtecture

2. Expose a non-blocking coflow AP

Aalo Architecture

§ - Coordinator @@ E
- g & Worker
Sender&:i} @@ ‘ b <>

/| milliseconds \
WZQ HS D-CLAS AN @§ =

Worker Worker

= |
| 0 H Network Interface @@ Local/Global Scheduling |
ENE Timescale |

Detalls

Non-blocking: when a new coflow arrives at an output port
* Put its flow(s) in lowest priority queue and schedule them immediately
* No need to sync all flows of a coflow as inVarys

Detalls

Non-blocking: when a new coflow arrives at an output port
* Put its flow(s) in lowest priority queue and schedule them immediately
* No need to sync all flows of a coflow as inVarys

Compute total number of bytes sent
* Workers send info about active coflows periodically
* Coordinator computes total # of bytes sent, and relay this info back to workers

* Workers use this info to move coflows across queues

Minimal overhead for small flows

A 3000-machine trace-driven
simulation matched against a
[00-machine ECZ deployment

|. Can 1t approach clairvoyant solutions?
2. Can It scale gracefully?

On Par with Clairvoyant Approaches [ECZ]

Comm. Improv. | Job Improv.

Per-Flow 1.18X

vVarys 0.91X

Performance Breakdown [EC2]

Similar for large coflows

because they are in slow-
g moving queues
0
0
O
2 Performance loss for
9 medium coflows
= by mischeduling them
o
L
Improvements for small
| | 0 | | | coflows by avoiding
0.01 0.1 I 10 100 1000 coordination

Coflow Completion Time (Seconds)

What About Scalability? [EC2]

1000 - . 2 -
o 1.8
é) <t G)O |.6‘
P ES 14 -
c 100 LN — <
k= = s 1.2 -
= <
o AL
= Qv |
£ 0 ~ £ g 08
T S5 06
8 'E,% 0.4
& S 02
o E o
) | I I I I I Bﬂ_ 0 | | | |
< 8 8 8 8 8 Z g g 2 g g
- 2 2 8 S - =

(Emulated) Aalo Slaves Coordination Period (A)

Efficiently schedules
coflows
complete information

* Makes coflows practical in presence of fallures and DAGs

* Improved performance over flow-based approaches

* Provides a simple, non-blocking AP

https://github.com/coflow

Mosharaf Chowdhury — mosharaf@umich.edu

