
Coflow: A Networking Abstraction for Cluster Applications

Mosharaf Chowdhury, Ion Stoica
EECS, UC Berkeley, CA, USA
{mosharaf, istoica}@cs.berkeley.edu

ABSTRACT
Cluster computing applications – frameworks like MapRe-
duce and user-facing applications like search platforms –
have application-level requirements and higher-level abstrac-
tions to express them. However, there exists no network-
ing abstraction that can take advantage of the rich semantics
readily available from these data parallel applications.

We propose coflow, a networking abstraction to express
the communication requirements of prevalent data parallel
programming paradigms. Coflows make it easier for the ap-
plications to convey their communication semantics to the
network, which in turn enables the network to better opti-
mize common communication patterns.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems—Cloud Computing

General Terms
Design

Keywords
Cluster Networking, Coflow, Data-Intensive Applications,
Datacenter Networks, Cloud Computing

1 Introduction
Cluster computing applications serve diverse computing re-
quirements, and they expect a broad spectrum of services
from the network. On the one hand, some of these appli-
cations are throughput-sensitive; they must finish as fast as
possible and must process every piece of input (e.g., MapRe-
duce [13], Dryad [17]). On the other hand, some are latency-
sensitive with strict deadlines, but they might not require ex-
act answers (e.g., search results from Google or Bing, home

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

feed in Facebook). A large body of work has emerged to ad-
dress the communication requirements of cluster computing
applications [6, 11, 15, 16, 26, 29, 30].

Unfortunately, the networking literature does not provide
any construct to express the communication requirements of
datacenter-scale applications. Specifically, the abstraction
of flows cannot capture the semantics of communication be-
tween two groups of machines in a cluster application, where
the collective fate of all the flows between the two groups is
more important than that of any individual flow. The lack of
an abstraction has several consequences. First, it promotes
point solutions with limited applicability. Second, it can re-
sult in solutions that have not been optimized for appropriate
objectives. Finally, without an abstraction, it is hard to rea-
son about the underlying principles and to anticipate prob-
lems that might arise in the future.

In this paper, we study prevalent parallelization models
for cluster computing (e.g., dataflows with/without barriers,
Bulk Synchronous Parallel, and partition-aggregate) and their
communication requirements (§2). We observe that most of
these applications are organized into multiple stages or have
machines grouped by functionality. Communication takes
place at the level of machine groups, and it is often dictated
by application-specific semantics.

Based on our observations, we propose coflow, a network-
ing abstraction that captures diverse communication patterns
observed in cluster computing applications (§3). Each coflow
is a collection of flows between two groups of machines with
associated semantics and a collective objective. The seman-
tics allow the network to take different actions on the collec-
tion to achieve the mutual end goal. Several existing propos-
als have used the notion of such collections or hinted at it,
albeit in limited scopes [11, 16, 26]. In this paper, we con-
sider the amount of semantic information necessary to take
advantage of such collections (§3). We propose an intent-
driven API for cluster applications to convey the required
semantic information to the network (§4). Finally, we dis-
cuss how the coflow API enables innovation in cluster ap-
plications and the network by decoupling application intents
from underlying mechanisms (§5).

1

…!

…! tasks!

master!

Join!

map-reduce!
units from (a)!

…!

aggregator!

aggregators!

workers! …!

mappers!

reducers!

…!

…!

…!

…!
write!

barrier!

…!

…!

barrier!

superstep(i+1)!

superstep(i)!

Join!

vertex!
sets!

(a) MapReduce!
(c) Dataflow without!
 explicit barriers!

(b) Dataflow with barriers!

(d) Dataflow with cycles! (e) Bulk Synchronous Parallel (BSP)! (f) Partition-aggregate!

mappers!

reducers!
shuffle!

replication!

master!

tasks!

tasks!
shuffle!

broadcast!

m
an
y-
to
-o
ne
!

(a) MapReduce!

(b) Dataflow with cycles!

Network!

(b) Coflows in the network!(a) Two coflows!

Join!

vertices!

replication!

shuffle3!

shuffle2!shuffle1!

(b) Dryad!

Figure 1: Communication patterns in cluster computing applications: (a) Shuffle and DFS replication in MapReduce
[13]; (b) Shuffle across multiple MapReduce jobs in dataflow pipelines that use MapReduce as the building block (e.g.,
Hive [5]); (c) Dataflow pipelines without explicit barriers (e.g., Dryad [17]); (d) Dataflow with cycles and broadcast
support (e.g., Spark [28]); (e) Bulk Synchronous Parallel or BSP (e.g., Pregel [19]); (f) Aggregation during partition-
aggregate communication in online services (e.g., user-facing backend of search engines and social networks).

2 Communication in Cluster Applications
Most cluster computing applications are frameworks (e.g.,
MapReduce) that take user-defined jobs and follow specific
workflows enabled by corresponding programming models.
Some others are user-facing pipelines, where user requests
go through a multi-stage architecture to eventually send back
corresponding responses (e.g., search results from Google
or Bing, home feed in Facebook). In this section, we study
prevalent cluster computing applications and their commu-
nication patterns (Figure 1), compare their requirements, and
summarize existing solutions that address these requirements.

2.1 MapReduce

MapReduce [2, 13] is a well-known and widely used cluster
computing framework. In this model, each mapper reads its
input from the distributed file system (DFS) [4,14], performs
user-defined computations, and writes intermediate data to
the disk; each reducer pulls intermediate data from differ-
ent mappers, merges them, and writes its output to the DFS,
which then replicates it to multiple destinations.

Given m mappers and r reducers, a MapReduce job will
create a total of mr flows for shuffle, the process of transfer-
ring intermediate data, and at least r flows for output repli-
cation. The primary characteristic of communication in the
MapReduce model is that a job will not finish until its last
reducer has finished. Consequently, there is an explicit bar-
rier at the end of the job, which researchers have exploited
for optimizing shuffles in this model [11]. Similar optimiza-
tions are applicable to cross-rack replication of DFS writes

as well, because all tasks must finish writing for a job to fin-
ish writing its output.

2.2 Dataflow Pipelines

While MapReduce is very popular, it is not the most expres-
sive of data parallel frameworks. There exist a collection of
dataflow pipelines that address many deficiencies of MapRe-
duce, and they have diverse communication characteristics.

Dataflow with Barriers A dataflow pipeline with multiple
stages uses MapReduce as its building block (e.g., Sawzall
[22], Pig [21], Hive [5]). Consequently, there are barriers
at the end of each building block, and this paradigm is no
different than MapReduce in terms of communication.

Dataflow without Explicit Barriers Some dataflow pipelines
do not have explicit barriers and enable higher-level opti-
mizations of the operators (e.g., Dryad [17], DryadLINQ
[27], SCOPE [9], FlumeJava [10], MapReduce Online [12]);
a stage can start as soon as some input is available. Because
there is no explicit barrier, barrier-synchronized optimiza-
tion techniques are not useful. Instead, researchers have fo-
cused on understanding the internals of the communication
and optimizing for specific scenarios [15, 30].

Dataflow with Cycles Traditional dataflow pipelines unroll
loops to support iterative computation requirements. Spark
[28] obviates loop unrolling by keeping in-memory states
across iterations. However, implicit barriers at the end of
each iteration allow MapReduce-like communication opti-
mizations in cyclic dataflows [11]. These frameworks also

2

Model Examples Barrier Sync.? Barrier Type Loss Tolerance Comm. Objective
MapReduce [2, 13] Yes Write to the DFS None Minimize completion time
Dataflow with Barriers [5, 21, 22] Yes Write to the DFS None Minimize completion time
Dataflow w/o Explicit Barriers [9, 10, 12, 17, 27] Yes (Implicit) Input not ready None Minimize completion time
Dataflow with Cycles [28] Yes (Implicit) End of iteration None Minimize completion time
Bulk Synchronous Parallel [1, 3, 19] Yes End of superstep None Minimize completion time
Frameworks w/o Barrier Synchronization [18] No None App. Dependent Either
Partition-Aggregate Search/Social Yes End of deadline App. Dependent Meet deadline

Table 1: Summary of communication requirements in popular cluster computing applications.

provide communication primitives like broadcast and many-
to-one aggregation that, unlike shuffle, push data to a set of
already known destinations.

2.3 Bulk Synchronous Parallel (BSP)

Bulk Synchronous Parallel or BSP is another well-known
model in cluster computing. Examples of frameworks using
this model include Pregel [19], Giraph [1], and Hama [3]
that focus on graph processing, matrix computation, and net-
work algorithms. A BSP computation proceeds in a series
of global supersteps, each containing three ordered stages:
concurrent computation, communication between processes,
and barrier synchronization. With explicit barriers at the end
of each superstep, the communication stage can be globally
optimized for the superstep.

2.4 Frameworks without Barrier Synchronization

Sometimes complete information is not needed for reason-
ably good results; iterations can proceed with partial results.
GraphLab [18] is such a framework for machine learning
and data mining on graphs. Unlike BSP supersteps, itera-
tions can proceed with whatever information is available as
long as it converging; missing information can asynchronously
arrive later.

2.5 Partition-Aggregate

User-facing online services (e.g., search results in Google or
Bing, home feeds in Facebook) receive requests from users
and send it downward to the workers using an aggregation
tree. At each level of the tree, individual requests gener-
ate activities in different partitions. Ultimately, worker re-
sponses are aggregated and sent back to the user within strict
deadlines. Responses that cannot make it within the dead-
line are either left behind [26] or sent later asynchronously
(e.g., Facebook home feed). Research in this direction have
looked at dropping flows [26], preemption [16], and cutting
long tails [29]; however, they do not exploit any application-
level information.

2.6 Summary of Communication Requirements

Despite differences in programming models and execution
mechanisms, most cluster computing applications have one
thing in common: they run on a large number of machines
that are organized into multiple stages or grouped by func-
tionality [8]. Each of these groups communicate between
themselves using a few common patterns (e.g., shuffle, broad-

…!

…! tasks!

master!

Join!

map-reduce!
units from (a)!

…!

aggregator!

aggregators!

workers! …!

mappers!

reducers!

…!

…!

…!

…!
write!

barrier!

…!

…!

barrier!

superstep(i+1)!

superstep(i)!

Join!

vertex!
sets!

(a) MapReduce!
(c) Dataflow without!
 explicit barriers!

(b) Dataflow with barriers!

(d) Dataflow with cycles! (e) Bulk Synchronous Parallel (BSP)! (f) Partition-aggregate!

mappers!

reducers!
shuffle!

replication!

master!

tasks!

tasks!
shuffle (cs)!

broadcast (cb)!

ag
gr

eg
at

io
n

(c
a)!

(a) MapReduce!

(b) Spark!

Network!

(b) Coflows in the network!(a) Two coflows!

vertices!

replication(cr)!

shuffle3(c3)!

shuffle2(c2)!shuffle1(c1)!

(a) Dryad!

Join!

vertices!

replication(cr)!

shuffle3(c3)!

shuffle2(c2)!shuffle1(c1)!

disks!

Figure 2: Graphical representations of the applications
in Figures 1(c) and 1(d) using coflows. Circles represent
machine groups (M) and edges represent coflows (C).

cast, and aggregation) with two primary objectives: mini-
mizing completion times and meeting deadlines.

Table 1 summarizes the key characteristics of the afore-
mentioned cluster computing applications in terms of the
presence of synchronization barriers, characteristics of such
barriers, the ability of the application to withstand loss or
delay, and the primary objective of communication.

3 Coflow
Even though individual flows are indistinguishable at the
transport layer, flows between groups of machines in a clus-
ter computing application often have application-level se-
mantics. For example, the last flow in an mr-shuffle de-
termines its completion time [11]. Similarly, if one decides
to delay or drop flows that will miss their deadlines [26], one
might want to restrict these actions to a small number of re-
quests. In this section, we introduce the notion of a coflow
that captures the semantics of a collection of flows, and we
discuss the interactions between multiple coflows.

3.1 What is (in) a Coflow?

We refer to a semantically-related collection of flows be-
tween two groups of machines as a coflow. Each coflow
contains information about its structure and the collective
objective of its flows.

Structure Each coflow c(S,D) = {f1, f2, . . . , f|c|} is a
collection of flows (fi) between machines in machine groups
S and D, where |c| denotes the cardinality (i.e., the number
of flows) in c. Machines in S and D may or may not over-
lap. For example, a coflow representing an mr-shuffle in a
MapReduce job will have m mappers in S, r reducers in D,
and a total of mr flows (i.e., |c| = mr).

3

We can now represent a cluster computing application us-
ing a graph G = (M,C), where M is the set of its ma-
chine groups that are connected by coflows in C, the set of
coflows. Figure 2 depicts the Dryad and Spark jobs in Fig-
ure 1(c) and Figure 1(d) using four different coflow patterns.

If we denote the start and end times of each flow fi ∈ c
by start(fi) and end(fi), the start and end times of the
coflow can be represented by start(c) = min

fi
start(fi) and

end(c) = max
fi

end(fi). The duration or the completion time

(c) of c becomes c = end(c)−start(c). We denote the total
number of bytes transferred using fi by size(fi).

Objective The collective objective of a coflow not only dic-
tates the joint optimization that can be performed on its flows,
but also determines the necessary pieces of information re-
quired for that optimization. Consider the two predominant
objectives in cluster communication:

• Meet deadline (c < D): In order to finish within a dead-
line D, one can set rates for all flows to finish at D [26].
• Minimize completion time (minimize c): One way to

achieve this is to set the rates of individual flows such
that the slowest progressing one (flast) finishes as fast
as possible, and the rest finishes by end(flast) [11].

Both objectives require knowledge of size(fi) for all fi ∈ c.
What action(s) must be taken, e.g., if a deadline is missed,
depends on the application and might require additional in-
formation.

Availability of Information Even in large clusters, occa-
sionally an application cannot perform all its computation
(within and across stages) in parallel. Consequently, when
a coflow starts, all of its flows might not be active; charac-
teristics of some flows might be completely unknown! Dur-
ing a shuffle, for example, a mapper can create intermediate
data for a reducer that is yet to start (unknown destination);
similarly, a reducer can wait on a mapper to run and cre-
ate intermediate data (unknown source and flow size). The
cardinality of a coflow is typically known.

However, the availability of information varies from one
application to another. For example, in long running ser-
vices, the sources as well as the destinations of each flow
in an aggregation coflow are known; the maximum size of
individual flows are known as well.

In either scenario, the objective of a coflow is known when
the coflow is created, and it does not change over time. The
(un)availability of information has several implications:

• Time and space decoupling: Endpoints of individual flows
in a coflow can be decoupled in time, meaning senders
and corresponding receivers might not be active simulta-
neously. This requires storage in the network. Mappers
writing their outputs to local disks approximate time de-
coupling during shuffle in MapReduce.
Flows can be decoupled in space as well. For example,
a recipient can receive a broadcasted piece of data from

the originating source as well as from a recipient that has
received it already.
• Push-vs-pull semantics: When the destination of a flow

is known, data can be actively pushed to the destination
(e.g., in dataflow pipelines w/o barriers [17] and during
Spark broadcasts [11]). On the contrary, with unknown
destinations, receivers must pull from different sources.

3.2 Interactions Between Coflows

In a shared cluster, multiple coflows from one or more ap-
plications can be active in parallel. When creating a new
coflow, its interactions with the existing coflows can be ex-
pressed using the following concepts.

Sharing Sharing the cluster network among multiple coflows
is an active area of research [7, 23, 24]. Given two concur-
rent coflows c1 and c2 from two different applications with
demandsD(c1) andD(c2), we consider how to express their
allocations A(c1) and A(c2) of the shared network N .

Reservation schemes [7] are the easiest ones to articulate:
each coflow gets whatever fraction ofN they asked/paid for.
One can also ensure max-min fairness between c1 and c2
over N by progressively filling their demands, D(c1) and
D(c2). Finally, to provide network proportionality [23], one
needs to maintain the invariant A(c1)/A(c2) = |c1|/|c2|.

Prioritization While frameworks allow assigning priorities
to individual jobs, they cannot ensure these priorities in the
network. By using priorities as weights, one can provide
larger allocations to coflows from applications with higher
priorities, i.e., A(c1)/A(c2) = P (c1)D(c1)/P (c2)D(c2),
where P (.) denotes the priority function.

Ordering All coflows belonging to the same application have
the same priority. Often, however, there exists an implicit or-
dering of coflows within an application. Consider the Dryad
application in Figure 2(a), and assume that shufflei is de-
noted by ci. Because Dryad does not introduce explicit bar-
riers between its stages, c3 can start before either c1 or c2
has finished. However, the progress of c3 depends on the
progress of its predecessors, and both c1 and c2 must fin-
ish before c3. We denote the “finishes before” relationship
between the coflows by c1, c2 ≥ c3, where concurrent exe-
cution of c3 alongside c1 and c2 is expected. Now assume
that the cross-rack replication of job output (cr) should start
after c3 has finished. We denote the “starts after” relation-
ship between cr and c3 by c3 > cr.

In Figure 2(b), the broadcast in iteration i must start after
the aggregation from iteration (i − 1) has finished (ca(i −
1) > cb(i)); within the ith iteration, the broadcast must fin-
ish before the shuffle (cb(i) ≥ cs(i)), and the shuffle before
the aggregation (cs(i) ≥ ca(i)).

4 The Coflow API
We propose an intent-driven API [25] for coflows that hides
the underlying mechanism of communication and allows an

4

Operation Caller
create(pattern, [options]) =⇒ handle Driver
update(handle, [options]) =⇒ result Driver
put(handle, id, content, [options]) =⇒ result Sender
get(handle, id, [options]) =⇒ content Receiver
terminate(handle, [options]) =⇒ result Driver

Table 2: Coflow API operations and calling entities.

application to provide as much semantic information as nec-
essary.

We identify four entities that are involved in coflow API
invocations: the driver that coordinates a cluster application
and its coflows, senders and receivers of individual flows in
a coflow, and the network that performs the actual commu-
nication based on coflow characteristics.

The coflow API provides five high-level operations (Ta-
ble 2). Drivers initialize a coflow through create(), which
creates a private namespace for the coflow and returns a
unique coflow handle. The pattern of a coflow, such as
shuffle, broadcast, or aggregation, determines its default be-
havior (e.g., broadcast supports space decoupling). Addi-
tional information can be provided and existing behavior can
be overridden through options, which is an optional list of
key-value pairs. Once a coflow has been created, drivers can
change coflow characteristics using the update() operation.
The priority of a coflow and its dependencies on others are
created and updated using these two operations as well.

A sender expresses its intent to insert a content with an
identifier id into the network using put(). For example, a
mapper would put() r pieces of content for r reducers in
a MapReduce job. The id of a content is unique within a
coflow namespace. Any flow created to transfer this piece of
data belongs to the coflow with the specified handle. The re-
cipient(s) of content, if known, can be passed along through
options; the network determines whether and when to ac-
tually transfer the data. Receivers indicate their interest in
retrieving a content using its id through get(). The network
determines when and from where to retrieve the requested
piece of data based on coflow characteristics. Exact imple-
mentations of the put() and get() operations can be based on
transfer plugins as explained in [25].

The terminate() call from the driver signals the comple-
tion of a coflow, and the network can safely release resources
dedicated to it.

5 Using Coflows
In this section, we discuss how coflows make it simpler to
design cluster applications and how the coflow API provides
flexibility in designing the underlying network and to opti-
mize frequently used coflows.

5.1 Developing Cluster Applications with Coflows

Writing a brand new cluster computing application or ex-
tending an existing one to accommodate new communica-
tion requirements boils down to specifying the required coflows

– their structures, objectives, and corresponding priorities
and ordering – using the coflow API.

For an example, consider extending MapReduce to sup-
port broadcast.1 Assume that each mapper receives a com-
mon piece of data from the driver in addition to its input.
The driver initializes the broadcast to get a handle for the
coflow and inserts the content into the network:

handle← create(broadcast)
put(handle, id, content)

Each mapper receives the coflow handle from the driver and
uses it to retrieve the broadcasted content:

get(handle, id)
Once all the mappers have finished, the driver terminates the
broadcast:

terminate(handle)
The actual distribution of data due to put() and get() is han-
dled or dictated by the network depending on its design.

5.2 Designing the Network

Since the coflow API expresses the intent of an application
without invoking any specific mechanism, it provides flexi-
bility in designing the underlying network in terms of nam-
ing, addressing, and content delivery mechanisms.

Applications will call the coflow API and offload their
coflows to a distributed middleware. The middleware con-
trol plane will periodically determine the network shares of
individual coflows given their objectives by taking relative
priorities and ordering into account, and its data plane will
transfer data using given shares of the network.

To enable time decoupling, data must be (temporarily)
stored until it is retrieved by the intended receiver(s). A
separate middleware can be used for storage with appropri-
ate plugins to write content to and read it from the storage
medium [25].

While existing applications must be patched to use the
coflow API, host OSes and hypervisors can be used without
any modification.

5.3 Optimizing Common Coflows

A handful of coflow structures (e.g., one-to-many, many-
to-one, and many-to-many) can satisfy most communica-
tion requirements across a wide spectrum of cluster applica-
tions. This calls for standardizing, optimizing, and making
the prevalent coflows available for reuse, which will ensure
less bugs and better overall performance. Table 3 presents
possible ways to implement various coflows by setting rates
of individual flows and through flow prioritization.

5.4 Extending Coflows

While researchers have made several proposals in recent years
to ensure that (co)flows meet their deadlines [16, 26, 29],
most coflows can be expressed using only two objectives
(Table 1). Similarly, there exist several proposals on sharing
1MapReduce does not have native support for broadcast, which
hurts many iterative applications [11, 28]. Examples include ap-
plications using the Expectation-maximization (EM) algorithm.

5

Coflow Mechanism to Achieve the Coflow Objective
Shuffle Set rates of individual shuffle flows such that the slowest one finishes as fast as possible [11].
DFS Replication Set rates of individual replication flows such that the slowest one finishes as fast as possible.
Broadcast Allocate rates at broadcast participants so that the slowest receiver finishes as fast as possible [11].
Comm. in Dataflows w/o Exp. Barriers Set rates/prioritize so that later stages do not block on this coflow.
BSP Communication Set rates at computation nodes so that the slowest sender finishes as fast as possible
Comm. w/o Barrier Synchronization Prioritize if the application requires more information from this coflow; else lower priority.
Aggregation Tree - Drop flows that are likely to miss the deadline [26].

- Set higher priorities for all the flows in a coflow that has the earliest deadline [16].

Table 3: Coflows, their objectives, and mechanisms to achieve them.

the network among multiple coflows [7, 23, 24]. We expect
more diversity in the policies to attain an objective and to
mitigate failures in doing so than that in the communication
patterns or the objectives themselves.

6 Related Networking Abstractions
Control Plane Abstractions Software Defined Networking
(SDN) [20] is gaining wide adoption in both academia and
industry. The primary objective of SDN is to replace con-
trol plane mechanisms with abstractions that allow system-
atic decomposition of the existing protocols into composable
modules for reuse and conceptual separation of concerns.
Techniques developed in the context of SDN might be useful
for optimizing coflow implementations.

Data Plane Abstractions Unlike the control plane, the data
plane has long had abstractions at different layers. The no-
tion of bits in the physical layer forms frames in the link
layer, which in turn are combined into packets in the network
layer. On top of that, there exists the abstraction of flows be-
tween two processes. Not only are these abstractions intel-
lectually appealing, but they make it easier to express, solve,
and optimize many of the practical problems. Coflows aim
to do the same for cluster computing applications.

7 Conclusion
We studied the communication requirements of diverse clus-
ter computing applications and distilled corresponding so-
lutions to identify a networking abstraction, coflow, which
can represent diverse communication requirements. We pro-
posed an API to design cluster applications using the coflow
abstraction, and we explored how the network might be able
to better optimize its decisions using application-level se-
mantics made available through the coflow API.

Acknowledgments
We thank Tathagata Das, Ali Ghodsi, Ganesh Ananthanarayanan,
Aurojit Panda, Matei Zaharia, and David Zats for useful
feedback. This research is supported in part by NSF CISE
Expeditions award CCF-1139158, gifts from Amazon Web
Services, Google, SAP, Blue Goji, Cisco, Cloudera, Erics-
son, General Electric, Hewlett Packard, Huawei, Intel, Mark-
Logic, Microsoft, NetApp, Oracle, Quanta, Splunk, VMware,
a Facebook Fellowship, and by DARPA (contract #FA8650-
11-C-7136).

8 References

[1] Apache Giraph. http://incubator.apache.org/giraph.
[2] Apache Hadoop. http://hadoop.apache.org.
[3] Apache Hama. http://hama.apache.org.
[4] Apache HDFS. http://hadoop.apache.org/hdfs/.
[5] Apache Hive. http://hadoop.apache.org/hive.
[6] M. Al-Fares et al. Hedera: Dynamic flow scheduling for data center

networks. In NSDI, 2010.
[7] H. Ballani et al. Towards predictable datacenter networks. In

SIGCOMM, 2011.
[8] P. Bodik et al. Surviving failures in bandwidth-constrained

datacenters. In SIGCOMM, 2012.
[9] R. Chaiken et al. SCOPE: Easy and efficient parallel processing of

massive datasets. In VLDB, 2008.
[10] C. Chambers et al. FlumeJava: Easy, efficient data-parallel pipelines.

In PLDI, pages 363–375, 2010.
[11] M. Chowdhury et al. Managing data transfers in computer clusters

with Orchestra. In SIGCOMM, 2011.
[12] T. Condie et al. MapReduce Online. In NSDI, 2010.
[13] J. Dean and S. Ghemawat. MapReduce: Simplified data processing

on large clusters. In OSDI, pages 137–150, 2004.
[14] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.

In SOSP, 2003.
[15] Z. Guo et al. Spotting code optimizations in data-parallel pipelines

through PeriSCOPE. In OSDI, 2012.
[16] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing flows quickly

with preemptive scheduling. In SIGCOMM, 2012.
[17] M. Isard et al. Dryad: Distributed data-parallel programs from

sequential building blocks. In EuroSys, pages 59–72, 2007.
[18] Y. Low et al. Distributed GraphLab: A Framework for Machine

Learning and Data Mining in the Cloud. In PVLDB, 2012.
[19] G. Malewicz et al. Pregel: A system for large-scale graph processing.

In SIGMOD, 2010.
[20] N. McKeown et al. OpenFlow: Enabling innovation in campus

networks. SIGCOMM CCR, 38(2):69–74, 2008.
[21] C. Olston et al. Pig latin: a not-so-foreign language for data

processing. In SIGMOD, 2008.
[22] R. Pike et al. Interpreting the data: Parallel analysis with Sawzall.

Scientific Programming, 13(4), 2005.
[23] L. Popa et al. FairCloud: Sharing the network is cloud computing. In

SIGCOMM, 2012.
[24] A. Shieh et al. Seawall: Performance Isolation for Cloud Datacenter

Networks. In HotCloud, 2010.
[25] N. Tolia et al. An architecture for internet data transfer. In NSDI,

2006.
[26] C. Wilson et al. Better never than late: Meeting deadlines in

datacenter networks. In SIGCOMM, 2011.
[27] Y. Yu et al. DryadLINQ: A system for general-purpose distributed

data-parallel computing using a high-level language. In OSDI, 2008.
[28] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In NSDI, 2012.
[29] D. Zats et al. DeTail: Reducing the flow completion time tail in

datacenter networks. In SIGCOMM, 2012.
[30] J. Zhang et al. Optimizing data shuffling in data-parallel computation

by understanding user-defined functions. In NSDI, 2012.

6

