A Networking Abstraction Coflow for Cluster Applications

Mosharaf Chowdhury, Gautam Kumar, Sylvia Ratnasamy, Ion Stoica

Cluster Applications

Multi-Stage Data Flows

»Computation interleaved with communication

Computation

»Distributed »Runs on many machines

Communication

»Structured »Between machine groups

Data-Intensive Network Traffic

Trace from a 3000-node Hadoop cluster

Trace from a "large" Cosmos cluster

The Flow Abstraction

We get

»Point-to-point comm. »Sequence of packets »Independent

We want

»Multipoint-to-multipoint »Collection of flows »Shared Objective

The Coflow Abstraction

A semantically-bound collection of flows

Captures and Conveys application intent to the network

»Performance-centric allocation of the network »Greater flexibility in designing applications

A flow is a coflow as well

Examples

Communication Pattern	Coflow	Objective
Intermediate transfers	Many-to-many (Shuffle)	Min completion time
Data dissemination	One-to-many (Broadcast)	Min completion time
Aggregation	Many-to-one (Reduce)	Min completion time
DFS replication	Constrained Anycast	Min completion time
Aggregation	Many-to-one (Incast)	Meet Deadline
Point-to-point	One-to-one	Either

The Coflow API

. . .

<pre>@driver b ← create(BCAST) s ← create(SHUFFLE)</pre>		
 b. put (id, content) b. terminate () s. terminate ()		
@mapper b.get(id) s.put(id _{s1})	@reducer s.get(id _{s1}) 	

Enforcement is a major challenge

Overview

Performance Improvements » Leveraging Flexibility in Endpoint Placement for a Snappier Network– SIGCOMM 2013 (Submitted) » Managing Data Transfers in Computer Clusters with Orchestra – SIGCOMM 2011

-amplab/// UC Berkeley

Coflow Scheduler

Input: Diverse coflows arriving over time »Some attributes are unknown upon arrival

Output: Allocate resources in near real-time »Multi-objective optimization

Proven to be NP-hard

»SRTF et al. heuristics do not work that well »LICF (Least-Impact-Coflow-First) is the best so far »Uses preemption at the block-level

»Looking at both app-layer and SDN solutions

System Architecture

Being developed in Scala/Java with a Thrift interface for external applications

Reading List

» Coflow: A Networking Abstraction for Cluster Applications – HotNets 2012

Allocation/Sharing

» FairCloud: Sharing The Network in Cloud Computing – SIGCOMM 2012 » A Case for Performance-Centric Network Allocation – HotCloud 2012