
Coflow

Efficiently Sharing Cluster Networks	

Mosharaf Chowdhury	

Qualifying Exam, UC Berkeley	

Apr 11, 2013	

Network Matters	

Typical Facebook jobs spend 33% of running time in communication	

•  Weeklong trace of MapReduce jobs from a 3000-node production cluster	

Iterative algorithms depends on per-iteration communication time	

•  Monarch1 spends up to 40% of the iteration time communicating	

	

Communication often limits scalability	

•  Recommendation system for the Netflix challenge2	

1. Design and Evaluation of a Real-Time URL Spam Filtering Service, IEEE S&P’11.	

2. Large-scale parallel collaborative filtering for the Netflix prize, AAIM’08.	

Network Sharing is Well Studied	

Many articles on different aspects and contexts	

•  Fairness, efficiency, predictability, and resilience	

•  Policies, mechanisms, algorithms, architectures, and APIs	

•  Internet, local area, mobile/wireless, sensor, and datacenters	

What is Common?	

They use the same abstraction of a flow	

•  A sequence of packets	

•  Point-to-point	

•  Endpoints are fixed	

	

Each flow is independent	

•  Unit of allocation, sharing, load balancing etc.	

Cluster Networks	

Too many flows	

Not enough application semantics	

•  How, if at all, are flows related? 	

•  What does an application care about? 	

•  Must the endpoints of a flow be fixed?	

Cluster Applications	

Completion time depends on
!"# $%&! '(w !()(*p$#!#

Multi-Stage Data Flows	

•  Computation interleaved with communication	

•  Barriers between stages are common	

Communication	

•  Structured	

•  Between machine groups	

How Does It Change Things?	

r1	

 r2	

s2	

 s3	

 s4	

s1	

 s5	

Links to r1 & r2 are full:	

Link from s3 is full:	

Completion time:	

3 time units	

2 time units	

5 time units	

r1	

 r2	

s2	

 s3	

 s4	

s1	

 s5	

Links between s1-r1 & s3-r2 are full:	

Completion time:	

1 time unit	

4 time units	

1 1

Links between s2-r1 & s3-r2 are full:	

1 time unit	

Links between s3-r1 & s4-r2 are full:	

1 time unit	

Links between s3-r1 & s5-r2 are full:	

1 time unit	

1 11 11 1

Represents a collection of one or more flows	

•  Captures and conveys an application’s intent to the network	

Coflow

+  Performance-centric allocation	

+  Flexibility for cluster applications	

- Coordination causes complexity	

	

	

Minimal Coordination [Orchestra1]	

Micro-management is infeasible in large clusters	

•  Scaling to O(10K) nodes	

Full decentralization lacks control	

•  Optimizing individual flows would be an example	

	

Orchestra optimizes individual coflows for applications	

•  Decentralized broadcast and shuffle algorithms	

•  Centralized ordering of coflows	

1. Managing Data Transfers in Computer Clusters with Orchestra, Appeared at SIGCOMM’11.	

Represents a collection of one or more flows	

Coflow

+  Performance-centric allocation	

+  Flexibility for cluster applications	

- Coordination causes complexity	

- Fixed endpoints are restrictive	

	

Endpoint Flexible Transfers [Usher1] 	

Communication always takes place between fixed endpoints	

•  The network does not determine the placement	

	

Usher enables constrained anycast	

•  Takes constraints from applications like distributed file systems	

•  Dictates applications where to put the destination	

•  Decreases network imbalance and makes other coflows faster	

1. Leveraging Flexibility in Endpoint Placement for a Snappier Network, Submitted to SIGCOMM’13.	

Represents a collection of one or more flows	

Coflow

+  Performance-centric allocation	

+  Flexibility for cluster applications	

- Coordination causes complexity	

- Fixed endpoints are restrictive	

- Managing concurrent coflows	

1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	

Outline	

Outline	

1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	

HDFS	

Tree	

P2P	

CM (broadcast)	

Broadcast	

Coflow Manager

(CM)	

Hadoop shuffle	

WSS	

CM (shuffle)	

Shuffle	

Coflow Manager

(CM)	

CM (broadcast)	

Orchestra	

 Optim*e at the level of coflows
instead of individual flows

shuffle	

 broadcast 1	

 broadcast 2	

Inter-Coflow	

Coordinator

(ICC)	

Priority	

FIFO	

HDFS	

Tree	

P2P	

ICC	

Broadcast	

Coflow Manager

(CM)	

A coflow manager (CM) selects
appropriate algorithm based on	

•  Number of participants,	

•  Size of data,	

•  Level of oversubscription	

	

Inter-coflow coordinator (ICC)	

•  Enforces simple ordering

between coflows	

Many-to-Many/Shuffle	

Transfers output of one stage to
be used as input of the next	

	

Widespread use	

•  All MapReduce jobs at Facebook	

•  Any SQL query that joins or

aggregates data	

Status Quo	

r1	

 r2	

s2	

 s3	

 s4	

s1	

 s5	

Links to r1 and r2 are full:	

Link from s3 is full:	

Completion time:	

3 time units	

2 time units	

5 time units	

Shuffle Bottlenecks	

At a sender	

 At a receiver	

 In the network	

An optimal shuffle schedule keeps at least one link
2lly util*ed throughout the transfer

Weighted Shuffle Scheduling (WSS)	

Allocate rates to each flow,
proportional to the total

amount of data it transfers

Up to 1.5X improvement	

Completion time: 4 time units	

r1	

 r2	

s2	

 s3	

 s4	

s1	

 s5	

1	

 1	

 2	

 2	

 1	

 1	

0	

50	

100	

150	

200	

250	

10	

 30	

 60	

 90	

Ite
ra

tio
n

tim
e

(s
)	

Number of machines	

0	

50	

100	

150	

200	

250	

10	

 30	

 60	

 90	

Ite
ra

tio
n

tim
e

(s)
	

Number of machines	

Communication	

Computation	

Orchestra in Action : Netflix Challenge	

Performance degrades with
increasing parallelism due to

communication overhead	

Movie recommendation system
using collaborative filtering	

	

Implemented in Spark	

	

Better scaling characteristics	

~2x faster at 90 nodes	

w
ith

ou
t

O
rc

he
st

ra
	

w
ith

ou
t	

w
/o
	

w
/o
	

w
ith

 O
rc

he
st

ra
	

w
ith
	

w
ith
	

w
	

What About Other Coflows?	

Broadcast/One-to-Many	

•  Cooperative BitTorrent	

•  4.5X faster than the status quo	

Aggregation/Many-to-One	

•  Direct application of WSS	

AllReduce	

•  Heavily used in matrix-based computations (e.g., machine learning)	

•  Aggregates data to a single node, then broadcasts to everyone	

Outline	

1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	

Distributed File Systems	

F	

 F	

Core	

Fault Domain 1/	

Rack 1	

Fault Domain 2/	

Rack 2	

Fault Domain 3/	

Rack 3	

Pervasive in BigData clusters	

•  Different frameworks read from and

write to the same DFS	

Files are divided into blocks	

•  Typically 256MB blocks	

Each block is replicated to	

•  3 machines for fault-tolerance	

•  2 fault domains for partition-tolerance	

•  Uniformly randomly	

F	

Locations do not matter
as long as constraints are met

F
 I
 L
 E

Network-Aware Replica Placement	

23

Constrained anycast	

•  Destination of the transfer is determined by the network	

•  Move replication traffic out of the way of coflows	

	

Will network-awareness matter?	

•  More than 40% of all network traffic comes from DFS replication	

•  Almost 50% of the time downlinks have high imbalance1 (Cv > 1).2	

	

Does it matter to DFS clients/users?	

•  More than 37% of all tasks write to the DFS.	

1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	

2. Coefficient of variation, Cv = (stdev/mean).	

YES	

YES	

Usher Overview	

Performs network-aware replica
placement	

Takes online decisions	

	

Decreases network imbalance	

Does it impact the storage balance?	

Usher Master	

Where to put
block B?	

•  Static Information	

•  Network topology	

•  Link, disk capacities	

•  Dynamic distributions of 	

•  loads in links	

•  popularity of files	

Information (from slaves)	

{ Locations }	

•  At least r replicas	

•  In f fault domains	

•  Collocate with block B’	

•  …	

Constraints & Hints	

NO	

Why Not?	

Observations	

 Implications	

1	

 Network hotspots are stable
in the short term (5-10 sec)	

Individual blocks can be
used for packing1	

2	

 Hotspots are uniformly
distributed in the long term	

Total number of blocks in
each machine is uniform	

3	

 Most bytes (93%) are written
by few blocks (35%)	

Use the default policy for
65% smaller blocks	

Greedy placement is optimal
under these conditions	

1. It takes 5 seconds to write a 256MB block, which is shorter than most hotspot durations.	

Faster. More Balanced.	

EC2 Deployment	

	

Jobs run 1.26X faster	

Blocks written 1.3X faster	

Facebook Trace Simulation	

	

Jobs run 1.39X faster	

Blocks written 1.58X faster	

Upper bound of the optimal is 1.89X	

Implemented and integrated with HDFS	

•  Pluggable replica placement policy	

The network became more balanced	

Storage remained balanced 	

Future Research	

Applications of Constrained Anycast	

•  Rebuilding of lost blocks for erasure-coded storage systems	

•  Input collocation to decrease network traffic instead of just load balancing	

•  Read from non-local storage depending on contention	

	

In-Memory Storage Systems	

•  Network is the bottleneck for memory-to-memory communication	

	

DFS Read/Write Coflows	

•  Collection of parallel flows	

Outline	

1.  The case for flow coordination	

2.  Optimizing individual coflows	

3.  Flexible endpoint placement	

4.  Managing coexisting coflows	

Why Inter-Coflow Coordination?	

time	

2	

 4	

 6	

 time	

2	

 4	

 6	

 time	

2	

 4	

 6	

Coflow1 comp. time = 6	

Coflow2 comp. time = 6	

Coflow1 comp. time = 6	

Coflow2 comp. time = 6	

Fair Sharing	

 Flow-level Prioritization1	

 The Optimal	

Coflow1 comp. time = 3	

Coflow2 comp. time = 6	

L1	

L2	

L1	

L2	

L1	

L2	

1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’12.	

 Link 2	

 Link 1	

 3 Units	

Coflow 1	

6 Units	

Coflow 2	

3-ε Units	

How Much Better Can We Do?	

time	

N + 1	

N + 2	

N + K	

L0	

L1	

L2	

LK	

Completion time of the	

blue coflow considering only L0	

 = K + N

…	

N	

1	

 …	

1	

 1	

K	

How Much Better Can We Do?	

time	

N + 1	

N + 2	

N + K	

L0	

L1	

L2	

LK	

 …	

= N

Improvement	

 =
K
N
+1

Completion time of the	

blue coflow considering only L0	

Completion time considering all links	

1	

 …	

1	

 1	

K	

N	

No change for other coflows	

= K + N

NP-Hard

What is
the optimal order

of coflows?

Preliminary Simulation	

1.
00
	

 1.

38
	

2.
48
	

1.
00
	

 1.

48
	

2.
26
	

1.
00
	

1.
10
	

1.
30
	

1.
00
	

1.
00
	

1.
00
	

1.
00
	

1.
00
	

1.
00
	

0	

0.5	

1	

1.5	

2	

2.5	

3	

10	

 100	

 1000	

R
el

at
iv

e
T

im
e	

Number of Coflows	

FAIR	

 PDQ	

 SCF	

NCF	

 MCF	

FAIR	

 Fair sharing on each link	

PDQ	

 Shortest flow first	

SCF	

 Shortest coflow first	

NCF	

 Narrowest coflow first	

MCF	

 Smallest coflow first	

Length	

 Size of the largest flow	

Width	

 Total number of flows	

Size	

 Sum of all flows	

Length	

 6	

Width	

 2	

Size	

 9	

Simulated on 100 links	

Width of coflows varied from 1 to 100	

Length of each flow varied from 1 to 10	

Offline, i.e., all coflows arrive at the beginning	

Averaged over 25 runs	

Summary	

The network is a key resource in cluster computing	

•  Unlike other resources, it remains agnostic to application requirements	

We proposed the coflow abstraction and three components to	

•  Optimize common coflows in isolation (Orchestra)	

•  Balance the network using constrained anycast (Usher)	

•  Express and schedule concurrent coflows (Maestro)	

Related Work	

MPI Communication Primitives	

•  No coordination among coflows	

Cloud and HPC Schedulers	

•  Limited to independent resources like computing and memory; ignore the network	

Full Bisection Bandwidth Networks	

•  Mechanism for faster network, not for better management within/across apps	

Distributed File Systems	

•  Ignore the network even though generate a large chunk of cluster traffic	

Software-Defined Networking	

•  Provides control plane abstractions and can act as an enabler of coflows	

Timeline	

April 2013 to September 2013	

•  Develop a fast approximation algorithm for inter-coflow scheduling	

•  Implement the ICC in the application layer	

•  Port communication patterns in Spark and Hadoop to the coflow API	

October 2013 to April 2014	

•  Explore the notion of fairness among coflows	

•  Implement the AllReduce coflow	

May 2014 to December 2014	

•  Apply constrained anycast to other contexts	

•  Complete an SDN integration of the coflow API	

Why Are We So Excited?	

Task scheduling in data centers	

•  Tasks without data locality constraints (e.g., reducer stage)	

	

Sub-resource prioritization in SPDY1	

•  We can design SPDR ;)	

	

Many-core systems	

•  Scheduling memory requests in shared DRAM systems2	

•  Coordinated communication across multiple cores	

1. SPDY Protocol Specification, http://www.chromium.org/spdy/spdy-protocol.	

2. Distributed Order Scheduling and its Application to Multi-Core DRAM Controllers, PODC’08.	

Coflow

Use it!	

Mosharaf Chowdhury	

http://www.mosharaf.com/	

BACKUP

1. Design and Evaluation of a Real-Time URL Spam Filtering Service, IEEE S&P’11.	

2. Large-scale parallel collaborative filtering for the Netflix prize, AAIM’08.	

Communication Matters	

Typical job in Facebook spends 33% of running time in the shuffle phase	

•  Weeklong trace of MapReduce jobs from a 3000-node production cluster	

Iterative algorithms depends on per-iteration communication time	

•  Monarch1 spends up to 40% of the iteration time in shuffle	

0	

50	

100	

150	

200	

250	

10	

 30	

 60	

 90	

It
er

at
io

n
tim

e
(s

)	

Number of machines	

Communication	

Computation	

Communication often limits scalability	

•  Recommendation system for the Netflix challenge2	

Network Sharing is Well Studied	

Many articles on different aspects of network sharing and allocation	

•  Policies, mechanisms, algorithms, architectures, APIs, fairness, performance etc.	

Google Scholar Query	

 Number of Results	

network sharing +"internet"	

 1,420,000	

network sharing +"mobile"	

 808,000	

network sharing +"wireless"	

 407,000	

network sharing +"sensor"	

 140,000	

network sharing +"local area"	

 134,000	

network sharing +"wide area"	

 93,400	

network sharing +"vehicular"	

 36,000	

network sharing +"data center"	

 26,000	

Many articles on sharing different types of networks	

Cluster Applications	

Multi-Stage Data Flows	

•  Computation interleaved with communication	

•  Barriers between stages are common	

Communication	

•  Structured	

•  Between machine groups	

Cluster Applications	

Multi-Stage Data Flows	

•  Computation interleaved with communication	

•  Barriers between stages are common	

Communication	

•  Structured	

•  Between machine groups	

Completion time depends on
!"# $%&! '(w !()(*p$#!#

Cooperative Broadcast	

Send the same data to all receivers	

•  Fast, scalable, and resilient	

Peer-to-peer mechanism optimized for cooperative environments	

Observations	

 Design Decisions	

1	

 High-bandwidth, low-latency network	

 ü  Large block size (4-16MB)	

2	

 No selfish or malicious peers	

ü No need for incentives	

ü No choking or unchoking	

ü  Everyone stays till the end	

3	

 Topology matters	

 ü  Topology-aware broadcast	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

HDFS (R=3)	

 HDFS (R=10)	

 BitTornado	

 Tree (D=2)	

 Orchestra	

 C
om

pl
et

io
n

tim
e

(s
)	

Performance	

1GB data to 100 receivers on EC2	

Status quo	

Up to 4.5X faster than
status quo	

Ships with Spark	

Not so much faster for	

•  Small data (<10MB)	

•  Fewer receivers (<10)	

Additional 2X speedup
with topology info	

Topology-Aware Broadcast	

	

Many data center networks employ tree topologies	

Each rack should receive exactly one copy of broadcast	

•  Minimize cross-rack communication	

Topology information reduces cross-rack data transfer	

•  Mixture of spherical Gaussians to infer network topology	

	

Up to 2X faster than
vanilla implementation	

Collaborative Filtering	

using Alternating Least Squares	

Orchestra in Action	

0	

50	

100	

150	

200	

250	

10	

 30	

 60	

 90	

It
er

at
io

n
tim

e
(s

)	

Number of machines	

Communication	

Computation	

0	

50	

100	

150	

200	

250	

10	

 30	

 60	

 90	

It
er

at
io

n
tim

e
(s

)	

Number of machines	

Communication	

Computation	

Without Orchestra	

~2x faster at 90 nodes1	

With Orchestra	

update user vectors	

update movie vectors	

broadcast	

movie vectors	

collect	

updates	

broadcast	

user vectors	

collect	

updates	

Performance degrades with
increasing parallelism due to

communication overhead	

Orchestra in Action : Netflix Challenge	

0	

50	

100	

150	

200	

250	

10	

 30	

 60	

 90	

It
er

at
io

n
tim

e
(s

)	

Number of machines	

Communication	

Computation	

0	

50	

100	

150	

200	

250	

10	

 30	

 60	

 90	

It
er

at
io

n
tim

e
(s

)	

Number of machines	

Communication	

Computation	

Without Orchestra	

~2x faster at 90 nodes	

With Orchestra	

Performance degrades with
increasing parallelism due to

communication overhead	

R2	

R1	

S5	

S4	

S3	

S2	

S1	

Shuffle	

Transfers output of one stage to
be used as input of the next	

	

Widespread use	

•  68% of the Facebook jobs use

shuffle	

R1 and R2 are bottlenecks:

S3 is the bottleneck:

Completion time:

3 time units

2 time units

5 time units

Status Quo	

Benefits of the Coordinator	

Two priority classes	

•  FIFO within each class	

Low priority coflow	

•  2GB per reducer	

High priority coflows	

•  250MB per reducer	

0%	

20%	

40%	

60%	

80%	

100%	

0	

 5	

 10	

 15	

 20	

 25	

 30	

 35	

 40	

 45	

%
 o

f
n

e
tw

o
rk

 s
h

a
re

	

Time(s)	

Low Priority Job 0	

 High Priority Job 1	

High Priority Job 2	

 High Priority Job 3	

1.75X faster high priority coflows	

1.06X slower low priority coflow	

0%	

20%	

40%	

60%	

80%	

100%	

0	

 5	

 10	

 15	

 20	

 25	

 30	

 35	

 40	

 45	

%
 o

f
n

e
tw

o
rk

 s
h

a
re

	

Time(s)	

Without Inter-Coflow Scheduling	

Priority Scheduling in the ICC	

Shuffle on a 30-node EC2 cluster	

Coflow 0	

Coflow 2	

Coflow 1	

Coflow 3	

Sources of Network Traffic	

Facebook	

14%	

46%	

40%	

Bing	

31%	

15%	

54%	

DFS Reads	

DFS Writes	

Coflow
Comm.	

Network is Imbalanced1	

Facebook	

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

 5	

 6	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var. of Load Across
Core-Rack Links	

Down Links	

Up Links	

Bing	

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var. of Load Across
Core-Rack Links	

Down Links	

Up Links	

More than 50% of the time,
downlinks have Cv > 1.2	

1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	

2. Coefficient of variation, Cv = (stdev/mean).	

Writer Characteristics	

0	

0.25	

0.5	

0.75	

1	

0	

 0.25	

 0.5	

 0.75	

 1	

C
D

F	

(W

ei
gh

te
d

by
 B

yt
es

 W
ri

tt
en

)	

Fraction of Task Duration in Write	

Preproc./Ingest	

Reducers	

Combined	

37% of all tasks write to the DFS	

	

Two types of writers	

1.  Reducers	

2.  Ingestion/preprocessing tasks	

Gr##+, %&&-./*#/! (f b$()0& !(!"# $#%&!-
$(%+#+-$-/0-1r&! (r+#r -& (p!-*%$ for
minim*ing the average block write time

Gr##+, %&&-./*#/! (f b$()0& !(!"#
$#%&!-$(%+#+ $-/0 -/ !"# $#%&!-r#*%-/-/.-
b$()0&-1r&! (r+#r -& (p!-*%$ for
minim*ing the average file write time

Th1

Th2

Balanced Network	

EC2 Deployment	

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var. of Load	

Across Rack-to-Host Links	

Default	

Network-Aware	

Facebook Trace Simulation	

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var. of Load	

Across Core-to-Rack Links	

Default	

Network-Aware	

Decrease in median Cv for
exp(sim) is 0.46(0.33)	

System Architecture	

Master	

Slave	

P	

Slave	

G	

Slave	

 Slave	

Coflow Scheduler	

P	

SELECT *	

FROM A INNER JOIN B	

ON A.x = B.x	

BigData App	

create(Shuffle)	

Topology	

Monitor	

Network Fabric	

Usage	

Estimator	

 Network Interface	

Distributed File System	

Task	

Actual timing and order
of communication is

controlled by the
Coflow Scheduler	

Details	

Slave JVM	

User JVM	

Client Lib	

Master	

Coflow Scheduler	

Slave JVM	

User JVM	

Client Lib	

Slave JVM	

User JVM	

Client Lib	

Current Implementation	

Implemented in ~2700 lines of Scala	

» Core + Framework: ~1800 lines	

» Client library: ~400 lines	

» Web UI: ~300 lines	

» Utils: ~200 lines	

» Scheduler does not exist yet	

Can put and get 	

» On-disk files,	

»  In-memory objects, and 	

» Fake data (for testing)	

Sufficient to implement Orchestra	

» Cornet already implemented	

Includes OFS/Usher/Sinbad functionalities	

» Exposes getBest(Rx|Tx)Machines method	

Cornet1 Implementation [Master]	

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’11.	

// Create new client
val client = new Client("BroadcastSender", masterUrl)
client.start()

// Create coflow
val desc = new CoflowDescription("Broadcast-" + fileName, CoflowType.BROADCAST, numSlaves)
val coflowId = client.registerCoflow(desc)

// Put blocks
for (fromBytes <- 0L to FILE_SIZE by DEFAULT_BLOCK_SIZE) {
 val blockSize =
 if (fromBytes + DEFAULT_BLOCK_SIZE >= FILE_SIZE) FILE_SIZE - fromBytes
 else DEFAULT_BLOCK_SIZE
 val blockName = fileName + "-" + fromBytes
 // Put block
 client.putFile(blockName, pathToFile, coflowId, fromBytes, blockSize, numSlaves)
}

// Wait for all slaves to finish

// Terminate coflow
client.unregisterCoflow(coflowId)

Cornet1 Implementation [Slaves]	

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’11.	

// Create new client
val client = new Client("BroadcastReceiver", masterUrl)
client.start()

// Get blocks (in possibly randomized order)
blockOffsets.foreach { offset =>
 val blockName = origFileName + "-" + offset

 // Get block
 val bArr = client.getFile(blockName, bInfo.coflowId)

 // Do something; e.g., write to file.
}

Theorems	

Lower Bound:
Unless P=NP, we can find completion time
within, at best, 1.5X of the optimal	

Upper Bound:
There exists an algorithm that result in
completion time within 2X of the optimal	

Two-Sided Problem [Bipartite Matching]	

M1	

Non-
Blocking

Core	

M2	

M3	

…	

MN	

M1	

M2	

M3	

…	

MN	

In what order?	

To where?	

In Progress.	

Results from ordering might be useful.	

Declarative API	

•  create	

•  put	

•  get	

•  terminate	

mappers	

reducers	

sh
uf

fle
	

driver
(JobTracker)	

br
oa

dc
as

t	

@mapper	

b.get(id)	

…	

@reducer	

s.get(idsl)	

…	

	

s create(SHUFFLE)	

@driver	

b create(BCAST)	

	

	

	

id b.put(content)	

…	

s.put(ids1) 	

…	

s.terminate()	

b.terminate()	

1.  No changes to user jobs	

2.  No storage management	

System Architecture	

Centralized design	

•  Common architectural pattern in cluster computing	

•  Fall back to normal communication upon failure	

Application layer overlay	

•  Assume cooperation	

•  Easily deployable	

Hypervisor-based	

•  Better enforcement	

•  Easier to deploy	

SDN-based	

•  Most control	

•  Harder to deploy	

How Much Better Can We Do?	

time	

N + 1	

N + 2	

N + K	

L0	

L1	

L2	

LK	

Completion time of the	

blue coflow considering only L0	

=
K(K +1)
2

+ (N +K)

=
K(K +3)

2
+ N…	

N	

1	

 …	

1	

 1	

K	

How Much Better Can We Do?	

time	

N + 1	

N + 2	

N + K	

L0	

L1	

L2	

LK	

 …	

= N

Improvement	

 =
K(K +3)
2N

+1

=
K(K +1)
2

+ (N +K)

=
K(K +3)

2
+ N

Max Improvement	

K << N	

 1x	

K == N	

 Kx	

K >> N	

 K2x	

Completion time of the	

blue coflow considering only L0	

Completion time considering all links	

1	

 …	

1	

 1	

K	

N	

No change for other coflows	

