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Communication 1s Crucial
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As SSD-based and in-memory systems proliferate,
the network is likely to become the primary bottleneck

|. Based on a month-long trace with 320,000 jobs and |50 Million tasks, collected from a 3000-machine Facebook production MapReduce cluster.



Flow-Based Solutions
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Per-Flow Fairness
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Independent flows cannot capture the collective communication
patterns (e.g., shuffle) common in data-parallel applications




Communication abstraction for
data-parallel applications to
express their

|. Minimize completion times,

2. Meet deadlines, or

3. Perform fair allocation




Benefits of Inter-Coflow Scheduling
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Benefits of Inter-Coflow Scheduling
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Benefits increases with the number of coexisting coflows




Efficiently schedules
coflows leveraging

|. The size of each flow,

2. The total number of flows, and

3. The endpoints of individual flows

|. Efficient Coflow Scheduling with Varys, SIGCOMM’201 4.



Efficiently schedules
coflows leveraging

€ Pipelining between stages

€ Speculative executions

3. lhe—eﬂéﬁaﬂﬂés—ef—méﬁvqéaﬁl—ﬂe% € Task failures and restarts




Efficiently schedules
coflows

complete and future
information

| —thesize-ofeachHows € Pipelining between stages

2. —thetotalrumber-of-flowsand € Speculative executions
3. —Fhe-endpoints-ofindividual-flows € Task failures and restarts




Coflow Scheduling

Minimize Avg. Comp.Time Flows on a Single Link

With complete knowledge Smallest-Flow-First




Coflow Scheduling

Minimize Avg. Comp.Time Flows on a Single Link Coflows in the Entire Network

With complete knowledge Smallest-Flow-First Varys', Smallest-Coflow-First!

|. Efficient Coflow Scheduling with Varys, SIGCOMM’201 4.



Coflow Scheduling

Minimize Avg. Comp.Time Flows on a Single Link Coflows in the Entire Network

With complete knowledge Smallest-Flow-First Varys', Smallest-Coflow-First!

Without complete knowledge Least-Attained Service (LAS)

LAS: prioritize flow that has sent the least amount of data

|. Efficient Coflow Scheduling with Varys, SIGCOMM’201 4.



Coflow-Aware LAS (CLAS)

Prioritize coflow that has sent the least total number of bytes
* The more a coflow has sent, the lower its priority

 Smaller coflows finish faster



Coflow-Aware LAS (CLAS)

Prioritize coflow that has sent the least total number of bytes
* The more a coflow has sent, the lower its priority

 Smaller coflows finish faster

Challenges (also shared by LAS)

e Can lead to starvation

* Suboptimal for similar size coflows



Suboptimal for Similar Coflows
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FIFO works well for similar coflows

* Optimal when cflows are identical
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Between a "‘Rock’ and a ""Hard Place”

Prioritize across FIFO schedule
dissimilar coflows similar coflows




Discretized Coflow-Aware LAS (D-CLAS)

Priority discretization

* Change priority when total # of bytes sent
exceeds predefined thresholds

Scheduling policies
* FIFO within the same queue
* Prioritization across queue

Weighted sharing across queues

 Guarantees starvation avoidance

FIFO

FIFO

FIFO

Qk

Q

Q

Lowest-

Priority

Queue
A

Highest-
Priority
Queue



How to Discretize Priorities?
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Computing t# of Bytes Sent

D-CLAS requires to know total # of bytes sent over all flows of a coflow

* Distributed computation over small time scales = challenging



Computing t# of Bytes Sent

D-CLAS requires to know total # of bytes sent over all flows of a coflow

* Distributed computation over small time scales = challenging

How much do we loose if we don’t compute total # of bytes sent!?
* D-LAS: make decisions based on total number of bytes sent /ocally



D-LAS Far From Optimall
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Efficiently schedules
coflows

complete and future
information

| Implement D-CLAS using a centralized archrtecture

2. Expose a non-blocking coflow AP




Aalo Architecture
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Detalls

Non-blocking: when a new coflow arrives at an output port
* Put its flow(s) in lowest priority queue and schedule them immediately
* No need to sync all flows of a coflow as inVarys



Detalls

Non-blocking: when a new coflow arrives at an output port
* Put its flow(s) in lowest priority queue and schedule them immediately
* No need to sync all flows of a coflow as inVarys

Compute total number of bytes sent
* Workers send info about active coflows periodically
* Coordinator computes total # of bytes sent, and relay this info back to workers

* Workers use this info to move coflows across queues

Minimal overhead for small flows




A 3000-machine trace-driven
simulation matched against a
[ 00-machine ECZ deployment

|. Can 1t approach clairvoyant solutions?
2. Can It scale gracefully?




On Par with Clairvoyant Approaches [ECZ]

Comm. Improv. | Job Improv.

Per-Flow 1.18X

vVarys 0.91X



Performance Breakdown [EC2]

Similar for large coflows

because they are in slow-
g moving queues
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What About Scalability? [EC2]
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Efficiently schedules
coflows
complete information

* Makes coflows practical in presence of fallures and DAGs

* Improved performance over flow-based approaches

* Provides a simple, non-blocking AP

https://github.com/coflow
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