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Network Matters	



Typical Facebook jobs spend 33% of running time in communication	


•  Weeklong trace of MapReduce jobs from a 3000-node production cluster	



Iterative algorithms depends on per-iteration communication time	


•  Monarch1 spends up to 40% of the iteration time communicating	



	



Communication often limits scalability	


•  Recommendation system for the Netflix challenge2	



1. Design and Evaluation of a Real-Time URL Spam Filtering Service, IEEE S&P’11.	


2. Large-scale parallel collaborative filtering for the Netflix prize, AAIM’08.	





Network Sharing is Well Studied	



Many articles on different aspects and contexts	


•  Fairness, efficiency, predictability, and resilience	


•  Policies, mechanisms, algorithms, architectures, and APIs	


•  Internet, local area, mobile/wireless, sensor, and datacenters	





What is Common?	



They use the same abstraction of a flow	


•  A sequence of packets	


•  Point-to-point	


•  Endpoints are fixed	



	



Each flow is independent	


•  Unit of allocation, sharing, load balancing etc.	





Cluster Networks	



Too many flows	



Not enough application semantics	


•  How, if at all, are flows related? 	


•  What does an application care about? 	


•  Must the endpoints of a flow be fixed?	





Cluster Applications	



Completion time depends on 
!"# $%&! '(w !( )(*p$#!# 

Multi-Stage Data Flows	


•  Computation interleaved with communication	


•  Barriers between stages are common	



Communication	


•  Structured	



•  Between machine groups	





How Does It Change Things?	
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Links to r1 & r2 are full:	


Link from s3 is full:	



Completion time:	



3 time units	


2 time units	



5 time units	
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Links between s1-r1 & s3-r2 are full:	



Completion time:	



1 time unit	



4 time units	



1 1

Links between s2-r1 & s3-r2 are full:	

1 time unit	


Links between s3-r1 & s4-r2 are full:	

1 time unit	


Links between s3-r1 & s5-r2 are full:	

1 time unit	
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Represents a collection of one or more flows	


•  Captures and conveys an application’s intent to the network	



Coflow 

+  Performance-centric allocation	


+  Flexibility for cluster applications	



- Coordination causes complexity	


	


	





Minimal Coordination [Orchestra1]	



Micro-management is infeasible in large clusters	


•  Scaling to O(10K) nodes	



Full decentralization lacks control	


•  Optimizing individual flows would be an example	



	



Orchestra optimizes individual coflows for applications	


•  Decentralized broadcast and shuffle algorithms	


•  Centralized ordering of coflows	



1. Managing Data Transfers in Computer Clusters with Orchestra, Appeared at SIGCOMM’11.	





Represents a collection of one or more flows	



Coflow 

+  Performance-centric allocation	


+  Flexibility for cluster applications	



- Coordination causes complexity	


- Fixed endpoints are restrictive	


	





Endpoint Flexible Transfers [Usher1] 	



Communication always takes place between fixed endpoints	


•  The network does not determine the placement	



	



Usher enables constrained anycast	


•  Takes constraints from applications like distributed file systems	


•  Dictates applications where to put the destination	


•  Decreases network imbalance and makes other coflows faster	



1. Leveraging Flexibility in Endpoint Placement for a Snappier Network, Submitted to SIGCOMM’13.	





Represents a collection of one or more flows	



Coflow 

+  Performance-centric allocation	


+  Flexibility for cluster applications	



- Coordination causes complexity	


- Fixed endpoints are restrictive	


- Managing concurrent coflows	





1.  The case for flow coordination	


2.  Optimizing individual coflows	


3.  Flexible endpoint placement	


4.  Managing coexisting coflows	



Outline	





Outline	



1.  The case for flow coordination	


2.  Optimizing individual coflows	


3.  Flexible endpoint placement	


4.  Managing coexisting coflows	





HDFS	


Tree	


P2P	



CM (broadcast)	

Broadcast	


Coflow Manager 

(CM)	


Hadoop shuffle	



WSS	



CM (shuffle)	

Shuffle	


Coflow Manager 

(CM)	



CM (broadcast)	



Orchestra	

 Optim*e at the level of coflows 
instead of individual flows 

shuffle	

 broadcast 1	

 broadcast 2	



Inter-Coflow	


Coordinator 

(ICC)	


Priority	


FIFO	



HDFS	


Tree	


P2P	



ICC	



Broadcast	


Coflow Manager 

(CM)	



A coflow manager (CM) selects 
appropriate algorithm based on	



•  Number of participants,	


•  Size of data,	


•  Level of oversubscription	



	


Inter-coflow coordinator (ICC)	


•  Enforces simple ordering 

between coflows	





Many-to-Many/Shuffle	



Transfers output of one stage to 
be used as input of the next	


	


Widespread use	


•  All MapReduce jobs at Facebook	


•  Any SQL query that joins or 

aggregates data	



Status Quo	



r1	

 r2	



s2	

 s3	

 s4	

s1	

 s5	



Links to r1 and r2 are full:	



Link from s3 is full:	



Completion time:	



3 time units	



2 time units	



5 time units	





Shuffle Bottlenecks	



At a sender	

 At a receiver	

 In the network	



An optimal shuffle schedule keeps at least one link 
2lly util*ed throughout the transfer 



Weighted Shuffle Scheduling (WSS)	



Allocate rates to each flow, 
proportional to the total 

amount of data it transfers 

Up to 1.5X improvement	



Completion time: 4 time units	
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Communication	



Computation	



Orchestra in Action : Netflix Challenge	



Performance degrades with 
increasing parallelism due to 

communication overhead	



Movie recommendation system 
using collaborative filtering	


	


Implemented in Spark	


	



Better scaling characteristics	



~2x faster at 90 nodes	
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What About Other Coflows?	



Broadcast/One-to-Many	


•  Cooperative BitTorrent	


•  4.5X faster than the status quo	



Aggregation/Many-to-One	


•  Direct application of WSS	



AllReduce	


•  Heavily used in matrix-based computations (e.g., machine learning)	


•  Aggregates data to a single node, then broadcasts to everyone	





Outline	



1.  The case for flow coordination	


2.  Optimizing individual coflows	


3.  Flexible endpoint placement	


4.  Managing coexisting coflows	





Distributed File Systems	



F	

 F	



Core	



Fault Domain 1/	


Rack 1	



Fault Domain 2/	


Rack 2	



Fault Domain 3/	


Rack 3	



Pervasive in BigData clusters	


•  Different frameworks read from and 

write to the same DFS	


Files are divided into blocks	


•  Typically 256MB blocks	



Each block is replicated to	


•  3 machines for fault-tolerance	



•  2 fault domains for partition-tolerance	



•  Uniformly randomly	



F	



Locations do not matter 
as long as constraints are met 
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Network-Aware Replica Placement	



23 


Constrained anycast	


•  Destination of the transfer is determined by the network	


•  Move replication traffic out of the way of coflows	



	


Will network-awareness matter?	


•  More than 40% of all network traffic comes from DFS replication	


•  Almost 50% of the time downlinks have high imbalance1 (Cv > 1).2	



	



Does it matter to DFS clients/users?	


•  More than 37% of all tasks write to the DFS.	



1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	


2. Coefficient of variation, Cv = (stdev/mean).	



YES	



YES	





Usher Overview	



Performs network-aware replica 
placement	


Takes online decisions	


	



Decreases network imbalance	


Does it impact the storage balance?	



Usher Master	


Where to put 
block B?	



•  Static Information	


•  Network topology	


•  Link, disk capacities	


•  Dynamic distributions of 	


•  loads in links	


•  popularity of files	



Information (from slaves)	



{ Locations }	



•  At least r replicas	


•  In f fault domains	


•  Collocate with block B’	


•  …	



Constraints & Hints	



NO	





Why Not?	



Observations	

 Implications	



1	

 Network hotspots are stable 
in the short term (5-10 sec)	



Individual blocks can be 
used for packing1	



2	

 Hotspots are uniformly 
distributed in the long term	



Total number of blocks in 
each machine is uniform	



3	

 Most bytes (93%) are written 
by few blocks (35%)	



Use the default policy for 
65% smaller blocks	



Greedy placement is optimal 
under these conditions	



1. It takes 5 seconds to write a 256MB block, which is shorter than most hotspot durations.	





Faster. More Balanced.	



EC2 Deployment	


	



Jobs run 1.26X faster	


Blocks written 1.3X faster	



Facebook Trace Simulation	


	



Jobs run 1.39X faster	


Blocks written 1.58X faster	



Upper bound of the optimal is 1.89X	



Implemented and integrated with HDFS	


•  Pluggable replica placement policy	



The network became more balanced	



Storage remained balanced 	





Future Research	



Applications of Constrained Anycast	


•  Rebuilding of lost blocks for erasure-coded storage systems	


•  Input collocation to decrease network traffic instead of just load balancing	


•  Read from non-local storage depending on contention	



	


In-Memory Storage Systems	


•  Network is the bottleneck for memory-to-memory communication	



	



DFS Read/Write Coflows	


•  Collection of parallel flows	





Outline	



1.  The case for flow coordination	


2.  Optimizing individual coflows	


3.  Flexible endpoint placement	


4.  Managing coexisting coflows	





Why Inter-Coflow Coordination?	



time	
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Coflow1 comp. time = 6	


Coflow2 comp. time = 6	



Coflow1 comp. time = 6	


Coflow2 comp. time = 6	



Fair Sharing	

 Flow-level Prioritization1	

 The Optimal	



Coflow1 comp. time = 3	


Coflow2 comp. time = 6	



L1	



L2	



L1	



L2	



L1	



L2	



1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’12.	



               Link 2	



               Link 1	

 3 Units	



Coflow 1	



6 Units	



Coflow 2	



3-ε Units	





How Much Better Can We Do?	



time	



N + 1	
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How Much Better Can We Do?	



time	



N + 1	



N + 2	



N + K	



L0	



L1	



L2	



LK	

 …	


= N

Improvement	

 =
K
N
+1

Completion time of the	


blue coflow considering only L0	



Completion time considering all links	



1	

 …	
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No change for other coflows	



= K + N



NP-Hard 

What is  
the optimal order 

of coflows? 



Preliminary Simulation	
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Number of Coflows	



FAIR	

 PDQ	

 SCF	


NCF	

 MCF	



FAIR	

 Fair sharing on each link	


PDQ	

 Shortest flow first	


SCF	

 Shortest coflow first	


NCF	

 Narrowest coflow first	


MCF	

 Smallest coflow first	



Length	

 Size of the largest flow	


Width	

 Total number of flows	


Size	

 Sum of all flows	



Length	

 6	



Width	

 2	



Size	

 9	



Simulated on 100 links	


Width of coflows varied from 1 to 100	


Length of each flow varied from 1 to 10	


Offline, i.e., all coflows arrive at the beginning	


Averaged over 25 runs	





Summary	



The network is a key resource in cluster computing	


•  Unlike other resources, it remains agnostic to application requirements	



We proposed the coflow abstraction and three components to	


•  Optimize common coflows in isolation (Orchestra)	


•  Balance the network using constrained anycast (Usher)	


•  Express and schedule concurrent coflows (Maestro)	





Related Work	



MPI Communication Primitives	


•  No coordination among coflows	



Cloud and HPC Schedulers	


•  Limited to independent resources like computing and memory; ignore the network	



Full Bisection Bandwidth Networks	


•  Mechanism for faster network, not for better management within/across apps	



Distributed File Systems	


•  Ignore the network even though generate a large chunk of cluster traffic	



Software-Defined Networking	


•  Provides control plane abstractions and can act as an enabler of coflows	





Timeline	



April 2013 to September 2013	


•  Develop a fast approximation algorithm for inter-coflow scheduling	


•  Implement the ICC in the application layer	


•  Port communication patterns in Spark and Hadoop to the coflow API	



October 2013 to April 2014	


•  Explore the notion of fairness among coflows	


•  Implement the AllReduce coflow	



May 2014 to December 2014	


•  Apply constrained anycast to other contexts	


•  Complete an SDN integration of the coflow API	





Why Are We So Excited?	



Task scheduling in data centers	


•  Tasks without data locality constraints (e.g., reducer stage)	



	



Sub-resource prioritization in SPDY1	



•  We can design SPDR ;)	


	


Many-core systems	


•  Scheduling memory requests in shared DRAM systems2	



•  Coordinated communication across multiple cores	



1. SPDY Protocol Specification, http://www.chromium.org/spdy/spdy-protocol.	


2. Distributed Order Scheduling and its Application to Multi-Core DRAM Controllers, PODC’08.	





Coflow 

Use it!	



Mosharaf Chowdhury	


http://www.mosharaf.com/	





BACKUP 



1. Design and Evaluation of a Real-Time URL Spam Filtering Service, IEEE S&P’11.	


2. Large-scale parallel collaborative filtering for the Netflix prize, AAIM’08.	



Communication Matters	



Typical job in Facebook spends 33% of running time in the shuffle phase	


•  Weeklong trace of MapReduce jobs from a 3000-node production cluster	



Iterative algorithms depends on per-iteration communication time	


•  Monarch1 spends up to 40% of the iteration time in shuffle	
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Communication	


Computation	



Communication often limits scalability	


•  Recommendation system for the Netflix challenge2	





Network Sharing is Well Studied	



Many articles on different aspects of network sharing and allocation	


•  Policies, mechanisms, algorithms, architectures, APIs, fairness, performance etc.	



Google Scholar Query	

 Number of Results	



network sharing +"internet"	

 1,420,000	



network sharing +"mobile"	

 808,000	



network sharing +"wireless"	

 407,000	



network sharing +"sensor"	

 140,000	



network sharing +"local area"	

 134,000	



network sharing +"wide area"	

 93,400	



network sharing +"vehicular"	

 36,000	



network sharing +"data center"	

 26,000	



Many articles on sharing different types of networks	





Cluster Applications	



Multi-Stage Data Flows	


•  Computation interleaved with communication	


•  Barriers between stages are common	



Communication	


•  Structured	



•  Between machine groups	





Cluster Applications	



Multi-Stage Data Flows	


•  Computation interleaved with communication	


•  Barriers between stages are common	



Communication	


•  Structured	



•  Between machine groups	



Completion time depends on 
!"# $%&! '(w !( )(*p$#!# 



Cooperative Broadcast	



Send the same data to all receivers	


•  Fast, scalable, and resilient	



Peer-to-peer mechanism optimized for cooperative environments	



Observations	

 Design Decisions	



1	

 High-bandwidth, low-latency network	

 ü  Large block size (4-16MB)	



2	

 No selfish or malicious peers	


ü No need for incentives	


ü No choking or unchoking	


ü  Everyone stays till the end	



3	

 Topology matters	

 ü  Topology-aware broadcast	
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Performance	


1GB data to 100 receivers on EC2	



Status quo	



Up to 4.5X faster than 
status quo	



Ships with Spark	



Not so much faster for	


•  Small data (<10MB)	


•  Fewer receivers (<10)	



Additional 2X speedup 
with topology info	





Topology-Aware Broadcast	



	


Many data center networks employ tree topologies	


Each rack should receive exactly one copy of broadcast	



•  Minimize cross-rack communication	


Topology information reduces cross-rack data transfer	



•  Mixture of spherical Gaussians to infer network topology	


	



Up to 2X faster than 
vanilla implementation	





Collaborative Filtering	


using Alternating Least Squares	



Orchestra in Action	
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Communication	


Computation	



Without Orchestra	



~2x faster at 90 nodes1	



With Orchestra	



update user vectors	



update movie vectors	



broadcast	


movie vectors	



collect	


updates	



broadcast	


user vectors	



collect	


updates	



Performance degrades with 
increasing parallelism due to 

communication overhead	





Orchestra in Action : Netflix Challenge	
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Without Orchestra	



~2x faster at 90 nodes	



With Orchestra	



Performance degrades with 
increasing parallelism due to 

communication overhead	
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Shuffle	



Transfers output of one stage to 
be used as input of the next	


	


Widespread use	


•  68% of the Facebook jobs use 

shuffle	


R1 and R2 are bottlenecks:


S3 is the bottleneck:


Completion time: 


3 time units 


2 time units 


5 time units 


Status Quo	





Benefits of the Coordinator	



Two priority classes	


•  FIFO within each class	



Low priority coflow	


•  2GB per reducer	



High priority coflows	


•  250MB per reducer	
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1.75X faster high priority coflows	


1.06X slower low priority coflow	
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Without Inter-Coflow Scheduling	



Priority Scheduling in the ICC	



Shuffle on a 30-node EC2 cluster	
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Coflow 3	





Sources of Network Traffic	



Facebook	



14%	



46%	



40%	



Bing	



31%	



15%	


54%	



DFS Reads	



DFS Writes	



Coflow 
Comm.	





Network is Imbalanced1	



Facebook	
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Down Links	



Up Links	



More than 50% of the time, 
downlinks have Cv > 1.2	



1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	


2. Coefficient of variation, Cv = (stdev/mean).	





Writer Characteristics	
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Fraction of Task Duration in Write	



Preproc./Ingest	



Reducers	



Combined	



37% of all tasks write to the DFS	


	


Two types of writers	



1.  Reducers	


2.  Ingestion/preprocessing tasks	





Gr##+, %&&-./*#/! (f b$()0& !( !"# $#%&!-
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minim*ing the average block write time  
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Balanced Network	



EC2 Deployment	
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Facebook Trace Simulation	



0	



0.25	



0.5	



0.75	



1	



0	

 1	

 2	

 3	

 4	



Fr
ac

tio
n 

of
 T

im
e	



Coeff. of Var. of Load	


Across Core-to-Rack Links	



Default	



Network-Aware	



Decrease in median Cv for 
exp(sim) is 0.46(0.33)	





System Architecture	



Master	



Slave	



P	



Slave	



G	



Slave	

 Slave	



Coflow Scheduler	



P	



SELECT *	


FROM A INNER JOIN B	


ON A.x = B.x	



BigData App	



create(Shuffle)	



Topology	


Monitor	



Network Fabric	



Usage	


Estimator	

 Network Interface	



Distributed File System	



Task	



Actual timing and order 
of communication is 

controlled by the 
Coflow Scheduler	





Details	



Slave JVM	

User JVM	



Client Lib	



Master	



Coflow Scheduler	



Slave JVM	

User JVM	



Client Lib	



Slave JVM	

User JVM	



Client Lib	





Current Implementation	


Implemented in ~2700 lines of Scala	


» Core + Framework: ~1800 lines	


» Client library: ~400 lines	


» Web UI: ~300 lines	


» Utils: ~200 lines	


» Scheduler does not exist yet	



Can put and get 	


» On-disk files,	


»  In-memory objects, and 	


» Fake data (for testing)	



Sufficient to implement Orchestra	


» Cornet already implemented	



Includes OFS/Usher/Sinbad functionalities	


» Exposes getBest(Rx|Tx)Machines method	





Cornet1 Implementation [Master]	



1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’11.	



// Create new client 
val client = new Client("BroadcastSender", masterUrl) 
client.start() 
 
// Create coflow 
val desc = new CoflowDescription("Broadcast-" + fileName, CoflowType.BROADCAST, numSlaves) 
val coflowId = client.registerCoflow(desc) 
 
// Put blocks 
for (fromBytes <- 0L to FILE_SIZE by DEFAULT_BLOCK_SIZE) { 
  val blockSize =  
    if (fromBytes + DEFAULT_BLOCK_SIZE >= FILE_SIZE) FILE_SIZE - fromBytes 
    else DEFAULT_BLOCK_SIZE 
  val blockName = fileName + "-" + fromBytes 
  // Put block 
  client.putFile(blockName, pathToFile, coflowId, fromBytes, blockSize, numSlaves) 
} 
 
// Wait for all slaves to finish 
 
// Terminate coflow 
client.unregisterCoflow(coflowId) 



Cornet1 Implementation [Slaves]	



1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’11.	



// Create new client 
val client = new Client("BroadcastReceiver", masterUrl) 
client.start() 
 
// Get blocks (in possibly randomized order) 
blockOffsets.foreach { offset => 
  val blockName = origFileName + "-" + offset 
   
  // Get block 
  val bArr = client.getFile(blockName, bInfo.coflowId) 
   
  // Do something; e.g., write to file. 
} 



Theorems	



Lower Bound: 
Unless P=NP, we can find completion time 
within, at best, 1.5X of the optimal	



Upper Bound: 
There exists an algorithm that result in 
completion time within 2X of the optimal	





Two-Sided Problem [Bipartite Matching]	



M1	



Non-
Blocking 

Core	



M2	



M3	



…	



MN	



M1	



M2	



M3	



…	



MN	



In what order?	


To where?	



In Progress.	


Results from ordering might be useful.	





Declarative API	



•  create	



•  put	



•  get	



•  terminate	


mappers	



reducers	



sh
uf

fle
	



driver 
(JobTracker)	



br
oa

dc
as

t	


@mapper	


b.get(id)	


…	



@reducer	


s.get(idsl)	


…	


	
  

s   create(SHUFFLE)	



@driver	


b     create(BCAST)	


	


	


	


id      b.put(content)	


…	



s.put(ids1) 	


…	



s.terminate( )	


b.terminate( )	



1.  No changes to user jobs	


2.  No storage management	





System Architecture	



Centralized design	


•  Common architectural pattern in cluster computing	


•  Fall back to normal communication upon failure	



Application layer overlay	


•  Assume cooperation	


•  Easily deployable	



Hypervisor-based	


•  Better enforcement	


•  Easier to deploy	



SDN-based	


•  Most control	


•  Harder to deploy	





How Much Better Can We Do?	



time	
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How Much Better Can We Do?	



time	



N + 1	



N + 2	



N + K	



L0	



L1	



L2	



LK	

 …	


= N

Improvement	

 =
K(K +3)
2N

+1

=
K(K +1)
2

+ (N +K )

=
K(K +3)

2
+ N

Max Improvement	



K << N	

 1x	



K == N	

 Kx	



K >> N	

 K2x	



Completion time of the	


blue coflow considering only L0	



Completion time considering all links	



1	

 …	

1	

 1	



K	



N	



No change for other coflows	




