
Mitigating the Latency-Accuracy Trade-off
in Mobile Data Analytics Systems

Anand Padmanabha Iyer
University of California, Berkeley

api@cs.berkeley.edu

Li Erran Li
Fudan University & Pony.ai Research Institute

erranlli@gmail.com

Mosharaf Chowdhury
University of Michigan
mosharaf@umich.edu

Ion Stoica
University of California, Berkeley

istoica@cs.berkeley.edu

ABSTRACT
An increasing amount of mobile analytics is performed on
data that is procured in a real-time fashion to make real-time
decisions. Such tasks include simple reporting on streams
to sophisticated model building. However, the practicality
of these analyses are impeded in several domains because
they are faced with a fundamental trade-off between data
collection latency and analysis accuracy.
In this paper, we first study this trade-off in the context

of a specific domain, Cellular Radio Access Networks (RAN).
We find that the trade-off can be resolved using two broad,
general techniques: intelligent data grouping and task for-
mulations that leverage domain characteristics. Based on
this, we present CellScope, a system that applies a domain
specific formulation and application of Multi-task Learning
(MTL) to RAN performance analysis. It uses three techniques:
feature engineering to transform raw data into effective fea-
tures, a PCA inspired similarity metric to group data from
geographically nearby base stations sharing performance
commonalities, and a hybrid online-offline model for effi-
cient model updates. Our evaluation shows that CellScope’s
accuracy improvements over direct application of ML range
from 2.5× to 4.4×while reducing the model update overhead
by up to 4.8×. We have also used CellScope to analyze an
LTE network of over 2 million subscribers, where it reduced
troubleshooting efforts by several magnitudes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MobiCom’18, October 29–November 2, 2018, New Delhi, India
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5903-0/18/10. . . $15.00
https://doi.org/10.1145/3241539.3241581

We then apply the underlying techniques in CellScope
to another domain specific problem, mobile phone energy
bug diagnosis, and show that the techniques are general.

CCS CONCEPTS
• Information systems → Data analytics; • Networks
→ Mobile networks;

KEYWORDS
mobile systems, data analytics, cellular networks

ACM Reference Format:
Anand Padmanabha Iyer, Li Erran Li, Mosharaf Chowdhury, and Ion
Stoica. 2018. Mitigating the Latency-Accuracy Trade-off in Mobile
Data Analytics Systems. In MobiCom ’18: 24th Annual Int’l Conf. on
Mobile Computing and Networking, Oct. 29–Nov. 2, 2018, New Delhi,
India. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3241539.3241581

1 INTRODUCTION
Mobile data science and analytics has gained popularity in
the recent past, with applications in diverse domains such
as cellular networks [25], Internet-of-Things and machine-
to-machine communication. Increasingly, the trend in such
analyses has moved towards tasks that operate on data that
is procured in a real-time fashion to produce low-latency
decisions. Unlike traditional tasks such as aggregates or dat-
acubes, these real-time analytic tasks often involve model
building and refinement for the purpose of manual or au-
tomatic decision making. However, such analyses are faced
with a fundamental trade-off between having not enough
data to build accurate-enough models in short timespans and
waiting to collect enough data that entails stale results in sev-
eral domains. In this paper, we seek to answer the question
of whether it is possible to mitigate this trade-off. Towards
this goal, we take the first step and investigate this trade-off
in detail, expose the effects of it, and build techniques to mit-
igate it in one such domain-specific problem: performance
diagnostics in cellular Radio Access Networks (RAN)s.

https://doi.org/10.1145/3241539.3241581
https://doi.org/10.1145/3241539.3241581
https://doi.org/10.1145/3241539.3241581

While RAN technologies have seen tremendous improve-
ments over the past decade [41, 42, 46], performance prob-
lems are still prevalent [44]. Factors impacting RAN perfor-
mance include user mobility, skewed traffic pattern, inter-
ference, lack of coverage, unoptimized configuration param-
eters, inefficient algorithms, equipment failures, software
bugs and protocol errors [43]. Though some of these factors
are present in traditional networks and troubleshooting these
networks has received considerable attention in the litera-
ture [2, 7, 12, 53, 59], RAN performance diagnosis brings out
a unique challenge: the performance of multiple base stations
exhibit complex temporal and spatial interdependencies due
to the shared radio access media and user mobility.
Existing systems [4, 16] for detecting performance prob-

lems rely on monitoring aggregate metrics, such as con-
nection drop rate and throughput per cell, over minutes-
long time windows. Degradation of these metrics trigger
mostly manual—hence, time-consuming and error-prone—
root cause analysis. Furthermore, due to their dependence
on aggregate information, these tools either overlook many
performance problems such as temporal spikes leading to
cascading failures or are unable to isolate root causes. The
challenges associated with leveraging just aggregate met-
rics has led operators to collect detailed traces from their
network [15] to aid domain experts in diagnosing problems.

However, the sheer volume of the data and its high dimen-
sionality make the troubleshooting using human experts
and traditional rule-based systems very hard, if not infeasi-
ble [29]. Machine learning (ML) is one natural alternative to
these approaches that has been used recently to troubleshoot
other complex systems with considerable success. However,
simply applying ML to RAN diagnosis is not enough. The
desire to troubleshoot RANs as fast as possible exposes the
inherent tradeoff between latency and accuracy that is shared
by many ML algorithms.

To illustrate this tradeoff, consider the natural solution of
building a model on a per-base station basis. On one hand,
if we want to troubleshoot quickly, the amount of data col-
lected for a given base station may not be enough to learn an
accurate model. On the other hand, if we wait long enough
to learn a more accurate model, this will come at the cost
of delaying troubleshooting and the learned model may not
be valid any longer. Another alternative would be to learn
one model over the entire data set. Unfortunately, since base
stations can have very different characteristics using a single
model for all of them can also result in low accuracy (§2).

We present CellScope, a system that enables fast and ac-
curate RAN performance diagnosis by resolving the latency
and accuracy trade-off using two broad techniques: intel-
ligent data grouping and task formulations that leverage
domain characteristics. More specifically, CellScope applies

Multi-task Learning (MTL) [11, 50], a state-of-the-art ma-
chine learning approach, to RAN troubleshooting. In a nut-
shell, MTL learns multiple related models in parallel by lever-
aging the commonality between those models. To enable the
application of MTL, CellScope uses two techniques. First,
it uses feature engineering to identify the relevant features
to use for learning. Second, it uses a PCA based similarity
metric to group base stations that share common features,
such as interference and load. This is necessary since MTL
assumes that the models have some commonality which is
not necessarily the case in our setting, e.g., different base
stations might exhibit different features. Note that while
PCA has been traditionally used to find network anomalies,
CellScope uses it for finding the common features instead.

To this end, CellScope uses MTL to create a hybrid model:
an offline base model that captures common features, and an
online per-base station model that captures the individual
features of the base stations. This hybrid approach allows
us to incrementally update the online model based on the
base model. The resulting models are both accurate and fast
to update. Finally, in this approach, finding anomalies is
equivalent to detecting concept drift [19]. To demonstrate
the effectiveness of our proposal, we have built CellScope
on Spark [31, 47, 56]. Our evaluation shows that CellScope
is able to achieve accuracy improvements up to 4.4× with-
out incurring the latency overhead associated with normal
approaches (§6). We have also used CellScope to analyze a
live LTE network consisting of over 2 million subscribers,
where we show that it could save the operator several orders
of magnitude savings in troubleshooting efforts (§7).

We then investigate if the techniques we present in this pa-
per can be general. To do so, we take a new domain-specific
problem, energy bug diagnosis in mobile phones, and illustrate
that the trade-off exists in this domain too. Using a dataset
from 800,000+ users, we how the proposed techniques in
CellScope can easily be adapted and demonstrate their ef-
fectiveness in mitigating the trade-off (§8).

2 BACKGROUND AND MOTIVATION
We begin with a brief primer on LTE networks and the cur-
rent state of RAN troubleshooting. Then, we illustrate the
difficulties in applying ML for RAN performance diagnosis.

2.1 LTE Network Primer
LTE networks provide User Equipments (UEs) such as smart-
phones with Internet connectivity. When a UE has data to
send to or receive from the Internet, it sets up a communi-
cation channel between itself and the Packet Data Network
Gateway (P-GW). This involves message exchanges between
the UE and the Mobility Management Entity (MME). In coor-
dinationwith the base station (eNodeB), the Serving Gateway

Base Station

(eNodeB)

Serving Gateway

(S-GW)

Packet Gateway

(P-GW)

Mobility
Management

Entity
(MME)

Home
Subscriber

Server
(HSS)

Internet

Control Plane

Data Plane

User
Equipment

(UE)

Figure 1: LTE network architecture

(S-GW), and P-GW, data plane (GTP) tunnels are established
between the base station and the S-GW, and between the
S-GW and the P-GW. Together with the connection between
the UE and the base station, the network establishes a com-
munication channel called EPS bearer (short for bearer). The
LTE network architecture is shown in fig. 1.

For network access and service, LTE network entities ex-
change control plane messages. A specific sequence of such
control plane message exchange is called a network proce-
dure. For example, when a UE powers up, it initiates an attach
procedure with the MME which consists of establishing a ra-
dio connection, authentication and resource allocation. Each
network procedure involves the exchange of several mes-
sages between two or more entities. Their specifications are
defined by 3GPP Technical Specification Groups (TSG) [48].

Network performance degrades and end-user experience
is affected when procedure failures happen. The complex
nature of these procedures (due to the multiple underlying
message and entity interactions) make diagnosing problems
challenging. Thus, to aid RAN troubleshooting, operators
collect extensive measurements from their network. These
measurements typically consist of per-procedure informa-
tion (e.g., attach). To analyze a procedure failure, it is often
useful to look at the associated variables. For instance, a
failed attachment procedure may be diagnosed if the un-
derlying signal strength information was captured. Hence,
relevant metadata is also captured with procedure informa-
tion. Since there are hundreds of procedures in the network
and each procedure can have many possible metadata fields,
the collected data contains several hundreds of fields.

2.2 RAN Troubleshooting Today
Current RAN network monitoring depends on cell-level ag-
gregate Key Performance Indicators (KPI). Existing practice
is to use performance counters to derive these KPIs. The
derived KPIs are then monitored by domain experts, aggre-
gated over certain pre-defined time window. Based on do-
main knowledge and operational experience, these KPIs are
used to determine if service level agreements (SLA) are met.
For instance, an operator may have designed the network to
have no more than 0.5% call drops in a 10 minute window.
When a KPI that is being monitored crosses the threshold,
an alarm is raised and a ticket created. This ticket is then
handled by experts who investigate the cause of the problem,

often manually. Several commercial solutions exists [3–5, 16]
that aid in this troubleshooting procedure by enabling effi-
cient slicing and dicing on data. However, we have learned
from domain experts that often it is desirable to apply differ-
ent models or algorithms on the data for detailed diagnosis.
Thus, many of the RAN trouble tickets end up with experts
who work directly on the raw measurement data.

2.3 Machine Learning for RAN Diagnostics
The large volume of data collected in the RAN makes it an
ideal candidate for the application of machine learning. We
now discuss the difficulties in using ML for the purpose of
RAN performance diagnostics.

2.3.1 Data. We obtained measurement data from the live
network of a top tier operator in the United States. The data
consists of four types of records:

Bearer Records: These log bearer level information. In our
logs, such information includes extensive information, such
as frame loss rate, physical radio resources allocated, radio
channel quality, physical layer modulation and coding rate,
bearer start and end time, bearer setup delay, failure reason
code (if any), associated base station, MME, S-GW and P-GW.

Signaling Records: These are logs of network procedures,
such as paging, attach/detach, and handoff information. Ev-
ery procedure in the network creates a new record along
with metadata information such as the time of the event.

TCP Flow Records: These logs are from strategically placed
probes in the network, and consists of TCP flow level infor-
mation. They are associated with the bearer records to get
more insights on application level information.

Network Element Records: These are aggregate information
at network elements such as eNodeB or MME. Some fields in
this record include total failures and downlink/uplink frames.

Collectively, the dataset contains over four hundred fields
which could potentially be leveraged as individual features
by a machine learning algorithm.

2.3.2 Ineffectiveness ofGlobalModel. A common ap-
proach in applying ML on a dataset is to consider the dataset
as a single entity and build one model over the entire data.
However, base stations in a cellular network exhibit differ-
ent characteristics. This renders the use of a global model
ineffective. To illustrate this problem, we conducted an ex-
periment where the goal is to build a model for call drops in
the network (similar to [26]) using information in our traces.
Specifically, we build a decision tree model using an hour
worth of data to ensure sufficient data for the algorithm to
produce statistically significant results. Figure 2a shows the
result of this experiment, where we see that the global model

 0
 20
 40
 60
 80

 100
 120
 140

Global Local Local (Stale) Spatial

Model

Accuracy (%)
Validation Error (%)

(a) A single global model results in poor
accuracy. Local model is the best, but re-
quires enough data to build and needs
frequent updates, without which the stal-
eness affects the performance. Combin-
ing geographically nearby base stations
do not result in better accuracy.

��
����
�����
�����
�����
�����
�����
�����
�����

� � � � � �� ��

�
��
��
��
��
��
��
��
��

���������������������������������

���������

(b) Distribution of data collected by base
stations under various data collection la-
tencies. It takes about an hour for a ma-
jority of the base stations to collect data
to build statistically significant models.

��

���

���

���

���

����

� � � � � �� ��

�
��
��
��
��
��
�

���������������������������������

�����
�����

(c) For building local models, it may not
be possible to simply wait for enough
data. A random forest model (Alg 1) gains
from more data, but a lasso regression
model (Alg2) degradeswithmore data due
to temporal effects.

Figure 2: Simply applyingML forRANperformance diagnosis results in a fundamental trade-off between latency and accuracy.

achieves poor accuracy and high variance. This underlines
the heterogeneity in the characteristics of base stations and
hence the ineffectiveness of global models.

2.3.3 Latency/Accuracy Issues with Local Models.
The alternative to a single global model is to build a model
for every base station. We evaluate this approach by repeat-
ing the last experiment, but this time segregating the data
for every base station and building an independent model
for each. The results of this experiment is shown in fig. 2a,
which indicates that local models are far superior, with up
to 20% more accuracy while showing much lower variance.
It is natural to think of a per base station model as the

final solution to this problem. However, this approach has
issues too. Due to the difference in characteristics of the
base stations, the amount of data they collect in a given
time interval varies vastly. Thus, in small intervals, they may
not generate enough data to produce statistically significant
results. Figure 2b shows the distribution of the amount of
data generated by these base stations under different data
collection latencies. It shows that at small intervals (e.g.,
under 10minutes), most base stations do not generate enough
data, and that it takes about an hour for all quartiles of base
stations to log reasonable number of records.

To illustrate the effect of this discrepancy, we conduct an-
other experiment. We use two machine learning algorithms—
a random forest model to predict connection drops (Alg
1), and a lasso regression model using stochastic gradient
descent to predict the throughput (Alg 2)—at various data
collection latencies. These two algorithms represent some
of the commonly used models from the broad categories of
classification and regression. The result of this experiment is
shown in fig. 2c. The behavior of Alg 1 is obvious; as it gets
more data its accuracy improves due to the slow varying
nature of the underlying causes of failures. After an hour

latency1, it is able to reach a respectable accuracy. However,
the second algorithm’s accuracy initially seems to improve
with more data, but falls quickly. This is counterintuitive
in normal settings, but the explanation lies in the spatio-
temporal characteristics of cellular networks. Many of the
performance metrics exhibit high temporal variability, and
thus need to be analyzed in smaller intervals. Thus, in models
like that in Alg 2, it is not enough to just “wait” for enough
data to be collected, and hence local modeling is ineffective.

2.3.4 Need forModelUpdates. An obvious, but flawed
conclusion from our previous experiment is that models sim-
ilar to that built by Alg 1 would work after the data collection
latency (of an hour) has been incurred once. Put differently,
can we just use historic data? In any application of ML, mod-
els need to be updated to retain their performance. This is
true in cellular networks too, where temporal variations af-
fect the performance of themodel. To depict this, we repeated
the experiment where we built per base station decision tree
model for call drops. However, instead of training and testing
on parts of the same dataset, we train on an hours worth
of data, and test it on the next hour. Figure 2a shows that
the accuracy drops by 12% with a stale model (because the
model built using historic data is no longer valid). Thus, it is
important to keep the model fresh by incorporating incom-
ing data and removing old data. Such sliding updates to ML
models in a general setting is difficult due to the overheads
in retraining them from scratch. To add to this, cellular net-
works consist of several thousands of base stations. Thus, a
per base station approach requires creating and updating a
huge amount of models (e.g., our network consisted of over
13000 base stations). This makes scaling hard.

2.3.5 Why not Spatial/Temporal Partitioning? Our
experiments point towards the need for obtaining enough
1Such high latencies may not be acceptable in many scenarios.

CellScope

Domain-Specific MTL

Gradient Boosted Trees

RAN Performance Analyzer

ML Lib

Bearer Level
Trace

Dashboards

Self-Organizing
Networks (SON)

Throughput Drop

Feature
Engineering

PCA-Based Similarity Grouping

Streaming

Figure 3: CellScope System Architecture.

data for ML algorithms to produce statistically significant
results with low latency. The obvious solution to combating
this trade-off is to intelligently combine data from multiple
base stations. It is intuitive to think of this as a spatial par-
titioning problem, since base stations in the real world are
geographically separated. Thus, it is reasonable to assume
that a spatial partitioner which combines data from base
stations within a geographical region must be able to give
good results. Unfortunately, this isn’t the case which we mo-
tivate using a simple example. Consider two base stations,
one situated at the center of times square in New York and
the other a mile away at a residential area. Using a spatial
partitioning scheme that divides the space into equal sized
planes would likely result in combining data from these base
stations. However, this is not desirable because of the differ-
ence in characteristics of these base stations2. We illustrate
this using the drop modeling experiment as before. Figure 2a
shows the performance where we combine data from nearby
base stations using a simple grid partitioner, and then build
a model in each of the partitions. The result shows that this
technique is only slightly better compared to a single global
model. We evaluate other spatial partitioning schemes in §6.

3 CELLSCOPE OVERVIEW
We now present our solution, CellScope, which mitigates
the latency-accuracy trade-off using a domain-specific for-
mulation and application of Multi-Task Learning (MTL).

3.1 Problem Statement
CellScope’s ultimate goal is to enable fast and accurate RAN
performance diagnosis by resolving the trade-off between data
collection latency and the achieved accuracy. The key diffi-
culty arises from the fundamental trade-off between having
not enough data to build accurate-enough models in short
timespans and waiting to collect enough data that entails stale
results. Additionally, CellScope must also support efficient
modifications to the learned models to account for the tem-
poral nature of our setting to avoid data and model staleness.
2In our measurements, a base station in a highly popular spot serves more
than 300 UEs and carries multiple times uplink / downlink traffic compared
to another base station situated just a mile from it that serves only 50 UEs.

3.2 Architectural Overview
Figure 3 shows the high-level architecture of CellScope,
which consists of the following key components:
Input data: CellScope uses measurement traces that are
readily available in modern cellular networks (§2.1). Base
stations collect traces independently and send them to the as-
sociated MME, which merges records if required and uploads
them to a data center.3
Feature engineering:Next, CellScope uses domain knowl-
edge to transform the raw data and construct a set of fea-
tures amenable to learning (e.g., computing interference ra-
tios)(§4.1). We also leverage protocol details and algorithms
(e.g., link adaptation in the physical layer).
Domain-specific MTL: CellScope uses a domain specific
formulation and application of MTL that allows it to perform
accurate diagnosis while updating models efficiently (§4.2).
Data partitioner: To enable correct application of MTL,
CellScope implements a partitioner based on a similarity
score derived from Principal Component Analysis (PCA) and
geographical distance (§4.3). The partitioner segregates data
to be analyzed into independent sets and produces a smaller
co-located set relevant to the underlying analysis. This also
minimizes the need to shuffle data during training.
RANperformance analyzer: This component binds every-
thing together to build diagnosis modules. It leverages the
MTL component and uses appropriate techniques to build
call drop and throughput models. We discuss our experience
of applying these techniques to a live LTE network in §7.
This component can be easily replaced to extend CellScope
to a new domain, as we show in §8.
Output: Finally, CellScope can output analytics results to
external modules such as RAN performance dashboards. It
can also provide inputs to Self-Organizing Networks (SON).

4 MITIGATING LATENCY ACCURACY
TRADE-OFF

In this section, we present how CellScope mitigates the
trade-off between latency and accuracy. We first discuss a
high-level overview of RAN specific feature engineering
that prepares the data for learning (§ 4.1). Next, we describe
CellScope’s MTL formulation (§ 4.2), and how it lets us build
fast, accurate and incremental models. Then, we explain how
CellScope achieves grouping that captures commonalities
among base stations using a novel PCA based partitioner
that makes application of MTL possible (§ 4.3).

4.1 Feature Engineering
Feature engineering, the process of transforming the raw
input data to a set of features that can be effectively utilized
3The transfer of traces to a data center is not fundamental. Extending
CellScope to do geo-distributed learning in a future work.

by machine learning algorithms, is a fundamental part of ML
applications [58]. Generally carried out by domain experts,
it is often the first step in ML.
In CellScope, the network measurement data contains

several hundreds of fields (§2). These fields range from sim-
ple bearer identification information to fields associated with
LTE network procedures. Unfortunately, many of these fields
are not suitable for model building as it is. Additionally, sev-
eral fields are collected in a format that utilizes a compact
representation. Finally, these records are not self-contained,
and multiple records may need to be “joined” to create a
feature for a certain procedure. We use simple feature engi-
neering to obtain fields that can be used in ML algorithms.
As an example, for modeling connection drop rates, we use
block error rate (BLER) as a feature. However, the records
do not directly provide this value, thus it is computed us-
ing the block transfer information. Similarly, for throughput
modeling, the downlink and uplink throughput values are
computed using the amount of physical resource blocks al-
located and the transfer time. While we depend on manual
feature engineering in this work (automating this is part of
our future work), not all fields need to be feature engineered.
Further, we found that the engineered fields can be used
across several ML algorithms.

4.2 Multi-Task Learning
The latency-accuracy trade-off makes it hard to achieve both
low latency and high accuracy in ML tasks (§2). The ideal-
case scenario in CellScope is if infinite amount of data is
available per base station with zero latency. In this scenario,
we would have a learning task for each base station that
produce a model as an output with the best achievable accu-
racy. In reality, our setting has several tasks, each with its
own data. However, each task does not have enough data
to produce models with acceptable accuracy in a given la-
tency budget. This makes our setting an ideal candidate for
multi-task learning (MTL), a research area in machine learn-
ing that has been successful in many ML applications. The
key idea behind MTL is to learn from other tasks by weakly
coupling their parameters so that the statistical efficiency of
many tasks can be boosted [10, 11, 17, 50]. Specifically, if we
are interested in building a model of the form

h(x) =m(f1(x), f2(x), ..., fk (x)) (1)

wherem is a model (e.g., to predict connection drop) com-
posed of feature functions f1 through fk , then the traditional
MTL formulation, given dataset D = {(xi ,yi ,bsi) : i =
1, ...,n}, where xi ∈ Rd ,yi ∈ R and bsi denotes the ith base
station, is to learn

h(x) =mbs (f1(x), f2(x), ..., fk (x)) (2)

wherembs is a per base station model.

In this MTL formulation, the core assumption is a shared
structure or dependency across each of the learning problems.
Unfortunately, in our setting, the base stations do not share
a structure at a global level (§2). Due to their geographic sep-
aration and the complexities of wireless signal propagation,
the base stations share a spatio-temporal structure instead.
Thus, we proposes a new domain-specific MTL formulation.

4.2.1 CellScope’s MTL Formulation. In order to ad-
dress the difficulty in applying MTL due to the violation
of task dependency assumption in RANs, we can leverage
domain-specific characteristics. Although independent learn-
ing tasks (learning per base station) are not correlated with
each other, they exhibit specific non-random structure. For
example, the performance characteristics of base stations
nearby are influenced by similar underlying features. Thus,
we propose exploiting this knowledge to segregate learning
tasks into groups of dependent tasks on which MTL can
be applied. MTL in the face of dependency violation has
been studied in the machine learning literature in the recent
past [20, 30]. However, they assume that each group has its
own set of features. This is not entirely true in our setting,
where multiple groups may share most or all features but still
need to be treated as separate groups. Furthermore, some of
the techniques used for automatic grouping without a priori
knowledge are computationally intensive.

Assuming we can club learning tasks into groups, we can
rewrite the MTL equation in eq. (2) as:

h(x) =mд(bs)(f1(x), f2(x), ..., fk (x)) (3)

wheremд(bs) is the per-base station model in group д. We
describe a simple technique to achieve this grouping based
on domain knowledge in § 4.3 and experimentally show that
just grouping can achieve significant gains in §6.

In theory, the MTL formulation in eq. (3) should suffice for
our purposes as it would perform much better by capturing
the inter-task dependencies using grouping. However, this
formulation still builds an independent model for each base
station. Building and managing a large amount of models
leads to significant performance overhead and would im-
pede our goal of scalability. Scalable application of MTL in
a general setting is an active area of research in machine
learning [36], so we turn to problem-specific optimizations
to address this challenge.

The modelmд(bs) could be built using any class of learning
functions. In this paper, we restrict ourselves to functions of
the form F (x) = w ·x wherew is the weight vector associated
with a set of features x . This simple class of function gives us
tremendous leverage in using standard algorithms that can
easily be applied in a distributed setting, thus addressing the
scalability issue. In addition to scalable model building, we
must also be able to update the built models fast. However,

machine learning models are typically hard to update in real
time. To address this challenge, we discuss a hybrid approach
to building the models in our MTL setting next.

4.2.2 Hybrid Modeling for Fast Model Updates. Es-
timation of the model in eq. (3) could be posed as an ℓ1
regularized loss minimization problem [51]:

min
∑

L(h(x : fbs),y) + λ | |R(x : fbs)| | (4)

where L(h(x : fbs),y) is a non-negative loss function com-
posed of parameters for a particular base station, hence cap-
turing the error in the prediction for it in the group, and λ > 0
is a regularization parameter scaling the penalty R(x : fbs)
for the base station. However, the temporal and streaming
nature of the data means that the model must be refined
frequently for minimizing staleness.

Fortunately, grouping provides us an opportunity to solve
this. Since the base stations are grouped into correlated task
clusters, we can decompose the features used for each base
station into a shared common set fc and a base station specific
set fs . Thus, we can modify eq. (4) as minimizing∑ (∑

L(h(x : fs , fc),y) + λ | |R(x : fs)| |

)
+ λ | |R(x : fc)| |

(5)
where the inner summation is over dataset specific to each
base station. This separation gives us a powerful advantage.
Since we grouped base stations, the feature set fs is minimal,
and in most cases just a weight vector on the common feature
set. Because the core common features do not change often,
we need to update only the base station-specific parts in the
model frequently, while the common set can be reused. Thus,
we end up with a hybrid offline-online model. Furthermore,
the choice of our learning functions lets us apply stochastic
methods [45] which can be efficiently parallelized.

4.2.3 AnomalyDetectionUsingConceptDrift. A com-
mon use case of learning tasks for RAN performance analysis
is in detecting anomalies. For instance, an operator may be
interested in learning if there is a sudden increase in call
drops. At the simplest level, it is easy to answer this question
by monitoring the number of call drops at each base station.
However, just a yes or no answer to such questions are sel-
dom useful. If there is a sudden increase in drops, then it is
useful to understand if the issue affects a complete region
and its root cause.

Our MTL approach and the ability to do fast incremental
learning enables a better solution for anomaly detection and
diagnosis. Concept drift is a term used to refer the phenome-
non where the underlying distribution of the training data
for a machine learning model changes [19]. CellScope lever-
ages this to detect anomalies as concept drifts and proposes
a simple technique for it. Since we process incoming data in

mini-batches (§5), each batch can be tested quickly on the
existing model for significant accuracy drops. An anomaly
occurring just at a single base station would be detected by
one model, while one affecting a larger area would be de-
tected by many. Once anomaly is detected, finding cause is
as easy as updating the model and comparing it with the old.

4.3 Data Grouping for MTL
Having discussed CellScope’s MTL formulation, we now
turn our focus towards how CellScope achieves efficient
grouping of cellular datasets that enables accurate learn-
ing. Our data partitioning is based on Principal Component
Analysis (PCA), a widely used technique in multivariate anal-
ysis [37]. PCA uses an orthogonal coordinate transformation
to map a given set of points into a new coordinate space.
Each of the new subspaces are commonly referred to as a
principal component. Since the coordinate space is smaller
than the original , PCA is used for dimensionality reduction.
In their pioneering work, Lakhina et.al. [33] showed the

usefulness of PCA for network anomaly detection. They
observed that it is possible to segregate normal behavior and
abnormal (anomalous) behavior using PCA—the principal
components explain most of the normal behavior while the
anomalies are captured by the remaining subspaces. Thus,
by filtering normal behavior, it is possible to find anomalies
that may be otherwise undetected.
While the most common usecase for PCA has been di-

mensionality reduction (in machine learning domains) or
anomaly detection (in networking domain), we use it in a
novel way, to enable grouping of datasets formulti-task learn-
ing. Due to the lack of the ability to collect sufficient amount
of data from individual base stations, detecting anomalies
in them will not yield results. However, the data would still
yield an explanation of normal behavior. We use this obser-
vation to partition the dataset.

4.3.1 Notation. As bearer level traces are collected con-
tinuously, we consider a buffer of bearers as a measurement
matrix A. Thus, A consists ofm bearer records, each having
n observed parameters making it anm×n time-series matrix.
It is to be noted that n is in the order of a few 100 fields, while
m can be much higher depending on how long the buffering
interval is. We enforce n to be fixed in our setting—every
measurement matrix must contain n columns. To make this
matrix amenable to PCA analysis, we adjust the columns
to have zero mean. By applying PCA to any measurement
matrix A, we can obtain a set of k principal components
ordered by amount of data variance they capture.

4.3.2 PCA Similarity. It is intuitive to see that many
measurement matrices may be formed based on different

criteria. Suppose we are interested in finding if two mea-
surement matrices are similar. One way to achieve this is
to compare the principal components of the two matrices.
Krzanowski [32] describes such a Similarity Factor (SF). Con-
sider two matrices A and B having the same number of
columns, but not rows. The similarity factor between A and
B is:

SF = trace(LM ′ML′) =
k∑
i=1

k∑
j=1

cos2 θi j

where L,M are the first k principal components ofA and B re-
spectively, and θi j is the angle between the ith component of
A and the jth component of B. The similarity factor considers
all combinations of k components from both matrices.

4.3.3 CellScope’s Similarity Metric. Similarity in our
setting bears a slightly different meaning: we do not want
strict similarity between measurement matrices, but only
similarity between corresponding principal components. This
ensures that algorithms will still capture the underlying ma-
jor influences and trends in observation sets that are not
exactly similar. So we propose a simpler metric.
Consider two measurement matrices A and B as before,

whereA is of sizemA×n and B is of sizemB ×n. By applying
PCA on the matrices, we can obtain k principal components
using a heuristic. We obtain the first k components which
capture 95% of the variance. From the PCA, we obtain the
resulting weight vector, or loading, which is a n × k matrix:
for each principal component in k , the loading describes
the weight on the original n features. Intuitively, this can be
seen as a rough measure of the influence of each of the n
features on the principal components. The Euclidean distance
between the corresponding loading matrices gives

SFCellScope =
k∑
i=1

d(ai ,bi) =
k∑
i=1

n∑
j=1

|ai j − bi j |

where a and b are the column vectors representing the load-
ings for the corresponding principal components fromA and
B. Thus, SFCellScope captures how closely the underlying
features explain the variation in the data.

Due to the complex interactions between network compo-
nents and the wireless medium, many of the performance
issues in RANs are geographically tied (e.g., congestionmight
happen in nearby areas, and drops might be concentrated)4.
However, SFCellScope doesn’t capture this phenomenon be-
cause it only considers similarity in normal behavior. Conse-
quently, it is possible for anomaly detection algorithms to
miss geographically-relevant anomalies. To account for this
domain-specific characteristic, we augment our similarity
4Proposals for conducting geographically weighted PCA (GW-PCA) ex-
ist [22], but they are not applicable since they assume a smooth decaying
user provided bandwidth function.

metric to also capture the geographical closeness by weigh-
ing the metric by geographical distance between the two
measurement matrices. Our final similarity metric is5

SFCellScope = wdistance(A,B) ×

k∑
i=1

n∑
j=1

|ai j − bi j |

4.3.4 Using SimilarityMetric for Partitioning. With
similaritymetric,CellScope can nowpartition bearer records.
We first group the bearers into measurement matrices by
segregating them based on the cell on which the bearer orig-
inated. The grouping is based on our observation that the
cell is the lowest level at which an anomaly would mani-
fest. We then create a graph G(V ,E) where the vertices are
the individual cell measurement matrices. An edge is drawn
between two matrices if the SFCellScope between them is
below a threshold. To compute SFCellScope , we simply use
the geographical distance between the cells as the weight.
Once the graph has been created, we run connected com-
ponents on this graph to obtain the partitions. The use of
connected component algorithm is not fundamental, it is
also possible to use a clustering algorithm instead. For in-
stance, a k-means clustering algorithm that could leverage
SFCellScope to merge clusters would yield similar results.

4.3.5 ManagingPartitionsOver Time. One important
consideration is managing group changes over time. To de-
tect group changes, it is necessary to establish correspon-
dence between groups across time intervals. Once this cor-
respondence is established, CellScope’s hybrid modeling
makes it easy to accommodate changes. Due to the segre-
gation of our model into common and base station specific
components, small changes to the group do not affect the
common model. In these cases, we can simply bootstrap the
new base station using the common model, and then start
learning specific features. On the other hand, if there are
significant changes to a group, then the common model may
no longer be valid, which is easy to detect using concept
drift. In such cases, the offline model could be rebuilt.

4.4 Summary
We now summarize how CellScope resolves the fundamen-
tal trade-off between latency and accuracy. To cope with the
fact that individual base stations cannot produce enough data
for learning in a given time budget, CellScope uses MTL.
However, our datasets violate the assumption of learning
task dependencies. As a solution, we proposed a novel way of
using PCA to group data into sets with the same underlying
performance characteristics. Directly applying MTL on these
5A similarity measure for multivariate time series is proposed in [55], but
it is not applicable due to its stricter form and dependence on finding the
right eigenvector matrices to extend the Frobenius norm.

groups would still be problematic in our setting due to the
inefficiencies with model updates. To solve this, we proposed
a new formulation for MTL which divides the model into an
offline and online hybrid. On this formulation, we proposed
using simple learning functions are amenable to incremental
and distributed execution. Finally, CellScope uses a simple
concept drift detection to find and diagnose anomalies.

5 IMPLEMENTATION
We have implemented CellScope on Spark [56]. We describe
its API that exposes our commonality based grouping based
on PCA (§ 5.1), and implementation details on the hybrid
offline-online MTL models (§ 5.2).

5.1 Data Grouping API
CellScope’s grouping API is built on Spark Streaming [57],
since the data arrives continuously, and we need to operate
on this data in a streaming fashion. Spark Streaming already
provides support for windowing functions on streams of
data, thus we extended it with the three APIs in listing 1.

grouped = DStream.groupBySimilarityAndWindow(
windowDuration, slideDuration)

reduced = DStream.reduceBySimilarityAndWindow(
func, windowDuration, slideDuration)

joined = DStream.joinBySimilarityAndWindow(
windowDuration, slideDuration)

Listing 1: Groping API

The APIs leverage the DStream abstraction provided by
Spark Streaming. groupBySimilarityAndWindow takes
the buffered data from the last window duration, applies
the similarity metric to produce outputs of grouped datasets
every slide duration. reduceBySimilarityAndWindow al-
lows an additional user defined associative reduction opera-
tion on the grouped datasets. Finally, joinBySimilarity-
AndWindow joins multiple streams using similarity.

5.2 Hybrid MTL Modeling
We use Spark’s machine learning library, MLlib [47] for im-
plementing our hybrid MTL model. MLlib contains imple-
mentation for many distributed learning algorithms. The
MTL formulation we presented in § 4.2 allows us to utilize
these existing models in our framework.
In MTL, the tasks learn from each other. These tasks in

our setting consist of building a model,mд(bs) for each base
station in every group created by the PCA based grouping.
In eq. (3), we presented our MTL formulation, and described
a simplified loss minimization method to estimate this model.
Further, in eq. (5), we decomposed this into shared and base
station specific set, so the model mд(bs) is of the general

form h(x : fs , fc),y). Since we restrict ourselves to learning
functions of the formw ·x for this model, our model per base
station is simply a weight vector on the shared group model.
This allows the usage of existing ensemble methods [14].
Ensemblemethods usemultiple learning algorithms to obtain
better performance. In our case, we use the ensemble method
to learn the shared group model. This can be done in many
ways: we can directly employ existing ensemble methods, or
we can leverage multiple algorithms to be components of the
ensemble. However, unlike normal ensemble methods where
the output is aggregated, we use the MTL approach of a task
per base station to learn the per-base station model. This
is equivalent to a linear model on the individual ensemble
components, which gives us the weight vector.

Wemodified theMLLib implementation of Gradient Boosted
Tree (GBT) [18]. This implementation supports both classifi-
cation and regression, and internally uses stochastic methods.
We implement the group’s shared feature model using either
the GBT’s ensemble, or individual algorithms. As an exam-
ple, for connection drop prediction, the shared model can be
obtained using the standard ensembles such as the GBT itself,
or random forests. Then, we use individual base station data
to fit a linear model on the individual ensemble components.
Note that it is not necessary to build the base model this
way—we could also use multiple learning methods as ensem-
ble components. In the same example, our ensemble could
consist of a combination of SVM and decision trees. Similarly,
for throughput prediction, the shared model is built as an
ensemble of regression models—for instance, we may use
one model for low throughput and another for high through-
put, and each of these tasks could use a different standard
learning method. In this method, we can update the base
station specific weight vector in real time as data is streamed
in, as we simply need to update the linear model. Further, the
group specific model can be periodically retrained. One way
to do so is to simply add more models to the ensemble when
new data comes in. Our implementation allows weighing
the outcome to give more weights to the latest models.

6 EVALUATION
We have evaluated CellScope through a series of experi-
ments on real-world cellular traces from a live LTE network
in a large geographical area. Our results show that:
• CellScope’s similarity based grouping provides up to 10%
improvement in accuracy on its own compared to the best
space partitioning scheme.

• With MTL, CellScope’s accuracy improvements range
from 2.5× to 4.4× over different collection latencies.

• Our hybrid online-offline model is able to reduce model
update times upto 4.8× and is able to learn changes in an
online fashion with no loss in accuracy.

���
���
���
���
���
����

������������� ����������

�
��
��
��
��
��
�

�����

�����
���������
���������

���������
��������

������������

(a) Grouping by itself is able to provide
significant gains. MTL provides further
gains.

��

���

���

���

���

���

���

����� ������ ������ �����
��

����

����

����

����

����

����

�
��
��
��
��
��
�

�
��
��
��
��
�
���
��
��
�

�����������

������������

(b) Grouping is not computationally in-
tensive, even a days worth of data (with
>500M records) can be easily grouped in
under a minute.

��

���

���

���

���

����

� � � � � �� ��

�
��
��
��
��
��
�

���������������������������������

����������������
���������

(c) CellScope achieves up to 2.5× accuracy
improvements in drop rate classification.

��

���

���

���

���

����

� � � � � �� ��

�
��
��
��
��
��
�

���������������������������������

����������������
���������

(d) Improvements in throughput regres-
sion go up to 4.4×

��
���
���
���
���
���
���
���

���������� ������ �����

�
��
��
��
��
��
�

�����������

�����
��������
������

(e) CellScope’s hyrid model allows effi-
cient updates, and reduces update time by
up to 4.8×.

��

���

���

���

���

����

� � � � � �� ��

�
��
��
��
��
��
�

���������������������������������

����������������
���������

(f) Online training due to the hybrid
model helps avoid the loss in accuracy
due to staleness of the model.

Figure 4: CellScope is able to achieve high accuracy while reducing the data collection latency.

Evaluation Setup:We use a private cluster of 20 machines,
each consisting of 4 CPUs, 32GB RAM and 200GB hard disk.
Dataset: We collected data from a major metro-area LTE
network for a time period of over 10 months. It serves over
2 million active users and carries over 6TB traffic per hour.

6.1 Benefits of Similarity Based Grouping
We first attempt to answer the question "How much bene-
fits do the similarity based grouping provide?". For this, we
conducted two experiments, each with a different learning al-
gorithm. The first experiment, detection of call drops, uses a
classification algorithm while the second, throughput predic-
tion, uses a regression algorithm. We chose these to evaluate
the benefits in two different classes of algorithms. In both
these cases, we pick the data collection latency where the
per base station model gives the best accuracy, which was 1
hour for classification and 5 minutes for regression. In order
to compare the benefits of our grouping scheme alone, we
build a single model per group instead of applying MTL. We
compare the accuracy obtained with three different space
partitioning schemes. The first scheme (Spatial 1) just par-
titions space into grids of equal size. The second (Spatial 2)
uses a sophisticated space-filling curve based approach [25]
that could create dynamically sized partitions. Finally, the
third (Spatial 3) creates partitions using base stations that
are under the same region. Figure 4a shows the results.

CellScope’s similarity grouping performs as good as the
per base station model which gives the highest accuracy. It
is interesting to note the performance of spatial partitioning
schemes which ranges from 75% to 80%. None of the spa-
tial schemes come close to the similarity grouping results.
This is because the drops are few, and concentrated. Spatial
schemes club base stations not based on underlying drop
characteristics, but only based on spatial proximity. This
causes the algorithms to underfit or overfit. Since our simi-
larity based partitioner groups base stations using the drop
characteristics, it is able to do as much as 17% better.

The benefits are even higher in the regression case. Here,
the per base station model is unable to get enough data to
build an accurate model and hence is only able to achieve
around 66% accuracy. Spatial schemes are able to do slightly
better than that. Our similarity based grouping emerges as
a clear winner in this case with 77.3% accuracy. This result
depicts the highly variable performance characteristics of
the base stations, and the need to capture them for accuracy.
These benefits do not come at the cost of computational
overhead due to grouping. Figure 4b shows the overhead of
similarity based grouping on various dataset sizes.

6.2 Benefits of MTL
Next, we characterize the benefits ofCellScope’s use of MTL.
We repeated the experiment before, and apply MTL to the

grouped data to see if the accuracy improves compared to
the earlier approach of a single model per group. The results
are presented in figure 4a. The ability of MTL to learn and im-
prove models from other similar base stations’ data results in
an increase in the accuracy. Over the benefits of grouping, we
see an improvement of 6% in the connection drop diagnosis
experiment, and 16.2% in the case of throughput prediction
experiment. The higher benefits in the latter comes from
CellScope’s ability to capture individual characteristics of
the base station. This ability is not so crucial in the former
because of the limited variation in individual characteristics.

6.3 Combined Benefits
Here, we are interested in evaluating howCellScope handles
the latency accuracy trade-off. We do the same classification
and regression experiments, but on different data collection
latencies. We show the results from the classification and
regression experiment in fig. 4c and fig. 4d, which compares
CellScope’s accuracy against a per base station model’s.
When the opportunity to collect data at individual base

stations is limited, CellScope is able to leverage our MTL
formulation to combine data from multiple base stations,
and build customized models to improve the accuracy. The
benefits of CellScope ranges up to 2.5× in the classification
experiment, to 4.4× in the regression experiment. Lower
latencies are problematic in the classification experiment
due to the extremely low probability of drops, while higher
latencies are a problem in the regression experiment due to
the temporal changes in performance.

6.4 Hybrid model benefits
Finally, we are interested in learning how much overhead it
reduces during model updates, and if it do online learning.

To answer the first question, we conducted the following
experiment: we considered three different data collection
latencies: 10 minute, 1 hour and 1 day. We then learn a deci-
sion tree model on this data in a tumbling window fashion.
So for the 10 minute latency, we collect data for 10 minutes,
then build a model, wait another 10 minutes to refine the
model and so on. We compare our hybrid model strategy
to two different strategies: a naive approach which rebuilds
the model from scratch every time, and a better, strawman
approach which reuses the last model, and makes changes
to it. Both builds a single model while CellScope uses our
hybrid MTL model and only updates the online part of the
model. The results of this experiment is shown in figure 4e.
The naive approach incurs the highest overhead, which

is obvious due to the need to rebuild the entire model from
scratch. The overhead increases with the increase in input
data. The strawman approach, on the other hand, is able to
avoid this heavy overhead. However, it still incurs overheads

with larger input because of its use of a single model which
requires changes to many parts of the tree. CellScope incurs
the least overhead, due to its use of multiple models. When
data accumulates, it only needs to update a part of an existing
tree, or build a new tree. This strategy results in a reduction
of up to 2.2× to 4.8× in model building time for CellScope.
To wrap up, we evaluated the performance of the hybrid

strategy on different data collection intervals. Here we are
interested in seeing if the hybrid model is able to adapt to
data changes and provide reasonable accuracies. We use the
connection drop experiment again, but do it in a different
way. At different collection latencies, we build the model at
the beginning of the collection and use the model for the next
interval. Hence, for the 1 minute latency, we build a model
using the first minute data, and use the model for the second
minute (until the whole second minute has arrived). The
results are shown in figure 4f. We see here that the per base
station model suffers an accuracy loss at higher latencies
due to staleness, while CellScope incurs almost zero loss in
accuracy. This is because it doesn’t wait until the end of the
interval, and is able to incorporate data in real time.

7 REAL WORLD RAN ANALYSIS
We now turn to the question of how could operators benefit
from a system such as CellScope? We try to answer this
question in two ways: first, we try to evaluate what are the
benefits of automatic root-causing and how much effort is
reduced for the operator because of this feature. Second, we
evaluate CellScope’s ability to analyze in the wild.

7.1 Time Savings to the Operator
Operators spend several billions of dollars in diagnosing
network problems. Often, finding the cause of a network
problem takes hours, or even days of effort. To evaluate how
CellScope could cut down this effort, we collected network
trouble tickets from the operator. The operator logs tickets
at different levels, so we look at trouble tickets that were
investigated by domain experts using state-of-the-art tools
such as datacubes. For each ticket where the operator has
network data available, we used CellScope to diagnose the
problem. This way, we can evaluate the potential time sav-
ings CellScope provides. We discuss four real trouble tickets,
the time taken by CellScope is depicted in table 1.

7.1.1 Throughput Degradation After Upgrade. This ticket
reported that a number of users experienced degraded net-
work throughput after a network upgrade. In many cases,
throughput decrease of up to 30% was observed. Since not all
of the users saw this problem, the operator had to conduct
field trials to find the root cause of the problem. We used
CellScope to model the throughput before and after the
upgrade. Comparing the models, we noticed that a cluster of

Ticket Resolution Time CellScope
§ 7.1.1 3 days 10 minutes
§ 7.1.2 1 day 2 minutes
§ 7.1.3 7 days 15 minutes
§ 7.1.4 1 hour 1 minute

Table 1:CellScope is able to reduce operator effort by several
orders of magnitude. Resolution time includes field trials &
expert analysis using datacubes / state-of-the-art tools [3].

base stations had one feature influencing the model heavily.
This matched the operator’s ticket resolution—the field trials
in the ticket indicated that the problem was cluster-wise and
that it was because the feature CellScope was erroneously
turned on after the upgrade. The base stations CellScope
identified matched those reported in the resolution. In this
case, the ticket was resolved in three days including the field
trials, while our modeling on CellScope took less than 10
minutes. Note that manually applying learning techniques
would not have found the problem without grouping.

7.1.2 Specific Patterns of Call Drops . Here, the operator
reported consistent call drops (specifically, VoLTE call drops)
in certain areas of the network. Manually analyzing this
would have required a domain expert to slice and dice several
TB of data to find a pattern and then dig deep into the pattern.
To reduce this effort, the operator conducted field trials in
parts affected to obtain test data that is manageable for the
expert, who was able to identify the problem: a missing
neighbor configuration in a group of base stations.

We used CellScope to model the call drop in an expanded
portion of the network. After the grouping process, one par-
ticular group’s model indicated that drops happened when
a handoff procedure was triggered and the procedure failed
due to a specific error code at the base station, missing-
neighbor. Here, the field trial, and domain expert’s analysis
was completed in one business day, while CellScope did the
grouping and modeling on one day’s data in 2 minutes.

7.1.3 Periodic Throughput KPI Degradation. The operator
noticed a degradation of KPI in the network. The degra-
dation happened in some serving cells. However, this was
not consistently noticed, and occurred irregularly. To add,
the problem was transient. Thus, the ticket required a week
worth of effort to diagnose since field trials did not prove
to be of help. We used CellScope in the following fashion:
we replayed the data for days when KPI degradation was
reported. We then built incremental models for drop rate and
throughput. We then look at the intervals when CellScope
refines the model due to accuracy loss using the concept drift
and look at the model changes. We noticed that during some
specific intervals, call drops spiked in some cells while the
throughput of the entire cell dropped. The difference in the

models built by CellScope indicated that device specific fea-
tures influenced the drops. The reason was that a particular
model and software version of a device creating a deluge of
control messages that affected the entire cell when it was
near capacity. The ticket closure confirmed this.

7.1.4 Periodic Call Drops. Here, the operator noticed pe-
riodic increase in call drops. The domain expert was able
to identify the problem in an hour as PCI collision due to
her vast expertise in the domain by looking through the logs
from affected period. We used the same logs in CellScope,
and were able to generate a call drop model that explained
the drops using inter-cell interference. When expertise is not
available, the ticket would have been time-consuming.

7.2 Analysis in the Wild: Findings
To validate our system in the real world, we used CellScope
for RAN performance analysis on the live LTE network.
Based on our experience with trouble tickets, we considered
two metrics that are of significant importance for end-user
experience: throughput and connection drops. In this section,
we present some of ourmain findings (whichwere previously
unknown to the operator) and the role played by CellScope.

7.2.1 SINRAnomaly. In a particular week, we noticed that
an implementation of a learning task for connection drop
predicted unusually high numbers of drops. These high drops
happened at some base stations, all of which were assigned
to the same group in CellScope’s grouping. Upon further
investigationwith help from network experts, it was revealed
that these base stations had been experiencing unusually
higher levels of interference.

7.2.2 Incorrect Parameters. Similarly, we implemented a
throughput prediction model. During a month long obser-
vation, we noticed that the predicted throughput for a set
of base stations had fallen below its normal average after a
certain date. It was found that the base stations were con-
nected to the same MME and that a software upgrade had set
some parameters affecting the throughput incorrectly. This
was one of several misconfigurations we found in the net-
work that caused performance degradation. Others included
incorrect neighbor assignments and hand-off problems.

7.2.3 Real-time Monitoring. We simulated real-time mon-
itoring of the network and CellScope’s ability to detect per-
formance problems. The current approach taken by the op-
erator is to define SLAs for KPIs and then monitor them for
SLA violations. However, such aggregate metrics are likely
to miss many events. We used CellScope to monitor the
network over a month, and verify if the events predicted by
CellScope matches ground truth. Not only did CellScope
detect 100% of the KPI SLA violations, it also found a few

��
���
���
���
���

����
����
����

������ ����� ����� ��

�����

������������
��������������������

Figure 5: Other domains suffer from latency-accuracy trade-
off. Here, we see the problem in the domain of energy debug-
ging formobile devices. Grouping by phonemodel or phone
operating system does not give benefits.

issues that were missed by the KPI based monitoring system,
and later logged as trouble tickets.

7.2.4 Measurement Error. We also found problems in net-
work measurements. Specifically, during initial deployment
trials of CellScope, we noticed that using the feature engi-
neered field of block error rate resulted in poor accuracy. The
reason for this was an uninitialized field in the measurement
record logger, which resulted in random values.

8 EXTENDING CELLSCOPE TO A NEW
DOMAIN

To show the generality of the techniques presented in this
paper, we now apply these techniques to a new domain:
energy anomaly detection in mobile phones [35]. We obtained
a dataset of measurements from approximately 800,000 users
obtained using the Carat app. The goal here is to suggest
actions to users that help improve their battery life. This can
be done by building a battery usage model for each user.

Data: The Carat app periodically collects a variety of data
from the mobile phone it is running on, including the phone
model, version of the operating system, the state of the bat-
tery, the CPU and memory utilization and the applications
that are running. We use these fields to build a ML model
that predicts the battery drain rate for a user. Using this
model, it is possible to point out potential application that
are responsible for an increased battery drain.

Latency-Accuracy Trade-off: For users signing up for
the Carat app, it is desirable to provide suggestions as soon
as possible. However, currently, it takes several weeks for
the app to collect enough data for a new user. Figure 5 shows
the results of building a model for suggesting apps that are
bugs for a particular user once enough data has been col-
lected. It can be seen that a per-user model (denoted Local)
works the best, but at the cost of latency. The local model

��

���

���

���

���

����

� � � � � ��

�
��
��
��
��
��
�

������������������������������

��������
���������

Figure 6: CellScope’s techniques can easily be extended to
new domains, and can benefit them. Here, using our tech-
niques, models built are usable immediately while without
CellScope, Carat [35] takes more than a week to build a
model that is usable.

performs poorly until enough data has been collected as de-
picted in fig. 6. A global model can be built immediately, but
has poor accuracy. It is intuitive to think of grouping users
who have the same model device together, or same operating
system together. However, these grouping (denoted Model
and OS) does not yield significant benefits. Further, as people
install/uninstall apps, the models need to be updated. This
make the domain ideal for testing CellScope’s techniques.

Extending Similarity Metric and MTL:. To extend our
techniques to a new domain, we need to (i) customize the
similarity metric (used for grouping) to the domain under
consideration, and (ii)modify the MTL formulation in eq. (5)
for this domain. In the cellular networks domain, our simi-
larity metric was weighted by geographic distance between
base stations. However, geographic distance does not have
an effect here. From fig. 5, we notice that device model and
operating system also do not make much difference either.
Intuitively, the subset of apps common between the users
should provide better results. However, just that alone is not
enough as usage patterns vary across users with similar apps.
The Carat dataset provides enough information to determine
the number of times each app is active, which is roughly an
indicator of the usage pattern for the user. We use that to
derive usage similarity between users, uusaдe(A,B) , and utilize
that to form the similarity metric:

SFCellScope = uusaдe(A,B) ×
k∑
i=1

n∑
j=1

|ai j − bi j |

The MTL formulation remains the same as in eq. (5), we
simply replace fs with per-user features fu .
We implemented a Mobile Energy Diagnosis module in

CellScope at the same level as the RAN Performance Ana-
lyzer in fig. 3 that uses our modified similarity metric and
MTL formulation. We then applied the grouping and learn-
ing to the measurement data we obtained to build a model

for suggesting bugs to a new user. The results are shown
in fig. 6 which shows the accuracy of models built with (de-
noted CellScope) and without CellScope (denoted per-user)
starting from the day a user installs Carat. We see that on the
day of signing up, the accuracy of the model built without
using CellScope is unusable. This is intuitive, since only a
few samples have been sent by the new user’s device. Over
time, the user sends enough data and the accuracy improves.
However, it takes over a week for Carat to offer usable sug-
gestions to a new user. In contrast, with CellScope, we are
able to build models that are immediately usable, and Carat
can begin offering suggestions on day 1.

9 RELATEDWORK
Monitoring andTroubleshooting. Networkmonitoring

and troubleshooting has been an active area of research in
both wired networks [21, 28, 54] and wireless networks [3,
4, 13, 16]. These techniques do not employ machine learning
for troubleshooting. Systems targeting RAN [4, 16] typically
monitor aggregate KPIs and per-bearer records separately.
Their root cause analysis of KPI problems correlates with
aggregation air interface metrics such as SINR histograms
and configuration data. Because these systems rely on tradi-
tional database technologies, it is hard for them to provide
fine-grained prediction based on bearer models. Recent re-
search [25] and commercial offerings [6] have looked at the
problem of scalable cellular network analytics by leveraging
big data frameworks. However, they do not support learn-
ing tasks. In contrast, CellScope focuses on scalable and
accurate application of machine learning in such domains.

Self-Organizing Networks (SON). The goal of SON [1]
is to make the network capable of self-configuration (e.g.
automatic neighbor list configuration) and self-optimization.
CellScope’s techniques can provide the necessary diagnos-
tics capabilities for assisting SON.

Modeling and Diagnosis Techniques. Problem diagno-
sis in cellular networks has been explored extensively in the
literature in various forms [9, 23, 26, 34, 39, 49]. The focus
of these has either been detecting faults or finding the root
cause of failures. A vast majority of such techniques depend
on aggregate information and correlation based fault de-
tection. [26] discusses the shortcomings of using aggregate
KPIs, and propose the use of fine-grained information. Some
studies have focused on understanding the interaction of
applications and cellular networks [24, 27, 38, 40, 52]. These
are largely orthogonal to our work.

Finally, some recent proposals leverage the use of ML for
specific tasks. In [49], the authors discuss the use of ML tools
in predicting impending call drops and its duration. A proba-
bilistic system for auto-diagnosing faults in RAN is presented

in [9]. It uses KPIs as inputs to the model. [8] shows that
improving signal-to-noise ratio, decreasing load and reduc-
ing handovers in cellular networks can improve web quality
of experience by using ML to model the influence of radio
network characteristics on user experience metrics. Our pre-
vious work [26] proposed the use of simple, explainable ML
models towards the quest of automating RAN problem de-
tection and diagnosis, and discussed several challenges in
leveraging ML. In this paper, we present techniques that can
solve the challenges in leveraging ML in many domains.

Multi-Task Learning. MTL builds on the idea that re-
lated tasks can learn from each other to achieve better sta-
tistical efficiency [10, 11, 17, 50]. Since the assumption of
task relatedness do not hold in many scenarios, techniques
to automatically cluster tasks have been explored in the
past [20, 30]. However, these techniques consider tasks as
black boxes and hence cannot leverage domain specific struc-
ture. CellScope proposes a hybrid offline-online MTL for-
mulation on domain-specific grouping of tasks based on the
underlying performance characteristics.

10 CONCLUSION
The practicality of real-time mobile data analytics in many
domains is impeded by a fundamental trade-off between data
collection latency and analysis accuracy. In this paper, we
first exposed this trade-off using the domain of cellular net-
works RAN. We presented CellScope to resolve this trade-
off by applying a domain specific formulation of MTL. To
apply MTL effectively, CellScope proposed a novel PCA in-
spired similarity metric that groups data from geographically
nearby base stations sharing performance commonalities. Fi-
nally, it also incorporates a hybrid online-offline model for
efficient model updates. Our evaluations show significant
benefits. We have also used CellScope to analyze a live LTE
network, where it could offer significant reduction in trou-
bleshooting efforts. We then explored the generality of our
techniques by applying them to a new domain, energy anom-
aly diagnosis in smartphones. We show that extending our
grouping and learning techniques to a new domain is easy
and effective. Thus we believe our proposals form a solid
framework for mitigating the effects of latency-accuracy
trade-off in real-time mobile data analytics systems.

ACKNOWLEDGMENTS
We sincerely thank all Mobicom reviewers and our shep-
herd for their valuable feedback. In addition to NSF CISE
Expeditions Award CCF-1730628, this research is supported
by gifts from Alibaba, Amazon Web Services, Ant Financial,
Arm, CapitalOne, Ericsson, Facebook, Google, Huawei, In-
tel, Microsoft, Scotiabank, Splunk and VMware. Mosharaf
Chowdhury is supported by NSF grant CNS-1563095.

REFERENCES
[1] 3gpp. [n. d.]. Self-Organizing Networks SON Policy Network Resource

Model (NRM) Integration Reference Point (IRP). http://www.3gpp.org/
ftp/Specs/archive/32_series/32.521/.

[2] Bhavish Aggarwal, Ranjita Bhagwan, Tathagata Das, Siddharth
Eswaran, Venkata N. Padmanabhan, and Geoffrey M. Voelker. 2009.
NetPrints: diagnosing home network misconfigurations using shared
knowledge. In Proceedings of the 6th USENIX symposium on Net-
worked systems design and implementation (NSDI’09). USENIX Associ-
ation, Berkeley, CA, USA, 349–364. http://dl.acm.org/citation.cfm?id=
1558977.1559001

[3] Alcatel Lucent. 2013. 9900 Wireless Network Guardian. http://www.
alcatel-lucent.com/products/9900-wireless-network-guardian.

[4] Alcatel Lucent. 2014. 9959 Network Performance
Optimizer. http://www.alcatel-lucent.com/products/
9959-network-performance-optimizer.

[5] Alcatel Lucent. 2014. Alcatel-Lucent Motive Big Network Analytics
for service creation. http://resources.alcatel-lucent.com/?cid=170795.

[6] Alcatel Lucent. 2014. Motive Big Network Analytics. http://www.
alcatel-lucent.com/solutions/motive-big-network-analytics.

[7] Paramvir Bahl, Ranveer Chandra, Albert Greenberg, Srikanth Kandula,
David A. Maltz, and Ming Zhang. 2007. Towards Highly Reliable
Enterprise Network Services via Inference of Multi-level Dependencies.
In Proceedings of the 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM
’07). ACM, New York, NY, USA, 13–24. https://doi.org/10.1145/1282380.
1282383

[8] Athula Balachandran, Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang,
Srinivasan Seshan, Shobha Venkataraman, and He Yan. 2014. Modeling
Web Quality-of-experience on Cellular Networks. In Proceedings of
the 20th Annual International Conference on Mobile Computing and
Networking (MobiCom ’14). ACM, New York, NY, USA, 213–224. https:
//doi.org/10.1145/2639108.2639137

[9] Raquel Barco, Volker Wille, Luis Díez, and Matías Toril. 2010. Learn-
ing of Model Parameters for Fault Diagnosis in Wireless Networks.
Wirel. Netw. 16, 1 (Jan. 2010), 255–271. https://doi.org/10.1007/
s11276-008-0128-z

[10] Jonathan Baxter. 2000. A Model of Inductive Bias Learning. J. Artif.
Int. Res. 12, 1 (March 2000), 149–198. http://dl.acm.org/citation.cfm?
id=1622248.1622254

[11] Richard Caruana. 1993. Multitask Learning: A Knowledge-Based
Source of Inductive Bias. In Proceedings of the Tenth International
Conference on Machine Learning. Morgan Kaufmann, 41–48.

[12] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jef-
frey S. Chase. 2004. Correlating Instrumentation Data to System States:
A Building Block for Automated Diagnosis and Control. In Proceedings
of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6 (OSDI’04). USENIX Association, Berkeley,
CA, USA, 16–16. http://dl.acm.org/citation.cfm?id=1251254.1251270

[13] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. 2003. Gigascope: a stream database for network applica-
tions. In Proceedings of the 2003 ACM SIGMOD international conference
on Management of data (SIGMOD ’03). ACM, New York, NY, USA,
647–651. https://doi.org/10.1145/872757.872838

[14] Thomas G Dietterich. 2000. Ensemble methods in machine learning.
In Multiple classifier systems. Springer, 1–15.

[15] Ericsson. 2012. Ericsson RAN Analyzer Overview. http://www.
optxview.com/Optimi_Ericsson/RANAnalyser.pdf.

[16] Ericsson. 2014. Ericsson RAN Analyzer. http://www.ericsson.com/
ourportfolio/products/ran-analyzer.

[17] Theodoros Evgeniou andMassimiliano Pontil. 2004. RegularizedMulti–
task Learning. In Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD ’04). ACM,
New York, NY, USA, 109–117. https://doi.org/10.1145/1014052.1014067

[18] Jerome H Friedman. 2001. Greedy function approximation: a gradient
boosting machine. Annals of statistics (2001), 1189–1232.

[19] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. 2014. A Survey on Concept Drift Adaptation.
ACM Comput. Surv. 46, 4, Article 44 (March 2014), 37 pages. https:
//doi.org/10.1145/2523813

[20] Pinghua Gong, Jieping Ye, and Changshui Zhang. 2012. Robust Multi-
task Feature Learning. In Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’12).
ACM, New York, NY, USA, 895–903. https://doi.org/10.1145/2339530.
2339672

[21] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Maz-
ières, and Nick McKeown. 2014. I Know What Your Packet Did Last
Hop: Using Packet Histories to Troubleshoot Networks. In Proceed-
ings of the 11th USENIX Conference on Networked Systems Design and
Implementation (NSDI’14). USENIX Association, Berkeley, CA, USA,
71–85. http://dl.acm.org/citation.cfm?id=2616448.2616456

[22] Paul Harris, Chris Brunsdon, and Martin Charlton. 2011. Geographi-
cally weighted principal components analysis. International Journal of
Geographical Information Science 25, 10 (2011), 1717–1736.

[23] Chi-YaoHong,MatthewCaesar, NickDuffield, and JiaWang. 2012. Tire-
sias: Online Anomaly Detection for Hierarchical Operational Network
Data. In Proceedings of the 2012 IEEE 32Nd International Conference on
Distributed Computing Systems (ICDCS ’12). IEEE Computer Society,
Washington, DC, USA, 173–182. https://doi.org/10.1109/ICDCS.2012.
30

[24] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu,
Z. Morley Mao, Subhabrata Sen, and Oliver Spatscheck. 2013. An
In-depth Study of LTE: Effect of Network Protocol and Application
Behavior on Performance. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM (SIGCOMM ’13). ACM, New York, NY, USA,
363–374. https://doi.org/10.1145/2486001.2486006

[25] Anand Iyer, Li Erran Li, and Ion Stoica. 2015. CellIQ : Real-TimeCellular
Network Analytics at Scale. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15). USENIX Association,
Oakland, CA, 309–322. https://www.usenix.org/conference/nsdi15/
technical-sessions/presentation/iyer

[26] Anand Padmanabha Iyer, Li Erran Li, and Ion Stoica. 2017. Automating
Diagnosis of Cellular Radio Access Network Problems. In Proceedings
of the 23rd Annual International Conference on Mobile Computing and
Networking (MobiCom ’17). ACM, New York, NY, USA, 79–87. https:
//doi.org/10.1145/3117811.3117813

[27] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012.
Tackling Bufferbloat in 3G/4G Networks. In Proceedings of the 2012
ACM Conference on Internet Measurement Conference (IMC ’12). ACM,
NewYork, NY, USA, 329–342. https://doi.org/10.1145/2398776.2398810

[28] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik, Sharad Agarwal,
Jitendra Padhye, and Paramvir Bahl. 2009. Detailed diagnosis in enter-
prise networks. In Proceedings of the ACM SIGCOMM 2009 conference
on Data communication (SIGCOMM ’09). ACM, New York, NY, USA,
243–254. https://doi.org/10.1145/1592568.1592597

[29] Gunjan Khanna, Mike Yu Cheng, Padma Varadharajan, Saurabh Bagchi,
Miguel P. Correia, and Paulo J. Veríssimo. 2007. Automated Rule-
Based Diagnosis Through a Distributed Monitor System. IEEE Trans.
Dependable Secur. Comput. 4, 4 (Oct. 2007), 266–279. https://doi.org/
10.1109/TDSC.2007.70211

[30] Seyoung Kim and Eric P. Xing. 2010. Tree-Guided Group Lasso for
Multi-Task Regression with Structured Sparsity. Intenational Confer-
ence on Machine Learning (ICML) (2010).

http://www.3gpp.org/ftp/Specs/archive/32_series/32.521/
http://www.3gpp.org/ftp/Specs/archive/32_series/32.521/
http://dl.acm.org/citation.cfm?id=1558977.1559001
http://dl.acm.org/citation.cfm?id=1558977.1559001
http://www.alcatel-lucent.com/products/9900-wireless-network-guardian
http://www.alcatel-lucent.com/products/9900-wireless-network-guardian
http://www.alcatel-lucent.com/products/9959-network-performance-optimizer
http://www.alcatel-lucent.com/products/9959-network-performance-optimizer
http://resources.alcatel-lucent.com/?cid=170795
http://www.alcatel-lucent.com/solutions/motive-big-network-analytics
http://www.alcatel-lucent.com/solutions/motive-big-network-analytics
https://doi.org/10.1145/1282380.1282383
https://doi.org/10.1145/1282380.1282383
https://doi.org/10.1145/2639108.2639137
https://doi.org/10.1145/2639108.2639137
https://doi.org/10.1007/s11276-008-0128-z
https://doi.org/10.1007/s11276-008-0128-z
http://dl.acm.org/citation.cfm?id=1622248.1622254
http://dl.acm.org/citation.cfm?id=1622248.1622254
http://dl.acm.org/citation.cfm?id=1251254.1251270
https://doi.org/10.1145/872757.872838
http://www.optxview.com/Optimi_Ericsson/RANAnalyser.pdf
http://www.optxview.com/Optimi_Ericsson/RANAnalyser.pdf
http://www.ericsson.com/ourportfolio/products/ran-analyzer
http://www.ericsson.com/ourportfolio/products/ran-analyzer
https://doi.org/10.1145/1014052.1014067
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2523813
https://doi.org/10.1145/2339530.2339672
https://doi.org/10.1145/2339530.2339672
http://dl.acm.org/citation.cfm?id=2616448.2616456
https://doi.org/10.1109/ICDCS.2012.30
https://doi.org/10.1109/ICDCS.2012.30
https://doi.org/10.1145/2486001.2486006
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/iyer
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/iyer
https://doi.org/10.1145/3117811.3117813
https://doi.org/10.1145/3117811.3117813
https://doi.org/10.1145/2398776.2398810
https://doi.org/10.1145/1592568.1592597
https://doi.org/10.1109/TDSC.2007.70211
https://doi.org/10.1109/TDSC.2007.70211

[31] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J.
Franklin, and Michael I. Jordan. 2013. MLbase: A Distributed Machine-
learning System. In CIDR. http://www.cidrdb.org/cidr2013/Papers/
CIDR13_Paper118.pdf

[32] WJ Krzanowski. 1979. Between-groups comparison of principal com-
ponents. J. Amer. Statist. Assoc. 74, 367 (1979), 703–707.

[33] Anukool Lakhina, Mark Crovella, and Christophe Diot. 2004. Diag-
nosing Network-wide Traffic Anomalies. In Proceedings of the 2004
Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM ’04). ACM, New York, NY,
USA, 219–230. https://doi.org/10.1145/1015467.1015492

[34] Yan Liu, Jing Zhang, M. Jiang, D. Raymer, and J. Strassner. 2008. A
model-based approach to adding autonomic capabilities to network
fault management system. In Network Operations and Management
Symposium, 2008. NOMS 2008. IEEE. 859–862. https://doi.org/10.1109/
NOMS.2008.4575232

[35] Adam J. Oliner, Anand P. Iyer, Ion Stoica, Eemil Lagerspetz, and Sasu
Tarkoma. 2013. Carat: Collaborative Energy Diagnosis for Mobile
Devices. In Proceedings of the 11th ACM Conference on Embedded Net-
worked Sensor Systems (SenSys ’13). ACM, New York, NY, USA, Article
10, 14 pages. https://doi.org/10.1145/2517351.2517354

[36] Yan Pan, Rongkai Xia, Jian Yin, and Ning Liu. 2015. A Divide-and-
Conquer Method for Scalable Robust Multitask Learning. Neural
Networks and Learning Systems, IEEE Transactions on 26, 12 (Dec 2015),
3163–3175. https://doi.org/10.1109/TNNLS.2015.2406759

[37] K. Pearson. 1901. On lines and planes of closest fit to systems of points
in space. Philos. Mag. 2, 6 (1901), 559–572.

[38] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Sub-
habrata Sen, and Oliver Spatscheck. 2011. Profiling Resource Us-
age for Mobile Applications: A Cross-layer Approach. In Proceed-
ings of the 9th International Conference on Mobile Systems, Applica-
tions, and Services (MobiSys ’11). ACM, New York, NY, USA, 321–334.
https://doi.org/10.1145/1999995.2000026

[39] Sudarshan Rao. 2006. Operational Fault Detection in Cellular Wireless
Base-stations. IEEE Trans. on Netw. and Serv. Manag. 3, 2 (April 2006),
1–11. https://doi.org/10.1109/TNSM.2006.4798311

[40] Sanae Rosen, Haokun Luo, Qi Alfred Chen, Z. Morley Mao, Jie Hui,
Aaron Drake, and Kevin Lau. 2014. Discovering Fine-grained RRC State
Dynamics and Performance Impacts in Cellular Networks. In Proceed-
ings of the 20th Annual International Conference on Mobile Computing
and Networking (MobiCom ’14). ACM, New York, NY, USA, 177–188.
https://doi.org/10.1145/2639108.2639115

[41] AhmedM Safwat andHusseinMouftah. 2005. 4G network technologies
for mobile telecommunications. Network, IEEE 19, 5 (2005), 3–4.

[42] Stefania Sesia, Issam Toufik, and Matthew Baker. 2009. LTE: the UMTS
long term evolution. Wiley Online Library.

[43] Muhammad Zubair Shafiq, Jeffrey Erman, Lusheng Ji, Alex X. Liu,
Jeffrey Pang, and Jia Wang. 2014. Understanding the Impact of
Network Dynamics on Mobile Video User Engagement. In The 2014
ACM International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS ’14). ACM, New York, NY, USA, 367–379.
https://doi.org/10.1145/2591971.2591975

[44] Muhammad Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang,
Shobha Venkataraman, and Jia Wang. 2013. A First Look at Cellu-
lar Network Performance During Crowded Events. In Proceedings of
the ACM SIGMETRICS/International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’13). ACM, New York, NY,
USA, 17–28. https://doi.org/10.1145/2465529.2465754

[45] Shai Shalev-Shwartz and Ambuj Tewari. 2011. Stochastic Methods for
L1-regularized Loss Minimization. J. Mach. Learn. Res. 12 (July 2011),
1865–1892. http://dl.acm.org/citation.cfm?id=1953048.2021059

[46] Clint Smith. 2006. 3G wireless networks. McGraw-Hill, Inc.
[47] Evan R. Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalam, Xing-

hao Pan, Joseph E. Gonzalez, Michael J. Franklin, Michael I. Jordan,
and Tim Kraska. 2013. MLI: An API for Distributed Machine Learning.
In 2013 IEEE 13th International Conference on Data Mining, Dallas, TX,
USA, December 7-10, 2013, Hui Xiong, George Karypis, Bhavani M. Thu-
raisingham, Diane J. Cook, and Xindong Wu (Eds.). IEEE Computer
Society, 1187–1192. https://doi.org/10.1109/ICDM.2013.158

[48] Technical Specification Group. [n. d.]. 3GPP Specifications. http:
//www.3gpp.org/specifications.

[49] Nawanol Theera-Ampornpunt, Saurabh Bagchi, Kaustubh R. Joshi,
and Rajesh K. Panta. 2013. Using Big Data for More Dependability:
A Cellular Network Tale. In Proceedings of the 9th Workshop on Hot
Topics in Dependable Systems (HotDep ’13). ACM, New York, NY, USA,
Article 2, 5 pages. https://doi.org/10.1145/2524224.2524227

[50] Sebastian Thrun. 1996. Is Learning The n-th Thing Any Easier Than
Learning The First?. In Advances in Neural Information Processing
Systems. The MIT Press, 640–646.

[51] Robert Tibshirani. 1994. Regression Shrinkage and Selection Via the
Lasso. Journal of the Royal Statistical Society, Series B 58 (1994), 267–
288.

[52] Guan-Hua Tu, Yuanjie Li, Chunyi Peng, Chi-Yu Li, Hongyi Wang, and
Songwu Lu. 2014. Control-plane Protocol Interactions in Cellular
Networks. In Proceedings of the 2014 ACM Conference on SIGCOMM
(SIGCOMM ’14). ACM, New York, NY, USA, 223–234. https://doi.org/
10.1145/2619239.2626302

[53] Helen J.Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-MinWang.
2004. Automatic Misconfiguration Troubleshooting with Peerpressure.
In Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6 (OSDI’04). USENIX Association,
Berkeley, CA, USA, 17–17. http://dl.acm.org/citation.cfm?id=1251254.
1251271

[54] He Yan, A. Flavel, Zihui Ge, A. Gerber, D. Massey, C. Papadopoulos, H.
Shah, and J. Yates. 2012. Argus: End-to-end service anomaly detection
and localization from an ISP’s point of view. In INFOCOM, 2012 Proceed-
ings IEEE. 2756–2760. https://doi.org/10.1109/INFCOM.2012.6195694

[55] Kiyoung Yang and Cyrus Shahabi. 2004. A PCA-based Similarity
Measure for Multivariate Time Series. In Proceedings of the 2nd ACM
International Workshop on Multimedia Databases (MMDB ’04). ACM,
New York, NY, USA, 65–74. https://doi.org/10.1145/1032604.1032616

[56] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker,
and Ion Stoica. 2012. Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In Proceedings of the
9th USENIX conference on Networked Systems Design and Implementa-
tion (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2. http:
//dl.acm.org/citation.cfm?id=2228298.2228301

[57] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott
Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant
Streaming Computation at Scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). ACM, New
York, NY, USA, 423–438. https://doi.org/10.1145/2517349.2522737

[58] Ce Zhang, Arun Kumar, and Christopher Ré. 2014. Materialization
Optimizations for Feature Selection Workloads. In Proceedings of the
2014 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’14). ACM, New York, NY, USA, 265–276. https://doi.org/10.
1145/2588555.2593678

[59] Alice X. Zheng, Jim Lloyd, and Eric Brewer. 2004. Failure Diagnosis Us-
ing Decision Trees. In Proceedings of the First International Conference
on Autonomic Computing (ICAC ’04). IEEE Computer Society, Wash-
ington, DC, USA, 36–43. http://dl.acm.org/citation.cfm?id=1078026.
1078407

http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper118.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13_Paper118.pdf
https://doi.org/10.1145/1015467.1015492
https://doi.org/10.1109/NOMS.2008.4575232
https://doi.org/10.1109/NOMS.2008.4575232
https://doi.org/10.1145/2517351.2517354
https://doi.org/10.1109/TNNLS.2015.2406759
https://doi.org/10.1145/1999995.2000026
https://doi.org/10.1109/TNSM.2006.4798311
https://doi.org/10.1145/2639108.2639115
https://doi.org/10.1145/2591971.2591975
https://doi.org/10.1145/2465529.2465754
http://dl.acm.org/citation.cfm?id=1953048.2021059
https://doi.org/10.1109/ICDM.2013.158
http://www.3gpp.org/specifications
http://www.3gpp.org/specifications
https://doi.org/10.1145/2524224.2524227
https://doi.org/10.1145/2619239.2626302
https://doi.org/10.1145/2619239.2626302
http://dl.acm.org/citation.cfm?id=1251254.1251271
http://dl.acm.org/citation.cfm?id=1251254.1251271
https://doi.org/10.1109/INFCOM.2012.6195694
https://doi.org/10.1145/1032604.1032616
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/2588555.2593678
https://doi.org/10.1145/2588555.2593678
http://dl.acm.org/citation.cfm?id=1078026.1078407
http://dl.acm.org/citation.cfm?id=1078026.1078407

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 LTE Network Primer
	2.2 RAN Troubleshooting Today
	2.3 Machine Learning for RAN Diagnostics

	3 CellScope Overview
	3.1 Problem Statement
	3.2 Architectural Overview

	4 Mitigating Latency Accuracy Trade-off
	4.1 Feature Engineering
	4.2 Multi-Task Learning
	4.3 Data Grouping for MTL
	4.4 Summary

	5 Implementation
	5.1 Data Grouping API
	5.2 Hybrid MTL Modeling

	6 Evaluation
	6.1 Benefits of Similarity Based Grouping
	6.2 Benefits of MTL
	6.3 Combined Benefits
	6.4 Hybrid model benefits

	7 Real World RAN Analysis
	7.1 Time Savings to the Operator
	7.2 Analysis in the Wild: Findings

	8 Extending CellScope to a New Domain
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

