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Network Matters	


Typical Facebook jobs spend 33% of running time in communication	

•  Weeklong trace of MapReduce jobs from a 3000-node production cluster	


Iterative algorithms depends on per-iteration communication time	

•  Monarch1 spends up to 40% of the iteration time communicating	


	


Communication often limits scalability	

•  Recommendation system for the Netflix challenge2	


1. Design and Evaluation of a Real-Time URL Spam Filtering Service, IEEE S&P’11.	

2. Large-scale parallel collaborative filtering for the Netflix prize, AAIM’08.	




Network Sharing is Well Studied	


Many articles on different aspects and contexts	

•  Fairness, efficiency, predictability, and resilience	

•  Policies, mechanisms, algorithms, architectures, and APIs	

•  Internet, local area, mobile/wireless, sensor, and datacenters	




What is Common?	


They use the same abstraction of a flow	

•  A sequence of packets	

•  Point-to-point	

•  Endpoints are fixed	


	


Each flow is independent	

•  Unit of allocation, sharing, load balancing etc.	




Cluster Networks	


Too many flows	


Not enough application semantics	

•  How, if at all, are flows related? 	

•  What does an application care about? 	

•  Must the endpoints of a flow be fixed?	




Cluster Applications	


Completion time depends on 
!"# $%&! '(w !( )(*p$#!# 

Multi-Stage Data Flows	

•  Computation interleaved with communication	

•  Barriers between stages are common	


Communication	

•  Structured	


•  Between machine groups	




How Does It Change Things?	


r1	
 r2	


s2	
 s3	
 s4	
s1	
 s5	


Links to r1 & r2 are full:	

Link from s3 is full:	


Completion time:	


3 time units	

2 time units	


5 time units	


r1	
 r2	


s2	
 s3	
 s4	
s1	
 s5	


Links between s1-r1 & s3-r2 are full:	


Completion time:	


1 time unit	


4 time units	


1 1

Links between s2-r1 & s3-r2 are full:	
1 time unit	

Links between s3-r1 & s4-r2 are full:	
1 time unit	

Links between s3-r1 & s5-r2 are full:	
1 time unit	


1 11 11 1



Represents a collection of one or more flows	

•  Captures and conveys an application’s intent to the network	


Coflow 

+  Performance-centric allocation	

+  Flexibility for cluster applications	


- Coordination causes complexity	

	

	




Minimal Coordination [Orchestra1]	


Micro-management is infeasible in large clusters	

•  Scaling to O(10K) nodes	


Full decentralization lacks control	

•  Optimizing individual flows would be an example	


	


Orchestra optimizes individual coflows for applications	

•  Decentralized broadcast and shuffle algorithms	

•  Centralized ordering of coflows	


1. Managing Data Transfers in Computer Clusters with Orchestra, Appeared at SIGCOMM’11.	




Represents a collection of one or more flows	


Coflow 

+  Performance-centric allocation	

+  Flexibility for cluster applications	


- Coordination causes complexity	

- Fixed endpoints are restrictive	

	




Endpoint Flexible Transfers [Usher1] 	


Communication always takes place between fixed endpoints	

•  The network does not determine the placement	


	


Usher enables constrained anycast	

•  Takes constraints from applications like distributed file systems	

•  Dictates applications where to put the destination	

•  Decreases network imbalance and makes other coflows faster	


1. Leveraging Flexibility in Endpoint Placement for a Snappier Network, Submitted to SIGCOMM’13.	




Represents a collection of one or more flows	


Coflow 

+  Performance-centric allocation	

+  Flexibility for cluster applications	


- Coordination causes complexity	

- Fixed endpoints are restrictive	

- Managing concurrent coflows	




1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	


Outline	




Outline	


1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	




HDFS	

Tree	

P2P	


CM (broadcast)	
Broadcast	

Coflow Manager 

(CM)	

Hadoop shuffle	


WSS	


CM (shuffle)	
Shuffle	

Coflow Manager 

(CM)	


CM (broadcast)	


Orchestra	
 Optim*e at the level of coflows 
instead of individual flows 

shuffle	
 broadcast 1	
 broadcast 2	


Inter-Coflow	

Coordinator 

(ICC)	

Priority	

FIFO	


HDFS	

Tree	

P2P	


ICC	


Broadcast	

Coflow Manager 

(CM)	


A coflow manager (CM) selects 
appropriate algorithm based on	


•  Number of participants,	

•  Size of data,	

•  Level of oversubscription	


	

Inter-coflow coordinator (ICC)	

•  Enforces simple ordering 

between coflows	




Many-to-Many/Shuffle	


Transfers output of one stage to 
be used as input of the next	

	

Widespread use	

•  All MapReduce jobs at Facebook	

•  Any SQL query that joins or 

aggregates data	


Status Quo	


r1	
 r2	


s2	
 s3	
 s4	
s1	
 s5	


Links to r1 and r2 are full:	


Link from s3 is full:	


Completion time:	


3 time units	


2 time units	


5 time units	




Shuffle Bottlenecks	


At a sender	
 At a receiver	
 In the network	


An optimal shuffle schedule keeps at least one link 
2lly util*ed throughout the transfer 



Weighted Shuffle Scheduling (WSS)	


Allocate rates to each flow, 
proportional to the total 

amount of data it transfers 

Up to 1.5X improvement	


Completion time: 4 time units	


r1	
 r2	


s2	
 s3	
 s4	
s1	
 s5	


1	
 1	
 2	
 2	
 1	
 1	
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Communication	


Computation	


Orchestra in Action : Netflix Challenge	


Performance degrades with 
increasing parallelism due to 

communication overhead	


Movie recommendation system 
using collaborative filtering	

	

Implemented in Spark	

	


Better scaling characteristics	


~2x faster at 90 nodes	
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What About Other Coflows?	


Broadcast/One-to-Many	

•  Cooperative BitTorrent	

•  4.5X faster than the status quo	


Aggregation/Many-to-One	

•  Direct application of WSS	


AllReduce	

•  Heavily used in matrix-based computations (e.g., machine learning)	

•  Aggregates data to a single node, then broadcasts to everyone	




Outline	


1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	




Distributed File Systems	


F	
 F	


Core	


Fault Domain 1/	

Rack 1	


Fault Domain 2/	

Rack 2	


Fault Domain 3/	

Rack 3	


Pervasive in BigData clusters	

•  Different frameworks read from and 

write to the same DFS	

Files are divided into blocks	

•  Typically 256MB blocks	


Each block is replicated to	

•  3 machines for fault-tolerance	


•  2 fault domains for partition-tolerance	


•  Uniformly randomly	


F	


Locations do not matter 
as long as constraints are met 

F  I  L E



Network-Aware Replica Placement	


23 

Constrained anycast	

•  Destination of the transfer is determined by the network	

•  Move replication traffic out of the way of coflows	


	

Will network-awareness matter?	

•  More than 40% of all network traffic comes from DFS replication	

•  Almost 50% of the time downlinks have high imbalance1 (Cv > 1).2	


	


Does it matter to DFS clients/users?	

•  More than 37% of all tasks write to the DFS.	


1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	

2. Coefficient of variation, Cv = (stdev/mean).	


YES	


YES	




Usher Overview	


Performs network-aware replica 
placement	

Takes online decisions	

	


Decreases network imbalance	

Does it impact the storage balance?	


Usher Master	

Where to put 
block B?	


•  Static Information	

•  Network topology	

•  Link, disk capacities	

•  Dynamic distributions of 	

•  loads in links	

•  popularity of files	


Information (from slaves)	


{ Locations }	


•  At least r replicas	

•  In f fault domains	

•  Collocate with block B’	

•  …	


Constraints & Hints	


NO	




Why Not?	


Observations	
 Implications	


1	
 Network hotspots are stable 
in the short term (5-10 sec)	


Individual blocks can be 
used for packing1	


2	
 Hotspots are uniformly 
distributed in the long term	


Total number of blocks in 
each machine is uniform	


3	
 Most bytes (93%) are written 
by few blocks (35%)	


Use the default policy for 
65% smaller blocks	


Greedy placement is optimal 
under these conditions	


1. It takes 5 seconds to write a 256MB block, which is shorter than most hotspot durations.	




Faster. More Balanced.	


EC2 Deployment	

	


Jobs run 1.26X faster	

Blocks written 1.3X faster	


Facebook Trace Simulation	

	


Jobs run 1.39X faster	

Blocks written 1.58X faster	


Upper bound of the optimal is 1.89X	


Implemented and integrated with HDFS	

•  Pluggable replica placement policy	


The network became more balanced	


Storage remained balanced 	




Future Research	


Applications of Constrained Anycast	

•  Rebuilding of lost blocks for erasure-coded storage systems	

•  Input collocation to decrease network traffic instead of just load balancing	

•  Read from non-local storage depending on contention	


	

In-Memory Storage Systems	

•  Network is the bottleneck for memory-to-memory communication	


	


DFS Read/Write Coflows	

•  Collection of parallel flows	




Outline	


1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	




Why Inter-Coflow Coordination?	


time	
2	
 4	
 6	
 time	
2	
 4	
 6	
 time	
2	
 4	
 6	


Coflow1 comp. time = 6	

Coflow2 comp. time = 6	


Coflow1 comp. time = 6	

Coflow2 comp. time = 6	


Fair Sharing	
 Flow-level Prioritization1	
 The Optimal	


Coflow1 comp. time = 3	

Coflow2 comp. time = 6	


L1	


L2	


L1	


L2	


L1	


L2	


1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’12.	


               Link 2	


               Link 1	
 3 Units	


Coflow 1	


6 Units	


Coflow 2	


3-ε Units	




How Much Better Can We Do?	


time	


N + 1	


N + 2	


N + K	


L0	


L1	


L2	


LK	


Completion time of the	

blue coflow considering only L0	
 = K + N

…	


N	
1	
 …	
1	
 1	


K	




How Much Better Can We Do?	


time	


N + 1	


N + 2	


N + K	


L0	


L1	


L2	


LK	
 …	

= N

Improvement	
 =
K
N
+1

Completion time of the	

blue coflow considering only L0	


Completion time considering all links	


1	
 …	
1	
 1	


K	


N	

No change for other coflows	


= K + N



NP-Hard 

What is  
the optimal order 

of coflows? 



Preliminary Simulation	
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FAIR	
 PDQ	
 SCF	

NCF	
 MCF	


FAIR	
 Fair sharing on each link	

PDQ	
 Shortest flow first	

SCF	
 Shortest coflow first	

NCF	
 Narrowest coflow first	

MCF	
 Smallest coflow first	


Length	
 Size of the largest flow	

Width	
 Total number of flows	

Size	
 Sum of all flows	


Length	
 6	


Width	
 2	


Size	
 9	


Simulated on 100 links	

Width of coflows varied from 1 to 100	

Length of each flow varied from 1 to 10	

Offline, i.e., all coflows arrive at the beginning	

Averaged over 25 runs	




Summary	


The network is a key resource in cluster computing	

•  Unlike other resources, it remains agnostic to application requirements	


We proposed the coflow abstraction and three components to	

•  Optimize common coflows in isolation (Orchestra)	

•  Balance the network using constrained anycast (Usher)	

•  Express and schedule concurrent coflows (Maestro)	




Related Work	


MPI Communication Primitives	

•  No coordination among coflows	


Cloud and HPC Schedulers	

•  Limited to independent resources like computing and memory; ignore the network	


Full Bisection Bandwidth Networks	

•  Mechanism for faster network, not for better management within/across apps	


Distributed File Systems	

•  Ignore the network even though generate a large chunk of cluster traffic	


Software-Defined Networking	

•  Provides control plane abstractions and can act as an enabler of coflows	




Timeline	


April 2013 to September 2013	

•  Develop a fast approximation algorithm for inter-coflow scheduling	

•  Implement the ICC in the application layer	

•  Port communication patterns in Spark and Hadoop to the coflow API	


October 2013 to April 2014	

•  Explore the notion of fairness among coflows	

•  Implement the AllReduce coflow	


May 2014 to December 2014	

•  Apply constrained anycast to other contexts	

•  Complete an SDN integration of the coflow API	




Why Are We So Excited?	


Task scheduling in data centers	

•  Tasks without data locality constraints (e.g., reducer stage)	


	


Sub-resource prioritization in SPDY1	


•  We can design SPDR ;)	

	

Many-core systems	

•  Scheduling memory requests in shared DRAM systems2	


•  Coordinated communication across multiple cores	


1. SPDY Protocol Specification, http://www.chromium.org/spdy/spdy-protocol.	

2. Distributed Order Scheduling and its Application to Multi-Core DRAM Controllers, PODC’08.	




Coflow 

Use it!	


Mosharaf Chowdhury	

http://www.mosharaf.com/	




BACKUP 



1. Design and Evaluation of a Real-Time URL Spam Filtering Service, IEEE S&P’11.	

2. Large-scale parallel collaborative filtering for the Netflix prize, AAIM’08.	


Communication Matters	


Typical job in Facebook spends 33% of running time in the shuffle phase	

•  Weeklong trace of MapReduce jobs from a 3000-node production cluster	


Iterative algorithms depends on per-iteration communication time	

•  Monarch1 spends up to 40% of the iteration time in shuffle	
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Communication	

Computation	


Communication often limits scalability	

•  Recommendation system for the Netflix challenge2	




Network Sharing is Well Studied	


Many articles on different aspects of network sharing and allocation	

•  Policies, mechanisms, algorithms, architectures, APIs, fairness, performance etc.	


Google Scholar Query	
 Number of Results	


network sharing +"internet"	
 1,420,000	


network sharing +"mobile"	
 808,000	


network sharing +"wireless"	
 407,000	


network sharing +"sensor"	
 140,000	


network sharing +"local area"	
 134,000	


network sharing +"wide area"	
 93,400	


network sharing +"vehicular"	
 36,000	


network sharing +"data center"	
 26,000	


Many articles on sharing different types of networks	




Cluster Applications	


Multi-Stage Data Flows	

•  Computation interleaved with communication	

•  Barriers between stages are common	


Communication	

•  Structured	


•  Between machine groups	




Cluster Applications	


Multi-Stage Data Flows	

•  Computation interleaved with communication	

•  Barriers between stages are common	


Communication	

•  Structured	


•  Between machine groups	


Completion time depends on 
!"# $%&! '(w !( )(*p$#!# 



Cooperative Broadcast	


Send the same data to all receivers	

•  Fast, scalable, and resilient	


Peer-to-peer mechanism optimized for cooperative environments	


Observations	
 Design Decisions	


1	
 High-bandwidth, low-latency network	
 ü  Large block size (4-16MB)	


2	
 No selfish or malicious peers	

ü No need for incentives	

ü No choking or unchoking	

ü  Everyone stays till the end	


3	
 Topology matters	
 ü  Topology-aware broadcast	
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Performance	

1GB data to 100 receivers on EC2	


Status quo	


Up to 4.5X faster than 
status quo	


Ships with Spark	


Not so much faster for	

•  Small data (<10MB)	

•  Fewer receivers (<10)	


Additional 2X speedup 
with topology info	




Topology-Aware Broadcast	


	

Many data center networks employ tree topologies	

Each rack should receive exactly one copy of broadcast	


•  Minimize cross-rack communication	

Topology information reduces cross-rack data transfer	


•  Mixture of spherical Gaussians to infer network topology	

	


Up to 2X faster than 
vanilla implementation	




Collaborative Filtering	

using Alternating Least Squares	


Orchestra in Action	
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Without Orchestra	


~2x faster at 90 nodes1	


With Orchestra	


update user vectors	


update movie vectors	


broadcast	

movie vectors	


collect	

updates	


broadcast	

user vectors	


collect	

updates	


Performance degrades with 
increasing parallelism due to 

communication overhead	




Orchestra in Action : Netflix Challenge	
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Without Orchestra	


~2x faster at 90 nodes	


With Orchestra	


Performance degrades with 
increasing parallelism due to 

communication overhead	




R2	
R1	


S5	
S4	
S3	
S2	
S1	


Shuffle	


Transfers output of one stage to 
be used as input of the next	

	

Widespread use	

•  68% of the Facebook jobs use 

shuffle	

R1 and R2 are bottlenecks:

S3 is the bottleneck:

Completion time: 

3 time units 

2 time units 

5 time units 

Status Quo	




Benefits of the Coordinator	


Two priority classes	

•  FIFO within each class	


Low priority coflow	

•  2GB per reducer	


High priority coflows	

•  250MB per reducer	
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Low Priority Job 0	
 High Priority Job 1	


High Priority Job 2	
 High Priority Job 3	


1.75X faster high priority coflows	

1.06X slower low priority coflow	
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Without Inter-Coflow Scheduling	


Priority Scheduling in the ICC	


Shuffle on a 30-node EC2 cluster	


Coflow 0	


Coflow 2	


Coflow 1	


Coflow 3	




Sources of Network Traffic	


Facebook	


14%	


46%	


40%	


Bing	


31%	


15%	

54%	


DFS Reads	


DFS Writes	


Coflow 
Comm.	




Network is Imbalanced1	


Facebook	
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More than 50% of the time, 
downlinks have Cv > 1.2	


1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	

2. Coefficient of variation, Cv = (stdev/mean).	




Writer Characteristics	


0	


0.25	


0.5	


0.75	


1	


0	
 0.25	
 0.5	
 0.75	
 1	


C
D

F	

(W

ei
gh

te
d 

by
 B

yt
es

 W
ri

tt
en

)	


Fraction of Task Duration in Write	


Preproc./Ingest	


Reducers	


Combined	


37% of all tasks write to the DFS	

	

Two types of writers	


1.  Reducers	

2.  Ingestion/preprocessing tasks	
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Balanced Network	


EC2 Deployment	
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System Architecture	


Master	


Slave	


P	


Slave	


G	


Slave	
 Slave	


Coflow Scheduler	


P	


SELECT *	

FROM A INNER JOIN B	

ON A.x = B.x	


BigData App	


create(Shuffle)	


Topology	

Monitor	


Network Fabric	


Usage	

Estimator	
 Network Interface	


Distributed File System	


Task	


Actual timing and order 
of communication is 

controlled by the 
Coflow Scheduler	




Details	


Slave JVM	
User JVM	


Client Lib	


Master	


Coflow Scheduler	


Slave JVM	
User JVM	


Client Lib	


Slave JVM	
User JVM	


Client Lib	




Current Implementation	

Implemented in ~2700 lines of Scala	

» Core + Framework: ~1800 lines	

» Client library: ~400 lines	

» Web UI: ~300 lines	

» Utils: ~200 lines	

» Scheduler does not exist yet	


Can put and get 	

» On-disk files,	

»  In-memory objects, and 	

» Fake data (for testing)	


Sufficient to implement Orchestra	

» Cornet already implemented	


Includes OFS/Usher/Sinbad functionalities	

» Exposes getBest(Rx|Tx)Machines method	




Cornet1 Implementation [Master]	


1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’11.	


// Create new client 
val client = new Client("BroadcastSender", masterUrl) 
client.start() 
 
// Create coflow 
val desc = new CoflowDescription("Broadcast-" + fileName, CoflowType.BROADCAST, numSlaves) 
val coflowId = client.registerCoflow(desc) 
 
// Put blocks 
for (fromBytes <- 0L to FILE_SIZE by DEFAULT_BLOCK_SIZE) { 
  val blockSize =  
    if (fromBytes + DEFAULT_BLOCK_SIZE >= FILE_SIZE) FILE_SIZE - fromBytes 
    else DEFAULT_BLOCK_SIZE 
  val blockName = fileName + "-" + fromBytes 
  // Put block 
  client.putFile(blockName, pathToFile, coflowId, fromBytes, blockSize, numSlaves) 
} 
 
// Wait for all slaves to finish 
 
// Terminate coflow 
client.unregisterCoflow(coflowId) 



Cornet1 Implementation [Slaves]	


1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’11.	


// Create new client 
val client = new Client("BroadcastReceiver", masterUrl) 
client.start() 
 
// Get blocks (in possibly randomized order) 
blockOffsets.foreach { offset => 
  val blockName = origFileName + "-" + offset 
   
  // Get block 
  val bArr = client.getFile(blockName, bInfo.coflowId) 
   
  // Do something; e.g., write to file. 
} 



Theorems	


Lower Bound: 
Unless P=NP, we can find completion time 
within, at best, 1.5X of the optimal	


Upper Bound: 
There exists an algorithm that result in 
completion time within 2X of the optimal	




Two-Sided Problem [Bipartite Matching]	


M1	


Non-
Blocking 

Core	


M2	


M3	


…	


MN	


M1	


M2	


M3	


…	


MN	


In what order?	

To where?	


In Progress.	

Results from ordering might be useful.	




Declarative API	


•  create	


•  put	


•  get	


•  terminate	

mappers	


reducers	


sh
uf

fle
	


driver 
(JobTracker)	


br
oa

dc
as

t	

@mapper	

b.get(id)	

…	


@reducer	

s.get(idsl)	

…	

	  

s   create(SHUFFLE)	


@driver	

b     create(BCAST)	

	

	

	

id      b.put(content)	

…	


s.put(ids1) 	

…	


s.terminate( )	

b.terminate( )	


1.  No changes to user jobs	

2.  No storage management	




System Architecture	


Centralized design	

•  Common architectural pattern in cluster computing	

•  Fall back to normal communication upon failure	


Application layer overlay	

•  Assume cooperation	

•  Easily deployable	


Hypervisor-based	

•  Better enforcement	

•  Easier to deploy	


SDN-based	

•  Most control	

•  Harder to deploy	




How Much Better Can We Do?	


time	


N + 1	


N + 2	


N + K	


L0	


L1	


L2	


LK	


Completion time of the	

blue coflow considering only L0	
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K(K +1)
2
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=
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1	
 …	
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How Much Better Can We Do?	


time	


N + 1	


N + 2	


N + K	


L0	


L1	


L2	


LK	
 …	

= N

Improvement	
 =
K(K +3)
2N

+1

=
K(K +1)
2

+ (N +K )

=
K(K +3)

2
+ N

Max Improvement	


K << N	
 1x	


K == N	
 Kx	


K >> N	
 K2x	


Completion time of the	

blue coflow considering only L0	


Completion time considering all links	


1	
 …	
1	
 1	


K	


N	


No change for other coflows	



