
No! Not Another Deep Learning Framework
Linh Nguyen∗

lvnguyen@umich.edu
University of Michigan

Peifeng Yu∗
peifeng@umich.edu

University of Michigan

Mosharaf Chowdhury
mosharaf@umich.edu
University of Michigan

ABSTRACT
In recent years, deep learning has pervaded many areas of com-
puting due to the confluence of an explosive growth of large-scale
computing capabilities, availability of datasets, and advances in
learning techniques. While this rapid growth has resulted in di-
verse deep learning frameworks, it has also led to inefficiencies for
both the users and developers of these frameworks. Specifically,
adopting useful techniques across frameworks – both to perform
learning tasks and to optimize performance – involves significant
repetitions and reinventions.

In this paper, we observe that despite their diverse origins, many
of these frameworks share architectural similarities. We argue that
by introducing a common representation of learning tasks and
a hardware abstraction model to capture compute heterogeneity,
we might be able to relieve machine learning researchers from
dealing with low-level systems issues and systems researchers from
being tied to any specific framework. We expect this decoupling to
accelerate progress in both domains.

CCS CONCEPTS
• Software and its engineering→ Software architectures;
ACM Reference format:
Linh Nguyen, Peifeng Yu, and Mosharaf Chowdhury. 2017. No! Not Another
Deep Learning Framework. In Proceedings of HotOS ’17,Whistler, BC, Canada,
May 08-10, 2017, 6 pages.
https://doi.org/10.1145/3102980.3102995

1 INTRODUCTION
Significant progress in deep learning techniques in recent years
has led to its broad adoption in many data-driven applications [20,
21, 36]. Because deep learning models typically perform better
with more data, advances in system efficiency and scalability often
directly translate to model quality. This development has led to the
proliferation of deep learning frameworks in the industry – e.g.,
Google’s TensorFlow [5], Microsoft’s CNTK [53], and Facebook’s
Caffe2 [1] – and in academia [16, 40, 48, 51].

We observe that, except for a few outliers [17, 31], the majority
of deep learning frameworks [5, 10, 16, 53] are converging to a com-
mon pipeline design (Figure 1). A framework’s model construction

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotOS ’17, May 08-10, 2017, Whistler, BC, Canada
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5068-6/17/05. . . $15.00
https://doi.org/10.1145/3102980.3102995

Model

Construction

API

Internal

Representation

Transformation

Execution

TensorFlow

Python

MXNet

Python

Caffe2

Python

CNTK

NDL

Optimizer

Execution
Runtime

Graph

Optimizer

Graph

Execution
Engine

Net

Execution

Learner

CN

Execution
Engine

Figure 1: Architectures of common deep learning frame-
works. TensorFlow and MXNet are quite similar to each
other. Caffe2 does not have a transformation phrase. CNTK
uses Network Definition Language (NDL) for network speci-
fication and Computation Network (CN) as the internal rep-
resentation.

API is the front-end that takes user inputs. The symbolic compu-
tational graph serves as the internal representation of the model
that goes through a series of transformations. Finally, the execution
engine is the back-end that carries out the computations.

Unfortunately, these frameworks have little in common beyond
these high-level similarities. Each proposes its own API, represen-
tation, optimizations, and execution engine. This diversity often
stems from the need to solve a specialized set of problems and then
attempting to generalize as an afterthought, and it hinders inter-
operability, deployability, and reusability of techniques. Users who
want to use complex deep learning models are often restricted to
one specific implementation, because porting models across frame-
works requires significant efforts.

Given the diversity of deep learning frameworks and their diver-
gent user bases, we call for a respite before building yet another
deep learning framework and ask a simple question: do we really
need one more? We postulate that there are already many deep learn-
ing frameworks; what we do need is interoperability and sharing
between them.

In this paper, we articulate our vision for designing a deep learn-
ing software stack with interoperability and sharing as the two guid-
ing principles. Drawing key insights from real-world challenges
and similarities among existing frameworks, we argue that such a
design is essential to reduce the efforts needed for machine learn-
ing researchers to reuse existing work and to provide a common
platform for system researchers to develop techniques for better
resource management. We conclude by discussing potential chal-
lenges and open research directions enabled by such a common
platform.

https://doi.org/10.1145/3102980.3102995
https://doi.org/10.1145/3102980.3102995

2 BACKGROUND
This section identifies the gap between what current systems can
offer and the expectations of machine learning and systems re-
searchers as deep learning continues to evolve. We focus on con-
cerns that motivate the need for a common infrastructure for cur-
rent and future frameworks.

2.1 Existing Frameworks
Each new deep learning framework justifies its contributions based
on historical or commercial reasons. Early artifacts from the academia [10,
31] originated from in-house libraries, long before any mature deep
learning frameworks were open-sourced. From the industry side,
companies such as Google, Microsoft, Facebook, and Amazon incu-
bate their own frameworks [1, 5, 16, 53] to fulfill internal needs of
different products. Oftentimes, these frameworks gain rapid popu-
larity thanks to their code quality and documentation.

Regardless of their origins, the interfaces of these frameworks
can broadly be categorized as either declarative or imperative.
Frameworks following the former allow users to specify their com-
putations in advance, usually in some symbolic fashion, and inter-
nally represent them as dataflow graphs [1, 5, 10, 51, 53]. In case of
the latter, computation happens as soon as it is defined [3, 17].While
most frameworks choose one, a few – for example, MXNet [16] –
try to combine both.

Existing frameworks lack resource management capabilities for
large-scale deployments. Each assumes that it has complete control
of the hardware device (e.g., a GPU), making resource sharing
nearly impossible. Users can work around by enabling CUDAMulti-
Process Service (MPS) [2] in case of Nvidia GPUs and ensuring that
the applications’ collective memory requirements do not exceed the
GPU’s capacity. Prior work has shown that this approach leads to
little performance penalty for a small number of applications [25]
on a single server; however, all applications must be written in the
same framework, and this does not extend to distributed settings.
Overall, the lack of inherent support for resource sharing places
burden on users and creates scalability challenges.

2.2 Challenges and Expectations
In this section, we consider the concerns of the users and developers
of deep learning frameworks.

2.2.1 Machine Learning Practitioners.
The front-end users of deep learning frameworks are machine learn-
ing practitioners, who develop new models for distinct problems.
There are currently three trends in this community that call for a
common representation across deep learning frameworks.

Larger models and data: Recent developments in deep learn-
ing have demonstrated that deeper networks tend to outperform
shallow networks in many cases (e.g., in vision tasks [26]). In ad-
dition, the wide adoption of deep learning techniques in various
applications such as image, video, and natural language process-
ing [33, 34, 47] has led to an explosive growth of datasets available
to deep learning models.

Naturally, this has led to different parallelization strategies with
model parallelism and data parallelism being the two most promi-
nent ones. Data parallelism trains separate model replicas with their
own data chunks and updates a global model. This technique has

become the de facto method in distributed training, with stream-
lined support in modern frameworks [1, 3, 5, 16]. Model parallelism,
on the other hand, seeks to split a model into different devices,
and it often requires manual management of the dataflow graph in
many frameworks. Some recent efforts, such as SINGA [51], provide
support for both model and data parallelism.

Nevertheless, because the implementation of one framework
cannot be reused for another, deep learning frameworks provide
varying degrees of support for these parallelization techniques.

Comparing learning models: Because of the availability of
many frameworks, improvements to an existing algorithm may
not always be implemented in the same system as the original. For
instance, when proposing a new object detection algorithm, it is nat-
ural to benchmark it against a popular algorithm in this field, Faster
R-CNN [42], which is implemented in Caffe [31]. A fair comparison
is only feasible if the new proposal is also implemented in Caffe,
but that restricts the flexibility of choosing a deep learning frame-
work. In contrast, when implemented using a different framework,
head-to-head comparison leads to uncertainty about performance:
it is difficult to determine how much of it comes from algorithmic
improvements vs. that from the underlying implementation.

This lack of interoperability also hinders researchers from quickly
assessing new models proposed in different deep learning frame-
works. They have to either spend time setting up new environ-
ments or put efforts toward reimplementing them in their own
frameworks.

Combinations of learning models: Modern data analytics
workflows, which utilize machine learning extensively, rarely use
one single end-to-end model. For instance, image detection algo-
rithms are often part of a video analytics pipeline [33, 35, 50]. Faster
R-CNN [42] is the state-of-art method for object detection in static
images and is often referenced in such projects [7, 34]. However,
researchers can only use Caffe, the framework in which Faster R-
CNN was implemented. Otherwise, they would have to spend time
porting Faster R-CNN to another framework.

An ad-hoc solution is to write a driver that calls components of
the workflow written in different frameworks and transfers data
between them. However, mixing several learning frameworks in
the system is often complex and error-prone. Shoumik et al. showed
that this method significantly slows down the performance of the
whole data analytics pipeline [41]. Additionally, when contending
for GPU memory, multiple frameworks may cause out-of-memory
errors.

Expectations: Ideally, machine learning practitioners should not
have to deal with the differences among deep learning frameworks.
Parallelization, inter-framework operations, and other low-level de-
tails should be handled transparently inside the framework. From a
users’ perspective, any framework should just work with models and
data at arbitrary scales.

2.2.2 Systems Developers.
Modern deep learning frameworks make heavy use of accelerators
such as GPUs and FPGAs [5, 55, 56]. However, many of these devices
lack proper OS-level abstractions. This often forces deep learning
frameworks to directly use low-level interfaces, leading to various
performance and resource management issues.

Heterogeneous hardware: GPUs are known to perform well
for data-parallel applications. However, other types of accelera-
tors such as FPGAs and ASICs have started to show promises as
well [9, 15, 30]. Consequently, chip makers are developing their own
accelerators in anticipation of the deep learning market’s growth:
Google has developed their own Tensor Processing Unit [32] for
TensorFlow; Intel, through a recent acquisition is showing interest
in a tensor-based architecture, among others.1 While it is expected
that these specialized hardware would outperform GPUs in specific
deep learning tasks, specializations for one framework are also
unlikely to extend to other frameworks.

Distributed execution: While the computational graph used
by current frameworks technically allows arbitrary partitioning
among devices, the increasing popularity of distributed training
poses significant challenges in effectively scheduling them. A dis-
tributed model would need to ensure that the model would be
updated globally when each node trains on its own replica and data.
Distributed implementations are often complex, and only a handful
of frameworks support multiple computation devices across multi-
ple machines [5, 16], along with several makeshift solutions [4, 8].

Applying optimizations: Even though many of the learning
frameworks are open-source and share similar conceptual designs,
there is little code sharing between these frameworks. Any system-
level optimization technique would require sizable engineering
work to port to different frameworks. Besides, advanced features
such as automatic differentiation2 or distributed execution are only
supported by a small number of newer frameworks.

Resource sharing: Most existing frameworks simply assume
they have full access to the hardware resources in a cluster [5, 16].
Some frameworks even have their own cluster abstraction and
management component in their codebases [5]. In practice, however,
it is desirable to share resources across all applications in the same
cluster to improve utilization and to ensure fairness.

Expectations: There should be a shared infrastructure that eases
the process of supporting new accelerators, supports distributed execu-
tion, enables system-level optimizations across multiple frameworks,
and ensures resource sharing. System developers should be able to
apply their expertise without being locked into any particular frame-
work.

3 TOWARD A COMMON STACK
The two expectations from Section 2 suggest ample opportunities
for consolidation across different deep learning frameworks. In
this section, we identify two design goals that guide our vision to
achieve them:

(1) For machine learning practitioners, a backward compatible
interface that integrates well with existing frameworks will
help significantly. They can focus solely on their efforts on
implementing and evaluating their ideas.3

1https://www.nextplatform.com/2016/09/07/next-wave-deep-learning-architectures
2Instead of manually differentiating the layer function to get the gradient needed for
training, the system can automatically calculate the gradients, which significantly
reduces the efforts for the researcher to experiment with different neural network
structures.
3Note that currently our focus is on the training phase of a deep learning model, where
the model structure and data can change dynamically, and fast iteration of evaluation
is needed.

Model Construction API

Intermediate

Representation

Optimizer

Hardware

Model

Execution

Planner

IR

Common Runtime

Execution

Engine

Resource

Manager

Figure 2: Key components of a deep learning software stack.
The optimizer transforms the intermediate representation
(IR) of the computation graph, the execution planner breaks
it down into operations, and the execution engine schedules
them by interacting with the resource manager.

(2) For systems developers, a stable but flexible interface would
encourage contribution and is crucial to enable an ecosystem
around the infrastructure. Any advances in optimizations
will also become available to all frameworks.

While we are proposing a common infrastructure to achieve
separation of concerns for different users and to facilitate future
research, this does not mean that every framework will become the
same. Application-level goals can still vary, and frameworks can still
provide domain-specific languages. At the same time, system-level
design decisions and trade-offs can be made by systems experts
without knowing application-level specifics. Figure 2 depicts a high-
level architecture of the envisioned software stack.

3.1 Intermediate Representation (IR)
The key to enabling interoperability and backward compatibility is
enabling an IR that will be the standardized exchange format across
different frameworks and their individual components. Different
components can define their interfaces based on the IR, and this
exchange format can be annotated with information such com-
putation attributes and dependencies. We consider the following
properties to be necessary for any potential IR.

Expressiveness: First, machine learning researchers will con-
tinue to develop new models in the future at different granularities.
One may combine different models in various ways or modify ex-
isting models. The IR should be able to capture the computations
and dependencies of these architectures.

Second, an expressive IR will convey enough information to
the runtime to assist in sophisticated optimizations and execution
planning. For instance, automatic scheduling of both model and
data parallelism for arbitrary models would require the optimizer
to consider device placement constraints for specific operations.

Third, serving as a medium of exchange, the IR will allow sepa-
rate components to evolve independently. They will only require
the information contained in the IR to perform their functionalities.

https://www.nextplatform.com/2016/09/07/next-wave-deep-learning-architectures

Hardware-agnostic: Similar to program IRs in compilers, a
hardware-agnostic IR for deep learning will abstract hardware-level
details away from the users. As long as the input to a framework
can be represented by a valid IR, it can be executed on any hardware
platform that supports that IR.

3.2 Runtime
The runtime will consist of loosely coupled components that com-
municate using the aforementioned IR.

3.2.1 Optimizer.
Most deep learning frameworks involve an optimization phase
that transforms the IR based on pre-defined rules or cost metrics.
However, instead of having framework-specific optimizers, this
phase should provide enough functionalities to help developers and
system researchers develop new optimization algorithms.

First, the optimizer must be modularized and pluggable so that
users can easily introduce new optimizations. In the case of a multi-
pass optimizer, users should be able to isolate the effect of specific
passes without affecting other parts of the system.

For simplicity and modularity, the IR will be the only input to
the optimizer. By limiting the data structure the optimizer can
access, we can enforce better abstractions and greatly reduce the
management burden and learning curves for beginners. In contrast,
providing more information may result in better optimizations.
Finding the best tradeoff in scenarios like this is a well-known
interface design problem.

3.2.2 Execution Planner.
Given an optimized IR, the execution planner decides where and
when the actual computation should happen. This decision includes,
for example, which executor gets the task to run and where should
a memory blob be allocated. Much like the optimizer, the execution
planner makes decisions based on IR, but it also have access to
hardware-specific information provided by the hardware models.
However, we envision that while the optimizer is allowed to change
what computations will happen, the execution planner will work
on a read-only version of the IR. This division of work between the
optimizer and the execution planner is inspired by that in logical
and physical planning in SQL query execution.

The execution planner exposes opportunities for more system-
level optimizations. When combined with the distributed executor,
it may improve network communication characteristics. Even lower
level optimizations such as fine-grained GPU sharing and better
utilization of heterogeneous accelerators should also be possible.

From a systems perspective, we expect continued research on
optimization and execution policies. Therefore, the execution plan-
ner should provide a pluggable policy interface to make it possible
to adapt to different situations, where the objective metrics might
be different. Furthermore, this will encourage the development of
advanced placement algorithms that will be readily available to all
frameworks instead of being locked to a specific one.

3.2.3 Hardware Model.
In current deep learning frameworks, users often have to know
significant details of the underlying hardware whenever they have
to port their algorithms to a new platform. To address this challenge,
we envision a hardwaremodel that can represent different hardware
platforms (e.g., CPUs, GPUs, and other type of accelerators) via

a common queryable interface. Both single-node and distributed
clusters should be supported through the same interface as well.

Beyond an abstraction, these models should also provide suf-
ficient information to the optimizer and execution planner. For
example, a cost-based optimization algorithm needs to know the
cost of operations on all available compute devices as well as the
communication cost between them; it can then make decisions on
whether using replicas for hot data is more efficient than simply
recalculating them on demand.

Finally, registration of new accelerators and hardware configu-
rations should be straightforward. This is even more important in
a distributed setting, because a cluster is likely to have some churn
in terms of new devices being added and old ones being retired.

3.2.4 Execution Engine.
The final element of the runtime is the execution engine that car-
ries out the output of the execution planner on the actual single-
device, multi-device, or distributed hardware platform. To enable
fine-grained resource sharing and to achieve high utilization, the
execution engine needs to be able to execute multiple operations
on the same device. Note that this seemingly simple goal is difficult
today because of little or no support in existing hardware (e.g.,
fine-grained GPU sharing does not work well even with CUDA
MPS). At the same time, it is essential for the execution engine to
be compatible with existing libraries employed in deep learning
frameworks such as cuDNN, Intel MKL, or similar libraries.

3.3 Backward Compatibility
To alleviate the hurdles to backward compatibility, we hope to
achieve graceful degradation via a separation between the full API
and the legacy API, as shown in Figure 3.

Existing frameworks can first adopt the legacy API for easy inte-
gration. However, due to certain limitations in these frameworks’
device abstraction layers, the benefits of the components outlined
above are likely to be limited. For example, many frameworks only
submit computations independently to the GPU; this can restrict
the optimizer frommaking decisions that use both the dependencies
and computations. Therefore, the legacy API is directly connected
to the execution planner.

We believe that the least-resistant path toward including existing
frameworks is writing plugins for them to convert their current
intermediate representations to the common IR and then replacing
their optimizers, execution planners, and execution engines with
the shared runtime components.

4 CONCLUSIONS
Our overarching goal is enabling consolidation of efforts across
many areas of computing to better implement, leverage, and op-
timize deep learning frameworks. If successful, this would foster
a rich ecosystem, where one can interoperate across a variety of
workloads, frameworks, and techniques, while still benefiting from
well-developed optimization techniques.

So far, we have highlighted some important guidelines to enable
interoperability and sharing, but their concrete implementations
remain open research challenges. We conclude this paper by high-
lighting some of the pressing questions that must be answered to
realize our proposal.

Full API:

Computation Graph

Legacy API:

Operations

DL

Frameworks

TensorFlow, MXNet,

Caffe2, …
Future

Frameworks

IR

Optimizer
Execution

Planner

IRCommon

Runtime …

Figure 3: Two sets of APIs should be provided for high-level
frameworks to integrate with the common runtime.

What is a good intermediate representation? Since most
deep learning frameworks already use an internal computational
graph representation, it is natural to first examine them and perhaps
conclude that this is the common intermediate representation we
are looking for. Computational graph is flexible enough to support
not only deep neural networks [19, 28, 54], but also other types
of networks such as convolutional neural networks [6, 14, 37] and
recurrent neural networks [29, 44, 46]. The ability to transform the
graph also brings automatic differentiation [22, 24] and various
optimizations like constant folding [52] or common sub-expression
elimination [38].

However, we note that this is not necessarily the best option.
Palkar et al. [41] recently presented an intermediate representation
design close to monad comprehensions [23] and multiloop con-
struct [11, 43], which achieved significant improvement for logistic
regression in TensorFlow, among other data-intensive applications.

How to model the hardware abstraction? Very few of the
current deep learning frameworks consider devices other than
CPUs and Nvidia GPUs. The current solution to support a different
architecture often boils down to implementing a new framework:
for example, CNNLab [56] supports FPGA in addition to a Nvidia
GPU. How to develop a model based on the costs of its computation
and communication with other devices remains an open question.
Whether computation and communication can sufficiently capture
the complexities of modern accelerators may deserve a reassess-
ment as well.

What (cost-based) optimizations and execution policies
are possible? This question depends heavily on the choice of an in-
termediate representation. While there is rich literature in optimiz-
ing traditional programming languages based on their intermediate
representations [39, 45] as well as rule- and cost-based optimiza-
tions of SQL queries [12, 13], little attention has been paid toward
developing a symbolic representation for deep learning workflows:
Currey et al. [18] did some initial work on optimal device alloca-
tion using a graph cut-based algorithm given the computational
graph. Ideally, the intermediate representation should enable opti-
mizations across different learning models used together, similar to
inter-procedural and program optimizations in compilers. Given
the prevalence of distributed systems, how to efficiently schedule
the devices and keep them fully utilized during application runtime
is also an open question.

How to enforce execution policies inmulti-tenant scenar-
ios? Resource sharing is fundamental to achieving high utilization
and fair allocation between multiple applications and tenants. Shar-
ing can happen both within a single compute device such as a GPU
and across an entire cluster. While it is easy to share GPUs inside
a cluster in a coarse-grained per-GPU fashion – existing cluster
managers such as Apache Mesos [27] allocate an entire GPU to a
task [49] – it may be desirable to share a single GPU across multiple
tenants with certain QoS or fairness guarantees to improve GPU
utilization and to reduce overall execution times.

ACKNOWLEDGMENTS
Wewould like to thank the anonymous reviewers for their insightful
comments and feedback. This work was supported by the National
Science Foundation under Grant No.: CNS-1617773, CCF-1629397
and CNS-1563095.

REFERENCES
[1] Caffe 2. https://caffe2.ai. Accessed: 2017-04-21.
[2] Cuda multi-process service. https:

//docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf.
Accessed: 2017-04-27.

[3] PyTorch. http://pytorch.org. Accessed: 2017-04-21.
[4] Tensorflowonspark. https://github.com/yahoo/TensorFlowOnSpark. Accessed:

2017-04-21.
[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
TensorFlow: A system for large-scale machine learning. In OSDI, 2016.

[6] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, and G. Penn. Applying
convolutional neural networks concepts to hybrid NN-HMM model for speech
recognition. In ICASSP, 2012.

[7] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B. Varadarajan, and
S. Vijayanarasimhan. Youtube-8m: A large-scale video classification benchmark.
arXiv preprint arXiv:1609.08675, 2016.

[8] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda. S-Caffe:
Co-designing MPI runtimes and Caffe for scalable deep learning on modern
GPU clusters. In PPoPP, 2017.

[9] R. Bekkerman, M. Bilenko, and J. Langford. Scaling up machine learning: Parallel
and distributed approaches. Cambridge University Press, 2011.

[10] J. Bergstra, F. Bastien, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau,
G. Desjardins, D. Warde-Farley, I. Goodfellow, A. Bergeron, and Y. Bengio.
Theano: Deep learning on GPUs with Python. In BigLearn, NIPS Workshop, 2011.

[11] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth, C. De Sa, C. Aberger, and
K. Olukotun. Have abstraction and eat performance, too: Optimized
heterogeneous computing with parallel patterns. In CGO, 2016.

[12] S. Chaudhuri. An overview of query optimization in relational systems. In
SIGMOD/PODS, 1998.

[13] S. Chaudhuri and V. R. Narasayya. An efficient, cost-driven index selection tool
for Microsoft SQL server. In VLDB, 1997.

[14] K. Chellapilla, S. Puri, and P. Simard. High performance convolutional neural
networks for document processing. In ICFHR, 2006.

[15] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. DianNao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning. In
ACM SIGPLAN Notices, 2014.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. MXNet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[17] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A Matlab-like
environment for machine learning. In BigLearn, NIPS Workshop, 2011.

[18] J. Currey, A. Eversole, and C. Rossbach. Scheduling dataflow execution across
multiple accelerators. In SFMA Workshop, 2014.

[19] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. TASLP, 20(1):30–42,
2012.

[20] J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng. Large scale distributed
deep networks. In NIPS, 2012.

[21] L. Deng and D. Yu. Deep learning: Methods and applications. Foundations and
Trends in Signal Processing, 7(3–4):197–387, 2014.

https://caffe2.ai
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://pytorch.org
https://github.com/yahoo/TensorFlowOnSpark

[22] A. Griewank and A. Walther. Evaluating derivatives: Principles and techniques of
algorithmic differentiation. SIAM, 2008.

[23] T. Grust. Monad comprehensions: A versatile representation for queries. In The
Functional Approach to Data Management, 2004.

[24] B. Guenter. Efficient symbolic differentiation for graphics applications. TOG,
26(3):108, 2007.

[25] J. Hauswald, Y. Kang, M. A. Laurenzano, Q. Chen, C. Li, T. Mudge, R. G.
Dreslinski, J. Mars, and L. Tang. DjiNN and Tonic: DNN as a service and its
implications for future warehouse scale computers. In ISCA, 2015.

[26] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

[27] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in
the data center. In NSDI, 2011.

[28] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[29] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[30] K. Irick, M. DeBole, V. Narayanan, and A. Gayasen. A hardware efficient support
vector machine architecture for FPGA. In FCCM, 2008.

[31] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In
ACMMM, 2014.

[32] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers, et al. In-datacenter performance analysis of a
Tensor Processing Unit. In ISCA, 2017.

[33] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang,
X. Wang, and W. Ouyang. T-CNN: Tubelets with convolutional neural networks
for object detection from videos. arXiv preprint arXiv:1604.02532, 2016.

[34] K. Kang, W. Ouyang, H. Li, and X. Wang. Object detection from video tubelets
with convolutional neural networks. In CVPR, 2016.

[35] C. Kim and J.-N. Hwang. Fast and automatic video object segmentation and
tracking for content-based applications. IEEE Transactions on Circuits and
Systems for Video Technology, 12(2):122–129, 2002.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep
convolutional neural networks. In NIPS, 2012.

[37] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time
series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[38] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a
flowgraph. ACM TOPLAS, 1(1):121–141, Jan. 1979.

[39] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably correct
peephole optimizations with alive. ACM SIGPLAN Notices, 50(6):22–32, 2015.

[40] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. SparkNet: Training deep
networks in Spark. arXiv preprint arXiv:1511.06051, 2015.

[41] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk, M. Schwarzkopf,
S. Amarasinghe, and M. Zaharia. Weld: A common runtime for high
performance data analytics. In CIDR, 2017.

[42] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object
detection with region proposal networks. arXiv preprint arXiv:1506.01497, 2015.

[43] T. Rompf, A. K. Sujeeth, N. Amin, K. J. Brown, V. Jovanovic, H. Lee,
M. Jonnalagedda, K. Olukotun, and M. Odersky. Optimizing data structures in
high-level programs: New directions for extensible compilers based on staging.
ACM SIGPLAN Notices, 48(1):497–510, 2013.

[44] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and
natural language with recursive neural networks. In ICML, 2011.

[45] Y. Sui and J. Xue. SVF: Interprocedural static value-flow analysis in llvm. In CC,
2016.

[46] I. Sutskever, J. Martens, and G. E. Hinton. Generating text with recurrent neural
networks. In ICML, 2011.

[47] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In NIPS, 2014.

[48] L. Truong, R. Barik, E. Totoni, H. Liu, C. Markley, A. Fox, and T. Shpeisman.
Latte: A language, compiler, and runtime for elegant and efficient deep neural
networks. In PLDI, 2016.

[49] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,
T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. Apache Hadoop YARN: Yet another resource
negotiator. In SOCC, 2013.

[50] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In CVPR, 2001.

[51] W. Wang, G. Chen, T. Dinh, J. Gao, B. Ooi, and K. Tan. SINGA: A distributed
system for deep learning. Technical report, NUS Tech Report, 2015.

[52] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional
branches. ACM TOPLAS, 13(2):181–210, Apr. 1991.

[53] D. Yu, A. Eversole, M. Seltzer, K. Yao, O. Kuchaiev, Y. Zhang, F. Seide, Z. Huang,
B. Guenter, H. Wang, J. Droppo, G. Zweig, C. Rossbach, J. Gao, A. Stolcke,
J. Currey, M. Slaney, G. Chen, A. Agarwal, C. Basoglu, M. Padmilac, A. Kamenev,
V. Ivanov, S. Cypher, H. Parthasarathi, B. Mitra, B. Peng, and X. Huang. An
introduction to computational networks and the computational network toolkit.
Technical report, Microsoft Research, October 2014.

[54] D. Yu and M. L. Seltzer. Improved bottleneck features using pretrained deep
neural networks. In Interspeech, pages 237–240, 2011.

[55] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing FPGA-based
accelerator design for deep convolutional neural networks. In FPGA, 2015.

[56] M. Zhu, L. Liu, C. Wang, and Y. Xie. CNNLab: a novel parallel framework for
neural networks using GPU and FPGA-a practical study with trade-off analysis.
arXiv preprint arXiv:1606.06234, 2016.

	Abstract
	1 Introduction
	2 Background
	2.1 Existing Frameworks
	2.2 Challenges and Expectations

	3 Toward a Common Stack
	3.1 Intermediate Representation (IR)
	3.2 Runtime
	3.3 Backward Compatibility

	4 Conclusions
	Acknowledgments
	References

