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ABSTRACT
Lock managers are a crucial component of modern distributed

systems. However, with the increasing availability of fast RDMA-

enabled networks, traditional lock managers can no longer keep

up with the latency and throughput requirements of modern sys-

tems. Centralized lock managers can ensure fairness and prevent

starvation using global knowledge of the system, but are them-

selves single points of contention and failure. Consequently, they

fall short in leveraging the full potential of RDMA networks. On

the other hand, decentralized (RDMA-based) lock managers either

completely sacrifice global knowledge to achieve higher through-

put at the risk of starvation and higher tail latencies, or they resort

to costly communications in order to maintain global knowledge,

which can result in significantly lower throughput.

In this paper, we show that it is possible for a lock manager to

be fully decentralized and yet exchange the partial knowledge nec-

essary for preventing starvation and thereby reducing tail latencies.

Our main observation is that we can design a lock manager pri-

marily using RDMA’s fetch-and-add (FA) operations, which always

succeed, rather than compare-and-swap (CAS) operations, which

only succeed if a given condition is satisfied. While this requires us

to rethink the locking mechanism from the ground up, it enables us

to sidestep the performance drawbacks of the previous CAS-based

proposals that relied solely on blind retries upon lock conflicts.

Specifically, we present DSLR (Decentralized and Starvation-free
Lock management with RDMA), a decentralized lock manager

that targets distributed systems running on RDMA-enabled net-

works. We demonstrate that, despite being fully decentralized, DSLR

prevents starvation and blind retries by guaranteeing first-come-

first-serve (FCFS) scheduling without maintaining explicit queues.

We adapt Lamport’s bakery algorithm [36] to an RDMA-enabled en-

vironment with multiple bakers, utilizing only one-sided READ and

atomic FA operations. Our experiments show that, on average, DSLR

delivers 1.8× (and up to 2.8×) higher throughput than all existing

RDMA-based lock managers, while reducing their mean and 99.9%

latencies by 2.0× and 18.3× (and up to 2.5× and 47×), respectively.
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1 INTRODUCTION
With the advent of high-speed RDMA networks and affordable

memory prices, distributed in-memory systems have become in-

creasingly more common [39, 57, 65]. The reason for this rising

popularity is simple: many of today’s workloads can fit within the

memory of a handful of machines, and they can be processed and

served over RDMA-enabled networks at a significantly faster rate

than with traditional architectures.

A primary challenge in distributed computing is lock manage-

ment, which forms the backbone of many distributed systems ac-

cessing shared resources over the network. Examples include OLTP

databases [53, 59], distributed file systems [22, 56], in-memory stor-

age systems [39, 51], and any system that requires synchronization,

consensus, or leader election [14, 28, 37]. In a transactional setting,

the key responsibility of a lock manager (LM) is ensuring both

serializability—or other forms of isolation—and starvation-free be-

havior of competing transactions [49].

Centralized Lock Managers (CLM)— In traditional distributed

databases, each node is in charge of managing the locks for its own

objects (i.e., tuples hosted on that node) [3, 8, 25, 34]. In other words,

before remote nodes or transactions can read or update a particular

object, they must communicate with the LM daemon running on

the node hosting that object. Only after the local LM grants the

lock can the remote node or transaction proceed to read or modify

the object. Although distributed, these LMs are still centralized, as
each LM instance represents a central point of decision for granting

locks on the set of objects assigned to it.

Because each CLM instance has global knowledge and full visi-

bility into the operations performed on its objects, it can guarantee

many strong and desirable properties. For example, it can queue

all lock requests and take holistic actions [61, 63], prevent star-

vation [25, 30, 34], and even employ sophisticated scheduling of

incoming requests to bound tail latencies [26, 33, 40, 66].

Unfortunately, the operational simplicity of having global knowl-

edge is not free [23], even with low-latency RDMA networks. First,

the CLM itself—specifically, its CPU—becomes a performance bot-

tleneck for applications that require high-throughput locking/un-

locking operations and as transactional workloads scale up or out.

Second, the CLM becomes a single point of failure [23]. Conse-

quently, many modern distributed systems do not use CLMs in

practice; instead, they rely on decentralized lock managers, which

https://doi.org/10.1145/3183713.3196890
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offer better scalability and reliability by avoiding a single point of

contention and failure [23].

Decentralized Lock Managers (DLM)— To avoid the drawbacks

of centralization and to exploit fast RDMA networks, decentralized

lock managers are becoming more popular [15, 18, 47, 62]. This

is because RDMA operations enable transactions to acquire and

release locks on remote machines at extremely low latencies, with-
out involving any remote CPUs. In contrast to CLMs, RDMA-based

decentralized approaches offer better CPU usage, scalability, and

fault tolerance.

Unfortunately, existing RDMA-based DLMs take an extremist

approach, where they either completely forgo the benefits of main-

taining global knowledge and rely on blind fail-and-retry strate-

gies to achieve higher throughput [15, 62], or they emulate global

knowledge using distributed queues and additional network round-

trips [47]. The former can cause starvation and thereby higher tail

latencies, while the latter significantly lowers throughput, under-

mining the performance benefits of decentralization.

Challenges— There are two key challenges in designing an effi-

cient DLM. First, to avoid data races, RDMA-based DLMs [15, 62]

must only rely on RDMA atomic operations: fetch-and-add (FA)

and compare-and-swap (CAS). FA atomically adds a constant to a

remote variable and returns the previous value of the variable. CAS

atomically compares a constant to the remote variable and updates

the variable only if the constant matches the previous value. Al-

though CAS does not always guarantee successful completion, it is

easy to reason about, which is why all previous RDMA-based DLMs

have relied on CAS for implementing exclusive locks [15, 18, 47, 62].

Consequently, when there is high contention in the system, proto-

cols relying on CAS require multiple retries to acquire a lock. These

blind and unbounded retries cause starvation, which increases tail

latency. Second, the lack of global knowledge complicates other

run-time issues, such as deadlock detection and mitigation.

Our Approach— In this paper, we propose a fully Decentralized

and Starvation-free Lock management (DSLR) algorithm to mitigate

the aforementioned challenges. Our key insight is the following:

a distributed lock manager can be fully decentralized and yet ex-

change the partial knowledge necessary for avoiding blind retries,

preventing starvation and thereby reducing tail latencies. Specifi-

cally, DSLR adapts Lamport’s bakery algorithm [36] to a decentral-

ized setting with RDMA capabilities, which itself poses a new set

of interesting challenges:

(1) The original bakery algorithm assumes two unbounded coun-

ters per object. However, the current RDMA atomic operations

are limited to 64-bit words, which must accommodate two

counters—for shared and exclusive locks—in order to imple-

ment the bakery algorithm, leaving only 16 bits per counter.

Because one is forced to use either RDMA CAS or FA, it is diffi-

cult to directly and efficiently apply bounded variants of bakery

algorithms [29, 58] in an RDMA context.
1

1
Existing bounded bakery algorithms only support exclusive locks. Also, they either

need additional memory and extra operations [58] or rely on complex arithmetics (e.g.,

modulo [29]) beyond the simple addition offered by FA.

(2) To compete with existing RDMA-based DLMs, our algorithm

must be able to acquire locks on uncontented objects using a

single RDMA atomic operation. However, the original bakery

algorithm requires setting a semaphore, reading the existing

tickets, and assigning the requester the maximum ticket value.

DSLR overcomes all of these challenges (see §4) and, to the best

of our knowledge, is the first DLM to extend Lamport’s bakery

algorithm to an RDMA context.

Contributions—We make the following contributions:

(1) We propose a fully decentralized and distributed locking al-

gorithm, DSLR, that extends Lamport’s bakery algorithm and

combines it with novel RDMA protocols. Not only does DSLR

prevent lock starvation, but it also delivers higher throughput

and significantly lower tail latencies than previous proposals.

(2) DSLR provides fault tolerance for transactions that fail to release

their acquired locks or fall into a deadlock. DSLR achieves this

goal by utilizing leases and determining lease expirations using

a locally calculated elapsed time.

(3) Through extensive experiments on TPC-C andmicro-benchmarks,

we show that DSLR outperforms existing RDMA-based LMs; on

average, it delivers 1.8× (and up to 2.8×) higher throughput,

and 2.0× and 18.3× (and up to 2.5× and 47×) lower average

and 99.9% percentile latencies, respectively.

The rest of this paper is organized as follows. Section 2 provides

background material and the motivation behind DSLR. Section 3

discusses the design challenges involved in distributed and decen-

tralized locking. Section 4 explains DSLR’s algorithm and design

decisions for overcoming these challenges. Section 5 describes how

DSLR offers additional features often used by modern database sys-

tems. Section 6 presents our experimental results, and Section 7

discusses related work.

2 BACKGROUND AND MOTIVATION
This section provides the necessary background on modern high-

speed networks, particularly RDMA operations, followed by an

overview of existing RDMA-based approaches to distributed lock

management. Familiar readers can skip Section 2.1 and continue

reading from Section 2.2.

2.1 RDMA-Enabled Networks
Remote Direct Memory Access (RDMA) is a networking protocol

that provides direct memory access from a host node to the memory

of remote nodes, and vice versa. RDMA achieves its high bandwidth

and low latency with no CPU overhead by using zero-copy transfer
and kernel bypass [52]. There are several RDMA implementations,

including InfiniBand [5], RDMA over Converged Ethernet (RoCE)

[1], and iWARP [7].

2.1.1 RDMA Verbs and Transport Types. Most RDMA imple-

mentations support several operations (verbs) that can broadly be

divided into two categories:
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(1) Two-Sided Verbs (Verbs with Channel Semantics). SEND
and RECV verbs have channel semantics, meaning a receiver

must publish a RECV verb (using RDMA API) prior to a sender

sending data via a SEND verb. These two verbs are called two-
sided as they must be matched by both sender and receiver.

These verbs use the remote node’s CPU, and thus have higher

latency and lower throughput than one-sided verbs [42].

(2) One-Sided Verbs (Verbs withMemory Semantics). Unlike
the two-sided verbs, READ, WRITE, and atomic verbs (CAS and

FA) have memory semantics, meaning they specify a remote

address on which to perform data operations. These verbs

are one-sided, as the remote node’s CPU is not aware of the

operation. Due to their lack of CPU overhead, one-sided verbs

are usually preferred over two-sided verbs [31, 42]. However,

the best choice, in terms of which verb to use, always depends

on the specific application.

RDMA operations take place over RDMA connections, which

are of three transport types: Reliable Connection (RC), Unreliable
Connection (UC), and Unreliable Datagram (UD). With RC and UC,

two queue pairs need to be connected and explicitly communicating

with each other.

In this paper, we focus our scope on Reliable Connection (RC),

as it is the only transport type that supports atomic verbs, which

we use extensively to achieve fully decentralized lock management

in Section 4. Next, we focus on atomic verbs in more detail.

2.1.2 Atomic Verbs. RDMA provides two types of atomic verbs,

compare-and-swap (CAS) and fetch-and-add (FA). These verbs are

performed on 64-bit values. For CAS, a requesting process specifies

a 64-bit new value and a 64-bit compare value along with a remote

address. The value (i.e., original value) at the remote address is

compared with the compare value; if they are equal, the value at

the remote address is swapped with the new value. The original
value is returned to the requesting process. For FA, a requesting

process specifies a value to be added (i.e., increment) to a remote

address. The increment is added to the 64-bit original value at the
remote address. Similar to CAS, the original value is returned to the

requesting process.

Atomic verbs have two important characteristics that dictate

their usage and system-level design decisions:

• Atomic verbs are guaranteed to never experience data races

with other atomic verbs.

• The guarantee does not hold between atomic and non-atomic

operations. For example, a data race can still occur between

CAS and WRITE operations [4].

These characteristics effectively restrict how one canmix andmatch

these verbs in their design, which is evident in existing RDMA-based

lock management solutions—they all rely heavily on CAS [15, 18, 47,

62]. A CAS operation will only succeed if its condition is satisfied (i.e.,

the compare value equals the previous value). This characteristic

can lead to unbounded and blind retries, which can severely impact

performance and cause starvation. For this reason, our approach

avoids the use of CAS as much as possible; rather, we primarily rely

on FA which, unlike CAS, is guaranteed to succeed. This also solves

the issue of lock starvation, as we explain in Section 3.1.

2.2 Distributed Lock Managers
2.2.1 Traditional Distributed Lock Managers. Before discussing

RDMA-based distributed lockmanagers, we briefly review the archi-

tecture of a traditional distributed lock manager [25, 34]. Typically,

each node runs a lockmanager (LM) instance (or daemon), in charge

of managing a lock table for the objects stored on that node. Each

object (e.g., a tuple in the database) is associated with a lock object
in the lock table of the node that it is stored on.

2
Before reading or

modifying a tuple, a transaction must request a (shared or exclusive)

lock on it. The LM instance running on the local node communi-

cates the transaction’s lock request to the LM instance running on

the remote node hosting the object [25, 34]. The transaction can

proceed only after the corresponding (i.e., remote) LM has granted

the lock. The locks are released upon commit/abort in a similar

fashion, by going through the remote LM. As discussed in Section 1,

these traditional LMs are distributed but centralized, in the sense

that each LM represents a single point of decision for granting the

locks on its associated objects. Next, we discuss distributed and

decentralized LMs.

2.2.2 RDMA-Based Distributed & Decentralized Lock Managers.
Unlike traditional distributed lockmanagers, in RDMA-basedDLMs,

3

a local LM (acting on behalf of a transaction) can directly ac-

cess lock tables in remote nodes instead of going through the re-

mote DLM instance.
4
While this improves performance in most

cases, it also requires new RDMA-aware protocols for lock man-

agement [15, 18, 47, 62].

To the best of our knowledge, almost all RDMA-based DLMs

use atomic verbs (instead of SEND/RECV) for two main reasons. First,

the SEND/RECV verbs are avoided due to their channel semantics;

the solution would be no different than traditional client/server-

based solutions with CPU involvement. Second, the READ/WRITE

verbs cannot be used alone due to their vulnerability to data races,

which can jeopardize the consistency of the lock objects themselves.

Consequently, previous proposals have all used CAS [18, 62], or

combined CAS with FA atomic verbs [15, 47], depending on the data

structure used for modeling their lock objects.

Lock Representation and Acquisition— Since RDMA atomic

verbs operate on 64-bit values, all RDMA-based DLMs use 64-bit

values to represent their lock objects, but with slight variations.

For example, Devulapalli et al. [18] implement only exclusive locks

and use the entire 64-bit value of a lock object to identify its owner
(i.e., the transaction currently holding the lock). Others [15, 47]

implement both shared and exclusive locks by dividing the 64-bit

into two 32-bit regions (Figure 1). In these cases, the upper 32-bit

region represents the state of an exclusive lock, and DLMs use CAS to

change this value to record the current [15, 18] or last [47] exclusive

lock owner of the object; the lower 32-bit region represents the

state of shared locks, and DLMs use FA to manipulate this value to

count the current number of shared lock owners.

2
For simplicity of presentation, here we assume a single primary copy for each tuple.

3
Note that we use DLM as an acronym for a Decentralized Lock Manager, rather than

a Distributed Lock Manager.

4
Some combine both architectures by using one-sided RDMA for lock acquisition but

relying on additional messages (similar to traditional models) to address lock conflicts

[47]. These protocols, however, suffer under contended workloads (see §6.2).
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Exclusive (32-bit) Shared (32-bit)L

64-bit
Figure 1: The 64-bit representation of a lock object L used by
previous RDMA protocols [15, 47].

Advisory Locking— Note that RDMA-based DLMs typically use

advisory locking, meaning participants cooperate and follow/obey a

locking protocol without the lock manager enforcing it (i.e.,manda-
tory locking). This is because one-sided atomic verbs interact with

lock tables without involving local DLM instances.

Handling Lock Conflicts— Perhaps the most important aspect of

any lock manager is how it handles lock conflicts. There are three

possible scenarios of a lock conflict:

(a) Shared→ Exclusive
(b) Exclusive→ Shared
(c) Exclusive→ Exclusive

For example, (a) occurs when a transaction attempts to acquire an

exclusive lock on an object that others already have a shared lock on.

To handle lock conflicts, DLMs typically use one or a combination

of the following mechanisms:

(1) Fail/retry: a transaction simply fails on conflict and continues

trying until the acquisition succeeds [15, 62].

(2) Queue/notify: lock requests with conflict are enqueued. Once

the lock becomes available, a DLM instance or the current

lock owner notifies the requester to proceed [18, 47].

Which of these mechanisms is used has important ramifications

on the design and performance of a DLM, as discussed next.

3 DESIGN CHALLENGES
Since they lack a centralized queue, DLMs face several challenges:

(C1) Lock starvation caused by lack of global knowledge.

(C2) Fault tolerance in case of transaction failures.

(C3) Deadlocks due to high concurrency.

We discuss each of these challenges in the following section.

3.1 Lock Starvation
Without a central coordinator, DLMs must rely on their partial

knowledge for lock acquisition and handling lock conflicts. Due to

their lack of global knowledge, existing RDMA-based DLMs utilize

CAS and FAwith blind retries for lock acquisition, which makes them

vulnerable to lock starvation.

Lock starvation occurs when a protocol allows newer requests

to proceed before the earlier ones, causing the latter to wait indef-

initely. The starved transactions might themselves hold locks on

other tuples, thus causing other transactions to starve for those

locks. Through this cascading lock-wait, lock starvation can cause

severe performance degradation and significantly increase tail laten-

cies. Existing DLMs allow for at least one or both of the following

types of lock starvation (see Appendix A.1 for examples of both

types of lock starvation):

(i) Reader-Writer Starvation:multiple readers holding shared

locks starve a writer from acquiring an exclusive lock.

(ii) Fast-Slow Starvation: faster nodes starve slower nodes

from acquiring a lock.

3.2 Fault Tolerance
DLMs must be able to handle transaction failures (e.g., due to ap-

plication bugs/crashes, network loss, or node failures), whereby a

transaction fails without releasing its acquired locks. As mentioned

earlier, RDMA-based DLMs utilize one-sided atomic verbs that do

not involve local DLM instances. This makes it difficult for the local

DLM to detect and release the unreleased locks on behalf of the

failed (remote) transaction. Under advisory locking, other transac-
tions will wait indefinitely until the situation is somehow resolved.

In several previous RDMA locking protocols [15, 18, 47], a local

DLM does not have enough information on its lock table to handle

transaction failures. Wei et al. [62] use a lease [24] as a fault toler-
ance mechanism that allows failed transactions to simply expire,

allowing subsequent transactions to acquire their locks. However,

their approach uses a lease only for shared locks, and cannot handle

transactions that fail to release their exclusive locks.

3.3 Deadlocks
Deadlocks can happen between different nodes (and their transac-

tions) in any distributed context. However, deadlock detection and

resolution can become more difficult without global knowledge as

the number of nodes increases. Furthermore, in some cases, the

negative impact of deadlocks on performance can be more severe

with faster RDMA networks. This is because one can process many

more requests as network throughput increases using RDMA, and

assuming a deadlock resolution takes a similar amount of time

regardless of network speed, deadlocks can incur a relatively larger

penalty on transaction throughput with faster networks.

In the next section, we present our algorithm that overcomes

the three aforementioned challenges.

4 OUR ALGORITHM
In this section, we present DSLR, a fully decentralized algorithm

for distributed lock management using fast RDMA networks. The

high-level overview of how DSLR works is shown in Figure 2. Based

on the challenges outlined in Section 3, we start by highlighting

the primary design goals of our solution. Next, we describe DSLR in

detail, including how it represents locks, handles locking/unlocking

operations, and resolves lock conflicts.

4.1 Assumptions
In the following discussion, we rely on two assumptions. First, the

system clock in each node is well-behaved, meaning none of them

advance too quickly or too slowly, and the resolution of system clock

in each node is at least ϵ , which is smaller than the maximum lease

time that DSLR uses (i.e., 10 ms). This is similar to the assumption

in [24], except that we do not require the clocks to be synchronized.

Second, the lock manager on each node has prior knowledge of the

location of data resources (and their corresponding lock objects)

in the cluster. This can be achieved either by using an off-the-

shelf directory service for the resources in the cluster (e.g., name

server) [17, 20] or by peer-to-peer communications between the
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Local Node

Remote Node

DLM

1. T1 requests lock on Obj

Name Value

Obj ...

… …

T1
2. Sets the value of Obj
with RDMA FA

3. (Optional) If there are 
preceding locks, DLM 
checks lock on Obj until it 
can be acquired for T14. Grants lock on Obj to T1

5. T1 releases lock on Obj 6. Releases lock on Obj
with RDMA FA

Ti
m

e

Transaction

Figure 2: A high-level overview of lock acquisition and re-
lease in DSLR.

lock managers on-the-fly. The details of this process are, therefore,

outside the scope of this paper.

4.2 Design Criteria
As discussed earlier in Section 3, a decentralized DLM faces several

challenges, including lock starvation (C1), faults caused by transac-

tion failures (C2), and deadlocks (C3). Next, we explain how our

design decisions differ from those of previous DLMs and how they

enable us to overcome the aforementioned challenges.

4.2.1 Representation of a Lock Object. As mentioned in Sec-

tion 2.2.2, most RDMA-based DLMs split a 64-bit word into two

32-bit regions to represent shared and exclusive locks on an object.

Unfortunately, algorithms using this representation rely on the use

of CAS, which makes them vulnerable to lock starvation (C1). To
solve this problem, we develop a new representation using four

16-bit regions instead of two 32-bit regions as part of our RDMA-

based implementation of Lamport’s bakery algorithm. We explain

the details of our lock object representation in Section 4.4.

4.2.2 RDMA Verbs. Previous RDMA-based DLMs rely heavily

on CAS to change the value of a lock object as they acquire or release

a lock. This causes lock starvation (C1) because, as demonstrated

in Section 3.1, if the value of a lock object keeps changing, a DLM

blindly retrying with CAS will continuously fail. Instead of using

CAS, DSLR uses FA—which, unlike CAS, is guaranteed to succeed—

to acquire and release locks with a single RDMA operation. We

describe how we use FA and READ for lock acquisition and handling

of lock conflicts in Section 4.5 and 4.6.

4.2.3 Handling Transaction Failures and Deadlocks. To the best

of our knowledge, existing RDMA-based DLMs have largely over-

looked the issue of transaction failures (C2) and deadlocks (C3).
To handle transaction failures, we propose the use of a lease [24].
(Note that DrTM [62] also uses a lease for shared locks, but DSLR

utilizes it specifically for determining transaction failures. Also, the

lease expiration in DSLR is determined locally without the need for

synchronized clocks.) We also employ a timeout-based approach

to handle deadlocks, utilizing our lease implementation. In addi-

tion, we adopt a well-known technique from networking literature,

called random backoffs, in our bakery algorithm (we explain this

technique in Appendix A.3).

Exclusive 
Counter
(16-bit)

L

64-bit

Shared 
Counter
(16-bit)

Exclusive
Max

(16-bit)

Shared
Max

(16-bit)

nX nS maxX maxS

Figure 3: DSLR’s 64-bit representation of a lock object L.

4.3 Lamport’s Bakery Algorithm
Before introducing DSLR, we provide a brief background on Lam-

port’s bakery algorithm [36]. Lamport’s bakery algorithm is a mu-

tual exclusion algorithm, designed to prevent multiple threads from

concurrently accessing a shared resource. In his algorithm, Lamport

essentially models a bakery, where each customer entering the bak-

ery receives a ticket with a number that is monotonically increasing.

This number is incremented each time a customer enters the bakery.

In addition to the ticket numbers, there is also a global counter in
the bakery, showing the ticket number of the current customer

being served, and once the customer is done, this global counter

is incremented by 1. The next customer who will be served by the

bakery will be the one whose ticket number matches the current

value of the global counter, and so on. In the subsequent sections,

we describe how DSLR modifies this original bakery algorithm in an

RDMA context with both shared and mutual (i.e., exclusive) locks.

We formally prove DSLR’s starvation-free behavior in Appendix A.2.

4.4 Lock Object Representation
Figure 3 shows a 64-bit representation of a lock object that DSLR

uses in its RDMA-specific variant of the bakery algorithm, which

takes the form of {nX, nS, maxX, maxS}. Using the bakery analogy

from Lamport’s original algorithm, the upper 32 bits, nX and nS, are
equivalent to global counters, showing the largest ticket numbers

of customers (in our case, transactions) that are currently being

served for exclusive and shared locks, respectively. The lower 32

bits, maxX and maxS, are equivalent to the next ticket numbers that

an incoming customer will receive for exclusive and shared locks,

respectively. By simply incrementing maxX or maxS using FA and

getting its original value, a transaction obtains a ticket with the

current max numbers; then it only needs to wait until the corre-

sponding counter value (i.e., nX or nS) becomes equal to the number

on its obtained ticket.

Note that the original bakery algorithm assumes unbounded

counters. However, we are restricted to a 16-bit space (i.e., a maxi-

mum of 65,535) to store the value of each counter. The challenge

here—if we keep incrementing the values—is an overflow, making

the state of in-flight transactions invalid. DSLR circumvents this

problem by periodically resetting these counters before one can

overflow (see §4.9). While doing so, it ensures that all other trans-

actions will wait until the reset is properly done, abiding by the

advisory locking rules of DSLR. We will explain how this process

works in more detail in subsequent sections.

4.5 Lock Acquisition
Our algorithm uses a single FA operation to acquire a lock, or simply

queue up for it by adding 1 to maxX or maxS without having to

directly communicate with other nodes in the cluster. Algorithm 1

presents the corresponding pseudocode. Figure 4 demonstrates an
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function AcqireLock(tid, L, mode)
Inputs :tid: the id of the requesting transaction

L: the requested lock object

mode: lock mode (shared , exclusive)
Global :ResetFrom[tid, L]: the value of L that tid needs

to use for resetting L
(accessible by all transactions in the local node)

Consts :COUNT_MAX = 32,768

Output :Success or Failure
1 ResetFrom[tid, L]← 0

2 if mode = shared then
3 prev← FA (L, maxS, 1)

4 if prev(maxS) ≥ COUNT_MAX OR
prev(maxX) ≥ COUNT_MAX then

5 FA (L, maxS, -1)

6 Performs RandomBackoff
7 if prev(nS) or prev(nX) has not changed for

longer than twice the lease time since last
failure then

8 Reset L // Refer to Lines 11–19 in
// HandleConflict

9 return Failure

10 else if prev(maxS) = COUNT_MAX-1 then
11 ResetFrom[tid, L] = {prev(maxX), COUNT_MAX,

prev(maxX), COUNT_MAX}

12 if prev(nX) = prev(maxX) then
13 return Success

14 else
15 return HandleConflict(tid, L, prev, mode)

16 else if mode = exclusive then
17 prev← FA (L, maxX, 1)

18 if prev(maxS) ≥ COUNT_MAX OR
prev(maxX) ≥ COUNT_MAX then

19 FA (L, maxX, -1)

20 Performs RandomBackoff
21 if prev(nS) or prev(nX) have not changed for

longer than twice the lease time since
last failure then

22 Reset L // Refer to Lines 11–19 in
// HandleConflict

23 return Failure

24 else if prev(maxX) = COUNT_MAX-1 then
25 ResetFrom[tid, L] = {COUNT_MAX, prev(maxS),

COUNT_MAX, prev(maxS)}

26 if prev(nX) = prev(maxX) AND
prev(nS) = prev(maxS) then

27 return Success

28 else
29 return HandleConflict(tid, L, prev, mode)
end function

Algorithm 1: The pseudocode for the AcquireLock function (see

Table 1 for procedure definitions).

example, where a transaction with tid = 3 (i.e.,T3) wants to acquire
an exclusive lock on a lock object L, and L at the time has the value

L
nX nS maxX maxS

1 1 1 4

1 1 2 4

1 1 2 4

Action Ticket

FA(L, maxX, 1) {1,1,1,4}

Waits for nX = 1 
and nS = 4

T3

Ti
m
e

(a) (b)

(c)

Figure 4: An example of a transactionT3 acquiring an exclu-
sive lock with DSLR on a lock object L.

Function Description
val(segment) represents the value of segment in the 64-bit

value val. A segment is one of nX, nS, maxX, or
maxS.

prev←CAS

(L, current,
new)

runs CAS on L, changing it from current to new
only if the value of L is current. The returned
value, prev, contains the original value of L
before CAS.

prev←FA

(L, segment,
val)

runs FA on L, adding val to segment of L.
The returned value, prev, contains the orig-

inal value of L before FA. For example, FA (L,
maxX, 1) adds 1 to maxX of L.

val←READ (L) runs RDMA READ on L and returns its value.

Table 1: List of notations and procedures used by DSLR.

L
nX nS maxX maxS

1 1 1 4

1 1 2 4

2 4 2 4

Action Ticket

FA(L, maxX, 1) {1,1,1,4}

Reset(L)

T3

Ti
m
e

Figure 5: An example of a transaction T3 resetting a lock ob-
ject L to resolve a deadlock.

of {1, 1, 1, 4}. Then, T3 needs to increment maxX of L by 1 to get a

ticket with the next maximum number. This, (a) in Figure 4, will

set L = {1, 1, 2, 4} and T3 will have the ticket, (b) in Figure 4. For

exclusive locks,T3 needs to wait for both shared and exclusive locks
preceding it on L. By comparing the values on its ticket and the

current nX and nS on L,T3 knows that there are currently maxS − nS
= 3 transactions waiting or holding shared locks on L; thus, T3 will
wait for them, (c) in Figure 4. Here, the HandleConflict function is

called subsequently (explained in the next section). Similarly, if T3
wants to acquire a shared lock on L, it needs to increment maxS and
wait until prev(maxX) = nX.

DSLR has an additional logic in place to reset segments of a lock

object before they overflow, and to ensure that other transactions

take their hands off while one is resetting the value (Lines 4–9
and Lines 18–23 in Algorithm 1 for shared and exclusive locks,

respectively). This logic enables incoming transactions to reset

the counters if necessary, hence preventing situations where they

would wait indefinitely for other failed transactions to reset the

counters. We describe this resetting procedure in Section 4.9.
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function HandleConflict(tid, L, prev, mode)
Inputs :tid: ID of the requesting transaction

L: the requested lock object

prev: the value of the lock object at time of FA

mode: lock mode (shared , exclusive)
Output :Success or Failure

1 while true do
2 val← READ (L)

3 if prev(maxX) < val(nX) or
prev(maxS) < val(nS) then

4 return Failure

5 if mode = shared then
6 if prev(maxX) = val(nX) then
7 return Success

8 else if mode = exclusive then
9 if prev(maxX) = val(nX) and

prev(maxS) = val(nS) then
10 return Success

11 if val(nX) or val(nS) have not changed
for longer than twice the lease time then

12 if mode = shared then
13 reset_val← {prev(maxX),

prev(maxS) + 1, val(maxX), val(maxS)}

14 else if mode = exclusive then
15 reset_val← {prev(maxX) + 1,

prev(maxS), val(maxX), val(maxS)}

16 if CAS(L, val, reset_val) succeeds then
17 if reset_val(maxX) ≥ COUNT_MAX OR

reset_val(maxS) ≥ COUNT_MAX then
18 Reset L to zero // Refer to Lines 6–7 in

// Algorithm 3
19 return Failure

20 wait_count← (prev(maxX) − val(nX)) +

(prev(maxS) − val(nS))

Wait for (wait_count × ω) µs
end function

Algorithm 2: Pseudocode of the HandleConflict function (see

Table 1 for procedure definitions).

4.6 Handling Lock Conflicts
In our algorithm, a lock conflict occurs when a transaction finds

that the current counters of L are less than the unique numbers

on its assigned ticket, meaning there are other preceding transac-

tions either holding or awaiting locks on the lock object L. DSLR
determines this by examining the return value of FA (i.e., prev) and
calling HandleConflict if there is a lock conflict. Algorithm 2 is the

pseudocode for the HandleConflict function. Remember that prev is
the value of L right before the execution of FA. Here, the algorithm

continues polling the value of L until it is tid’s turn to proceed

with L by comparing the current counters of L with the numbers of

its own ticket (Lines 5–7 for shared, Lines 8–10 for exclusive locks
in Algorithm 2). DSLR detects transaction failures and deadlocks

when it still reads the same counter values even after twice the

length of the proposed lease time has elapsed (Lines 11–19). This
is determined locally by calculating the time elapsed since the last

read from the same counter values. This function returns Failure
only when transaction failures or deadlocks are detected by DSLR

and the counters are already reset. In such a case, the transaction

can retry by calling theAcquireLock function again. DSLR also avoids
busy polling by waiting a certain amount of time proportional to

the number of preceding tickets. Specifically, DSLR calculates the

sum of the number of preceding exclusive and shared tickets (i.e.,

wait_count in Line 20). Then, it waits for this sum multiplied by

a default wait time ω, which can be tuned based on the average

RDMA latency of the target infrastructure (5 µs in our cluster). This

technique is similar to the dynamic interval polling idea used in [55],

which reduces network traffic by preventing unnecessary polling

(we study the effectiveness of DSLR’s dynamic interval polling in

Appendix A.7). Next, we explain how DSLR handles such failures

and deadlocks in the HandleConflict function.

4.7 Handling Failures and Deadlocks
When DSLR detects transaction failures or deadlocks by checking

counter values for the duration of the proposed lease time, it calls

the HandleConflict function to reset the counter values of L on

behalf of tid (Line 16).
Note that, where there is a risk of an overflow (i.e., counter

reaching COUNT_MAX), tid will also be responsible for resetting.

After the reset, tid fails with the lock acquisition. It releases all

locks acquired thus far and retries from the beginning. For example,

suppose T3 detects a deadlock and wants to reset L, as shown in

Figure 5.T3 basically resets Lwith CAS such that the next transaction

can acquire a lock on L, and this resolves the deadlock.T3 and other
transactions that were waiting on L must retry after the reset. The

beauty of this mechanism is that a deadlock will be resolved as long

as any waiting transactions (say TW) reset the counter of L, where
transactions before TW can simply retry while transactions after

TW can continue with acquiring locks on L. Note that DSLR detects
and handles other types of failures, such as transaction aborts and

node failures, using a different mechanism. Specifically, transaction

aborts are handled in the same fashion as normal transactions; when

a transaction is aborted, DSLR simply releases all its acquired locks.

However, to detect node failures (which are less common) or a loss

of RDMA connections between the nodes, DSLR relies on sending

heartbeat messages regularly (10 seconds by default) between the

nodes in the cluster and checking the event status of the message

from the RDMA completion queues (CQs). We describe the details

of the ReleaseLock function in the next section.

4.8 Lock Release
Releasing a lock object L with DSLR is as simple as incrementing

nX or nS with FA, unless the lease has already expired. Algorithm

3 is the pseudocode for the ReleaseLock function. An extra proce-

dure is only needed if the transaction unlocking the lock object

happens to also be responsible for resetting the value of L in order

to prevent overflows. This is determined by inspecting the value of

ResetFrom[tid, L], which would have been set during AcquireLock,
if tid is required to perform the resetting of L. In that case, tid
will increment counter, even if the lease has expired, since it has to

reset the value of L. Next, we explain how DSLR resets counters of a

lock object to prevent overflows.
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function ReleaseLock(tid, L, elapsed, mode)
Inputs :tid: ID of the requesting transaction

L: the requested lock object

elapsed: the time elapsed since the lock acquisition

of L
mode: lock mode (shared , exclusive)

Global :ResetFrom[tid, L]: the value of L that tid needs
to use for resetting L
(accessible by all transactions in the local node)

Output :Success

1 if (elapsed is less than the lease time) or
(ResetFrom[tid, L] > 0) then

2 if mode = shared then
3 val← FA (L, nS, 1)

4 else if mode = exclusive then
5 val← FA (L, nX, 1)

6 if ResetFrom[tid, L] > 0 then
7 Repeat CAS(L, ResetFrom[tid, L], 0) until it

succeeds

ResetFrom[tid, L]← 0

8 return Success
end function

Algorithm 3: Pseudocode of the ReleaseLock function (see Table 1
for procedure definitions).

L
nX nS maxX maxS

29998 32765 30000 32767

29998 32765 30000 32768

….

30000 32768 30000 32768

0 0 0 0

Action ResetFrom[L,3]

FA(L, maxS, 1) {30000,32768,30000,32768}

Reset L to 0

T3

Ti
m
e

Figure 6: An example of a transaction T3 resetting a lock ob-
ject L to avoid overflow of counters.

4.9 Resetting Counters
In DSLR, we have a hard limit of COUNT_MAX, which is 2

15
= 32, 768,

for each 16-bit segment of a lock object L. In other words, DSLR only

allows counters to increase until halfway through their available

16-bit space. This is identical to the commonly-used buffer overflow

protection technique with a canary value to detect overflows [16].

In our case, DSLR uses the 16th most significant bit as a canary bit

to reset the value before it actually overflows.

For example, suppose T3 wants to acquire an shared lock on L,
as shown in Figure 6. After performing FA on L, T3 receives prev =

{29998, 32765, 30000, 32767}. Now, maxS of prev is 32,767, which

is COUNT_MAX-1, meaning (maxS) of the object L has reached the

limit COUNT_MAX. At this point, DSLR waits until T3 and all preced-

ing transactions are complete by setting ResetFrom[3, L] to {30000,
32768, 30000, 32768}. When T3 releases its lock on L, DSLR resets
the value of L to 0 from ResetFrom[3, L] with CAS. Note that once

either maxX or maxS reaches COUNT_MAX, no other transactions can

acquire the lock until it is reset. If a transaction detects such a case

(i.e., Line 3 and 17 in Algorithm 1), it reverses the previous FA by

decrementing either maxX or maxS and performs a random backoff

to help the resetting process. Our use of a random backoff ensures

that the repeating CAS will eventually avoid other FAs and reset

the counter without falling into an infinite loop. In fact, previous

work [35] has formally shown that a network packet can avoid

collisions with other packets (and be successfully transmitted over

the network) with a bounded number of retries using a random

backoff, assuming there is a finite number of nodes in the clus-

ter. Similarly, the expected number of CAS retries to avoid other

FAs, and successfully reset the counter, will also be bounded (see

Appendix A.3 for details).

Note that the use of a 16-bit space means that, at least in theory,

the value of a lock object L can still overflow if there are more than

32,767 transactions trying to acquire a lock on the same object
at the same time. However, this situation is highly unlikely in

practice with real-world applications. Nonetheless, we only utilize

CAS for resetting counters and avoid redundant CAS calls, unlike

previous approaches, since our first FA simultaneously acquires the

lock successfully or enqueues for the lock in case of conflicts.

5 SUPPORTING ADDITIONAL CAPABILITIES
In this section, we explain how DSLR supports some additional fea-

tures that are often needed by modern database systems.

5.1 Support for Long-Running Transactions
Mixed workloads are increasingly common [46, 50], also known

as hybrid transactional/analytical processing (HTAP). The use of

a fixed lease time can lead to penalizing long-running queries or

transactions. To allow such transactions to complete before their

lease expires, we use a multi-slot leasing mechanism to support

varying lease times. Specifically, to request a longer lease, a trans-

action can add a number larger than 1 (say k) to the next ticket

number (i.e., maxX or maxS). Here, Line 3 of Algorithm 1 changes

from FA (L, maxS, 1) to FA (L, maxS, k) for shared locks. Line 17
changes similarly for exclusive locks. Our lease expiration logic is

also changed accordingly, whereby each transaction determines its

own expiration time based on its own ticket numbers rather than a

fixed lease duration for all transactions. In other words, the lease

expiration will be proportional to δ , where δ is the difference be-

tween the current and the next ticket numbers (i.e., δ = (prev(maxX)
− prev(nX)) + (prev(maxS) − prev(nS))). Similarly, the transaction

releases its acquired lock by adding k instead of 1 to nS or nX (i.e.,
Lines 3 and 5 of Algorithm 3). Note that DSLR can prevent unfairly

long durations by imposing the maximum value of k that can be

used by any transaction.

With this multi-slot leasing, a long-running transaction is effec-

tively obtaining multiple tickets with consecutive numbers, while

other transactions infer its lease expiration time based on the num-

ber of outstanding tickets shown on their own tickets. The maxi-

mum lease time possible will be ϕ × ω, where ϕ is the remaining

ticket numbers in L and ω is the default wait time. This means we

can always tune ω to accommodate longer transactions, even when

ϕ is small (i.e., there are few remaining tickets). Therefore, multi-

slot leasing practically eliminates a hard limit on how long a trans-

action can remain in the system, thereby allowing long-running

transactions to run successfully. We study the effectiveness of this

technique in Section 6.5.
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L
nU nX nS maxU maxX maxS

0 0 0 0 0 2

0 0 0 1 0 2

0 0 0 1 0 2

0 0 2 1 0 2

Action Ticket

FA(L, maxU, 1) {0,0,0,0,0,2}

Shared lock granted to T3

Waits for nS = 2 for exclusive

T3

Ti
m
e (a) (b)

(c)

(d)

Figure 7: An example of a transactionT3 acquiring an update
lock on a lock object L.

5.2 Lock Upgrades
Many modern databases support lock upgrades. For example, a SQL

statement “SELECT . . . FOR UPDATE” would acquire shared locks

on its target rows to read them first, and then later upgrade those

shared locks to exclusive ones after draining the existing shared

locks (held by other transactions) so that it can update those rows.

DSLR supports lock upgrades by implementing a third type of

locks, i.e., update locks. An update lock is similar to an exclusive

lock, except that a transaction can acquire an update lock even

when other transactions already have shared locks on that object.

In the presence of those shared locks, the transaction with the

update lock (sayTU ) can only read the object. Once all other shared

locks on that object are released, TU is finally allowed to write to

the object. Other shared and exclusive lock requests that arrive

after an update lock has been granted must wait for the update lock

to be released.

To implement update locks, we simply introduce two new ticket

counters, nU and maxU. This means we must divide our 64-bit lock

object L between six counters (rather than four). For example, sup-

pose the transaction T3 wants to acquire an update lock on a lock

object L, as shown in Figure 7. Following the same lock acquisition

procedure in Section 4.5, T3 takes its ticket by adding 1 to maxU ((a)
in Figure 7). Even though there are already two other transactions

with shared locks on L ((b) in Figure 7), T3 is still granted a shared

lock ((c) in Figure 7). Once the other two transactions release their

shared locks, T3 is granted an exclusive lock on L ((d) in Figure 7).

6 EVALUATION
In this section, we empirically evaluate our proposed algorithm,

DSLR, and compare it with other RDMA-based approaches to dis-

tributed locking. Our experiments aim to answer several questions:

(i) How does DSLR’s performance compare against that of exist-

ing algorithms? (§6.2)

(ii) How does DSLR scale as the number of lock managers in-

creases? (§6.3)

(iii) How does DSLR’s performance compare against that of queue-

based locking in the presence of long-running reads? (§6.4)

(iv) How does DSLR support long-running reads effectively with

its multi-slot leasing mechanism? (§6.5)

Additional experiments are deferred to Appendix A.

6.1 Experiment Setup

Hardware— For our experiments, we borrowed a cluster of 32 r320
nodes from the Apt cluster (part of NSF CloudLab infrastructure for

scientific research [2]), each equipped with an Intel Xeon E5-2450

processor with 8 (2.1Ghz) cores, 16GB of Registered DIMMs running

at 1600Mhz, and running Ubuntu 16.04 with Mellanox OFED driver

4.1-1.0.2.0. The nodes were connected with ConnectX-3 (1x 56 Gbps

InfiniBand ports) via Mellanox MX354A FDR CX3 adapters. The

network consisted of two core and seven edge switches (Mellanox

SX6036G), where each edge switch was connected with 28 nodes

and connected to both core switches with a 3.5:1 blocking factor.

Baselines— For a comparative study of DSLR, we implemented the

following previous RDMA-based, distributed locking protocols:

(1) Traditional is traditional distributed locking, whereby each

node is in charge of managing the locks for its own objects [25,

34]. Although distributed, this approach is still centralized,

since each LM instance is a central point of decision for grant-

ing locks on the set of objects assigned to it. That is, to acquire

a lock on an object, a transaction must communicate with

the LM instance in charge of that node. This mechanism uses

two-sided RDMA SEND/RECV verbs with queues.

(2) DrTM [62] is a decentralized algorithm, which uses CAS for ac-

quiring both exclusive and shared locks. This protocol imple-

ments a lease for shared locks, providing a time period for a

node to hold the lock. In case of lock conflicts, exclusive locks

are retried with CAS, and shared locks are retried if the lease has

expired. In our experiment, we follow the guidelines provided

in their paper for specifying the lease duration.

(3) Retry-on-Fail [15] is another decentralized algorithm, which

uses CAS for exclusive and FA for shared lock acquisition. Their

protocol simply retries in all cases of lock conflicts. Although

this work is not published, their approach represents an impor-

tant design choice (i.e., always retry), whichmerits an empirical

evaluation in our experiments. (We refer to this protocol as

Retry-on-Fail, as it was not named in their report.)

(4) N-CoSED [47] uses CAS for exclusive and FA for shared lock ac-

quisition. While decentralized, it still tries to obtain global

knowledge by relying on distributed queues and extra ‘lock re-

quest/grant’ messages between the DLMs upon lock conflicts.

Implementation— We implemented all baselines in C/C++ (none

of them had a readily available implementation). For RDMA, we

used libibverbs and librdmacm libraries with OpenMPI 1.10.2 [6].

Since none of the baselines had a mechanism to handle deadlocks,

we also implemented DSLR’s timeout-based approach for all of them.

For each experiment, we varied the timeout parameter (i.e., maxi-

mum number of retries) for each baseline, and only reported their

best results in this paper.

Servers & Clients— In each experiment, we used one set of ma-

chines to serve as LMs and a separate set as clients. Each client

machine relied on four worker threads to continuously generate

transactions by calling stored procedures on one of the nodes. The

LM on that node would then acquire the locks on behalf of the

transaction, either locally or on remote nodes. For remote locks,

a CLM would contact other CLMs in the cluster, whereas a DLM

would acquire remote locks directly. Once all the locks requested by

a transaction were acquired, the transaction committed after a think
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Figure 8: Performance comparison of different distributed lock managers under TPC-C (low and high contention).

time of γ and released all its locks. Unless specified otherwise, we

used γ = 0. The data on each node was entirely cached in memory,

while the redo logs were written to disk. Each experiment ran for 5

minutes, which was sufficiently large to observe the steady-state

performance of our in-memory prototype.

Workloads— We experimented with two workloads, the well-

known TPC-C benchmark and our ownmicrobenchmark (described

in Appendix A.4). For TPC-C, we used two settings: a low-contention
setting with 10 warehouses per node, and a high-contention setting,

with one warehouse per node. Each LM instance had a lock ta-

ble with a lock object for every tuple of its local warehouse(s).

Each transaction requested a number of shared or exclusive locks,

depending on its type. We used the same proportion of different

transaction types as the original TPC-C specification.

6.2 Locking Performance For TPC-C
We evaluated the performance of DSLR and all the other baselines

by running TPC-C in both low (10 warehouses per node) and high

(1 warehouse per node) contention settings. We used a cluster of

16 nodes, each with an LM instance, and we used the remaining 16

machines to generate transactions (see Section 6.1). We measured

the throughput, average latency, and tail (i.e., 99.9%) latency of the

TPC-C transactions under each locking algorithm. As shown in

Figure 8a, under high contention, our algorithm achieved 1.8–2.5x

higher throughput than all other baselines. Under low contention,

however, DSLR’s throughput was still 2.8x higher than Traditional,

but was only 1.1–1.3x higher than the other DLMs. This was ex-

pected, as all algorithms essentially perform the same operation to

acquire an uncontended lock: they all use a single RDMA atomic op-

eration (except for Traditional, which still has to use two SEND/RECV

operations). Note that SEND/RECV and atomic operations have similar

latencies, and the slower performance of Traditional is due to its

use of two RDMA operations instead of one.

For the same reason, average latencies were also similar for all

DLMs under low contention, butweremuch lower than Traditional’s

average latency (again, due to the latter’s use of two SEND/RECV verbs

instead of a single operation). Figure 8b reports the ratio of each

baseline’s average transaction latency to that of DSLR (i.e., DSLR’s

speedup). Here, under low contention, DSLR’s average latency was

1.2–1.5x lower than other DLMs but 2.8x lower than Traditional.

For high contention, however, DSLR’s average latency was nearly

half of the other techniques, i.e., 1.9–2.5x. This was mainly due to

DSLR’s utilization of one-sided READ, which is much faster than CAS

operations (and blind retries) used by other DLMs in case of lock

conflicts.

DSLR’s most dramatic improvement was reflected in its tail laten-

cies. As shown in Figure 8c, the 99.9 percentile transaction laten-

cies were significantly lower under DSLR than all other baselines:

2.4–4.9x under low contention and up to 46.7x under high con-

tention. This considerable difference underscores the important

role of starvation and lack of fairness in causing extremely poor

tail performance. Here, Traditional, despite its lower throughput

and higher average latency, behaved more gracefully in terms of

tail latencies, compared to the other baselines. This was due to

Traditional’s global knowledge, allowing it to successfully prevent

starvation and ensure fairness even in the face of high-contention

scenarios. DSLR, on the other hand, achieved the best of both worlds:

its decentralized nature allowed for higher throughput, while main-

taining sufficient global knowledge allowed it to prevent starvation

(and thereby higher tail latencies). The other DLMs that lacked any

global knowledge–thus, any mechanism for preventing starvation—

skyrocketed in their tail latencies.When comparedwith Traditional

that did not have the issue of lock starvation, the tail latency of

DSLR was still about 2x lower. This was because Traditional, as a

queue-based lock manager, still had to use two pairs of SEND/RECV’s

for each lock/unlock request, one for sending lock/unlock request

and another for receiving the response of the lock/unlock request,

whereas DSLR only needed a single RDMA operation (i.e., FA) for

both locking and unlocking. Overall, the results demonstrate that

DSLR is quite robust against lock starvation scenarios and performs

better than other baselines in general.

6.3 Scalability of DSLR
We studied the scalability of DSLR compared to other distributed lock

managers. We repeated the experiment with increasing numbers of

machines, from 2 to 32. ForN machines,N /2were server nodes (and
hence lock managers) and the remaining N /2 machines generated

client transactions. We used the low-contention TPC-C setting (10

warehouses per node).

As shown in Figure 9, the throughput of all distributed LMs

scaled almost linearly (e.g., DSLR achieving 14.5x scalability with

16x additional nodes) as the ratio of the number of server nodes

to that of worker threads were constant. N-CoSED and Traditional,

which share common characteristics of using queues and SEND/RECV

verbs, scaled worse than others in terms of throughput, due to the

network congestion caused by their extra messaging. Retry-on-Fail

and DrTM scaled better than these queue-based algorithms, as they

did not experience as much lock starvation under low-contention.
However, DrTM showed the worst performance in terms of its tail la-

tency. This was due to its use of lease, as exclusive locks were forced

to wait on shared locks until their lease time expired. Overall, DSLR
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Figure 9: Scalability of different distributed locking algorithms with increasing number of nodes.

demonstrated a better throughput than other baselines. For average

and 99.9% tail latencies, the performance of DSLR remained consis-

tent and was more robust than other baselines even as the number

of nodes increased, again thanks to its starvation-free behavior.

6.4 Performance with Long-Running Reads
The main advantages of a first-come-first-serve (FCFS) policy are

its simplicity, fairness, and starvation-free behavior. However, this

also means that an FCFS policy cannot reorder the requests. This

can be a drawback in situations where reordering the transactions

might improve performance [41], e.g., when there are long-running

reads in the system.

To consider such scenarios, we implemented an additional base-

line, called Traditional_RO, which is similar to Traditional (i.e.,

queue-based) except that it supports transaction reordering. Specifi-

cally, Traditional_RO allows readers ahead of the writers, as long as

there is already a shared lock held on the object. To avoid starvation

of the writes, we also limited the maximum number of shared locks

that can bypass an exclusive lock to 10. This is similar to the strategy

proposed in [41], except that we used the number of locks instead of

their timestamp to ensure better performance for Traditional_RO.

Here, we modified the high-contention TPC-C setting described in

Section 6.2, as follows: we submitted a long-running read transac-

tion with probability γ and a transaction from the original TPC-C

workload with probability 1−γ . We varied γ exponentially between

0.001% to 1%. Long-running read transactions required a table-level

shared lock on Customer table in order to perform a table scan.

Figure 10 reports the results for DSLR versus Traditional and

Traditional_RO. As expected, the throughput dropped significantly

for all lock managers, as soon as long-running reads were intro-

duced, even at 0.001%. The performance of DSLR and Traditional_RO

became similar at the ratio of 0.01%, with Traditional_RO starting to

perform better at the 0.1% ratio. Traditional_RO’s performance was

about 1.2–1.4x better than that of DSLR between the ratio of 0.1%

and 1%. This is because it began to leverage transaction reordering

with enough long-running read transactions. By allowing other

table scans and also short reads from NewOrder and OrderStatus
transactions ahead of otherwrites (i.e., Payment andDelivery trans-
actions), Traditional_RO achieved a better performance overall.

However, at 1%, the entire system was brought to a halt (only

around 1,400 transactions per second for Traditional_RO), com-

pared to when there were no long-running reads (around 110,000

transactions per second for DSLR). This was due to the extreme

degree of contention caused by the long-running reads. The exper-

iment demonstrated that queue-based lock managers can benefit

from transaction reordering in the presence of long-running reads.

However, long-running reads by nature hurt the performance of

transactional databases significantly, and there must be a large

portion of such long-running reads in the overall workload for

transaction reordering to achieve a better performance than DSLR.

More importantly, when a shared lock is granted, the lock manager

typically does not know when the requesting transaction will re-

lease its locks. In other words, the remaining runtime of transaction

is not known to the database in general, e.g., the currently held

shared lock might be short-lived while the newly arrived one might

be long-running. This is perhaps why, to the best of our knowledge,

most major databases do not use transaction reordering.

6.5 Effectiveness of Our Multi-Slot Leasing
We studied the effectiveness of our multi-slot leasing mechanism

(Section 5.1), a technique designed for accommodating long-running

transactions. We used the modified TPC-C workload described

in Section 6.4. For this experiment, we varied the ratio of long-

running read transactions from 0.05 to 0.5. We ran DSLR, once with

a fixed lease time (i.e., 10 ms) and once with multi-slot leasing. As

shown in Figure 11, multi-slot leasing led to a better throughput

with zero transaction aborts, implying successful execution of the

long-running transactions. On the other hand, under DSLR with a

fixed lease time, more than half of the transactions aborted. This

was caused not only by those long-running transactions that were

aborted, but also by other transactions that were blocked by such

transactions and eventually timed out and were aborted as well.

This confirms that long-running transactions can cause cascading

aborts under a fixed lease setting. The experiment therefore shows

the effectiveness of our multi-slot leasing mechanism.

7 RELATEDWORK
The rise of fast networks has motivated the redesign of distributed

systems in general, and databases in particular. While there has

been much work on using RDMA for analytics or general data

processing [11, 19, 48, 54], here we focus on more relevant lines

of work, namely those on distributed lock management and trans-

action processing. We also discuss other techniques for reducing

tail latencies as well the distinction between coordination-free and

decentralized protocols.

Distributed Lock Management— Devulapalli et al. [18] propose

a distributed queue-based locking using RDMA operations. In their

design, each client has its own FIFO (first-in-first-out) queue of wait-

ing clients, to which it will pass the ownership of the current lock.

Unlike our algorithm, it requires extra communications using CAS
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Figure 10: Performance comparison between DSLR and queue-based (i.e., two-sided) lock managers with/without transaction
reordering, under a modified TPC-C with long-running reads.
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der the modified TPC-C workload.

among clients in order to enqueue for, and pass the ownership of, a

lock. Furthermore, they only support exclusive locks. N-CoSED [47]

is another RDMA-based distributed locking, where every node uses

CAS to directly place a lock onto the lock server and exchanges extra

“lock request/grant” messages in case of lock conflicts. N-CoSED is

similar to [18], as each node maintains the list (i.e., a queue) of

other nodes waiting for each lock. Chung et al. [15] discuss an

alternate and simpler approach by retrying CAS repeatedly until

the operation is successful for exclusive locks, and continuously

checking the exclusive portion of a lock object until it becomes

zero for shared locks (i.e., Retry-on-Fail in §6). Their mechanism

is simple and decentralized, yet faces the starvation problem when

obtaining exclusive locks on popular objects that have many re-

peated, continuous reads. In other words, readers starve writers in

their model.

RDMA-basedTransactionProcessing—NAM-DBuses one-sided

RDMA read/write and atomic operations to reduce extra communi-

cations required by a traditional two-phase commit [12]. However,

they only provide snapshot isolation, whereas our proposed dis-

tributed lock manager guarantees serializability. Wei et al. design

an in-memory transaction processing system, called DrTM, that ex-

ploits advanced hardware features such as RDMA and Hardware

Transactional Memory (HTM) [62]. DrTM uses CAS to acquire exclu-

sive locks and simply aborts and retries in the case of lock conflicts.

FaSST [32] is another system, which utilizes remote procedure calls

(RPCs) with two-sided RDMA datagrams to process distributed

in-memory transactions. In FaSST, locking is done with CAS, rely-

ing on aborts and retries upon failure (very similar to [62]). Li et

al. propose an abstraction of remote memory as a lightweight file

API using RDMA [38], while Dragojević et al. propose distributed

platform with strict serializability by leveraging RDMA and non-

volatile DRAM [19]. HERD [31] is a key-value store that makes an

unconventional decision to use RDMA writes coupled with polling

for communication rather than RDMA reads. They achieve higher

throughput by using Unreliable Connection (UC), which unlike

Reliable Connection (RC), does not send acknowledgement (ACK-

/NAK) packets. Their approach is, however, inapplicable to our

setting, as all RDMA-based DLMs (including ours) rely heavily on

atomic verbs to avoid data races, and RDMA atomic verbs are only

available with RC. (Data races can happen with other RDMA verbs.)

Reducing Tail Latencies— A key advantage of DSLR is drasti-

cally reducing tail latencies by eliminating starvation. There are

other approaches for reducing tail latencies, such as variance-aware

transaction scheduling [26, 27], automated explanation [64] or di-

agnosis [43, 44] of lock-contention problems, redundant computa-

tions [21, 60], and choosing indices that are robust against workload

changes [45]. All of these approaches are orthogonal to DSLR.

Coordination-free Systems— Bailis et al. [10] show that preserv-

ing consistency without coordination is possible when concur-

rent transactions satisfy a property called invariant confluence. Our
decentralized algorithm improves the concurrency of distributed

systems by allowing a faster coordination in lock management with-

out imposing any extra conditions. In other words, our approach

is much more general and does not require that the transactions

satisfy invariant confluence.

8 CONCLUSION
In this paper, we presented DSLR, an RDMA-based, fully decentral-

ized distributed lock manager that provides a fast and efficient

locking mechanism. While existing RDMA-based distributed lock

managers abandon the benefits of global knowledge altogether

for decentralization, DSLR takes a different approach by adapting

Lamport’s bakery algorithm and leveraging the characteristics of

FA verbs to sidestep the performance drawbacks of the previous

CAS-based protocols that suffered from lock starvation and blind re-

tries. DSLR also utilizes the notion of a lease to detect deadlocks and

resolve them via its advisory locking rules. Our experiments demon-

strate that DSLR results in higher throughput and dramatically lower

tail latencies than any existing RDMA-based DLM.

Our future plan is to integrate DSLR into an existing, open-source

distributed database, and study new recovery algorithms enabled

by a fully decentralized and RDMA-based locking service.



Distributed Lock Management with RDMA: Decentralization without Starvation SIGMOD’18, June 10–15, 2018, Houston, TX, USA

A APPENDIX
Our appendix provides supplementary experiments for interested

readers. Appendix A.1 provides examples for different types of lock

starvation. Appendix A.2 provides a formal proof of DSLR’s star-

vation freedom. Appendix A.3 describes the exponential random

backoff technique that DSLR utilizes. Appendix A.4 studies the per-

formance of DSLR under varying degrees of skew and contention.

Appendix A.5 demonstrates the effectiveness of the random back-

off strategy with DSLR. Appendix A.6 shows the impact of lease

times on DSLR’s ability to handle transaction failures. Appendix A.7

demonstrates the efficiency of dynamic internal polling with DSLR.

A.1 Examples of Lock Starvation

0L R1Node 3
1. CAS(L, [0,0], [3,0])

2. L = [0,R1]

Node 3

3. More 
shared 
locks4. CAS(L, [0,R1], [3,0])

5. L = [0,R2]
0L R2

Figure 12: An example of a reader-writer starvation.
In this section, we provide concrete examples of reader-writer

and fast-slow starvations discussed in Section 3.1. Figure 12 demon-

strates an example of a reader-writer starvation. Here, the function

CAS (L, current , new) changes the value of the lock object L to new
only if the current value of L is current , and the function returns

the actual value of L that it obtains from the comparison (same

as how RDMA CAS works). Suppose node 3 (acting on behalf of a

transaction) tries to acquire an exclusive lock on a lock object L
by setting its exclusive portion to 3 with CAS, assuming there are

currently no locks on L. Unfortunately, there are already R1 shared
locks on L; hence, CAS fails and node 3 retries CAS with the value

of R1 for the shared portion of L. However, these additional CAS
calls can still fail if a stream of new shared locks arrive between

consecutive CAS calls, as depicted in Figure 12.

2L 0Node 1
1. CAS(L, [0,0], [1,0])

2. L = [0,R1]

Node 1
4. CAS(L, [2,0], [1,0])

5. L = [0,0]
0L 0

Node 1
7. CAS(L, [0,0], [1,0])

8. L = [2,0]
2L 0

3. Node 2 
unlocks

3. Node 2 
locks

Figure 13: An example of a fast-slow starvation.

Similarly, Figure 13 illustrates an example of a fast-slow starva-

tion. In this case, node 1 continues trying to acquire an exclusive

lock on a lock object L; however, it always fails because node 2 can
always acquire and release locks on L faster than node 1.

A.2 Proof of DSLR’s Starvation Freedom
In this section, we provide a formal proof that DSLR is starvation-free.

Definition 1. Lock starvation. A lock starvation is a situation

where a transaction is indefinitely unable to acquire a lock on a

desired object, due to a locking protocol that allows subsequent

transactions to acquire the lock before the current one.

Lemma 2. If a transaction Ti arrives at time i and receives a ticket
ti = {ti (X ), ti (S)} for a lock object L, for any subsequent transaction
Tj that arrives later than Ti (i.e., j > i) for L, its ticket tj has a value
that satisfies the following two conditions:

tj (X ) > ti (X ) OR tj (S) > ti (S) (1)

and
tj (X ) ≮ ti (X ) AND tj (S) ≮ ti (S) (2)

Proof. Transaction Ti increments one of the next ticket num-

bers of L (i.e., L(maxS) for shared or L(maxX) for exclusive) by 1 with

FA. Due to FA being an atomic operation, the next transaction (i.e.,

Ti+1) will also increment one of the next ticket numbers by 1, re-

ceiving the ticket ti+1 = {ti (X ) + 1, ti (S)} or {ti (X ), ti (S) + 1}. Since

all subsequent transactions follow the same protocol in DSLR, the

ticket numbers will increase monotonically. This guarantees that

any subsequent transaction Tj will receive a ticket tj with one of

its ticket numbers larger than that of ti (Eq. 1). At the same time,

the shared and exclusive ticket numbers of tj are both no less than

the ticket numbers of ti (Eq. 2). □

Theorem 3. DSLR is starvation-free.
Proof. Suppose DSLR’s locking protocol is not starvation-free.

LetTi be the transaction with the minimum ticket ti = {ti (X ), ti (S)}
that is being starved from acquiring a lock on L. All transactions
arriving after Ti will get larger ticket numbers than ti according to

Lemma 2. These later transactions cannot proceed to acquire the

lock ahead of Ti , until Ti increments the global counters of L upon

releasing its lock, as shown in Algorithm 1 and 3. Eventually, all

transactions with ticket numbers smaller than ti will acquire and
release the lock, incrementing the global counters of L, which would
allow Ti to acquire the lock. Even if any of the prior transactions

fail to increment the global counters of L (e.g., due to deadlocks), it

will be detected byTi or other subsequent transactions based on the

lease expiration logic. In such a case, the values of L will be reset,
as described in Section 4.7. This allows Ti to retry and eventually

acquire the lock. Therefore, Ti can acquire a lock L, which is a

contradiction. □

A.3 Exponential Random Backoff
Exponential random backoff is a widely-used technique in network-

ing literature (e.g., they are used in the IEEE 802.11 protocol [13]) to

resolve network collisions. The idea is to progressively wait longer

between retransmission of data in case of a network collision. We

discovered that adopting the exponential random backoff idea in

DSLR is quite effective at resetting the value of a lock object for

overflow prevention, transaction failure, and deadlock.

In particular, we utilize a truncated binary exponential random

backoff (BEB). When our algorithm detects a possible overflow

or transaction failure/deadlock from the value of a lock object or

its expired lease, the lock manager waitsW microseconds before

retrying the lock request, whereW is drawn uniformly at random

from the following interval:

[0,min(R × 2c−1,L)]

where R is a default backoff time (10 microseconds in our experi-

ments) and c is the number of consecutive deadlocks/timeouts for
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the current lock object. We also impose a maximum value L to

prevent an unlucky node from waiting too long, even when c is
large (L=10,000 µs =10 ms by default).

A.4 Performance Study with Microbenchmark
For finer control over the workload parameters, we used our mi-

crobenchmark in a series of experiments to study the impact of

various parameters on DSLR and other baselines. Here, each DLM

instance hosted 100 million lock objects. Each transaction consisted

of a single lock request, where the target object and the lock type

(i.e., shared or exclusive) were both chosen randomly. Each time,

we chose a shared lock with probability ρ and an exclusive one

otherwise. We used ρ = 0.5, unless specified otherwise. To emu-

late a skewed distribution, the objects were chosen according to a

power law distribution with exponent α . We varied α from 1.5 (less

skewed) to 3 (more skewed).

First, we varied the exponent of the power law distribution α ,
while keeping the ratio of shared locks at 50% (i.e., ρ = 0.5). Fig-

ure 14 shows the throughput, average latencies, and tail latencies

of DSLR versus other baselines. The larger the exponent, the more

skewed the distribution, and the higher the contention (i.e., fewer

popular objects). As contention rose, the throughput dropped for all

algorithms. Compared to baselines, DSLR was more robust against

increased contention (i.e., a moderate decrease in throughput). DSLR

also delivered the lowest average and 99.9% tail latencies across all

contention levels.

Among other baselines, N-CoSED and DrTM were affected the most

by the increase in access skew (and thereby higher contention).

N-CoSED suffered from having to use both CAS with blind retries and

extra messaging with SEND/RECV. The reason for DrTM’s lower per-

formance was slightly different. Due to its reliance on a lease, DrTM

forces transactions to wait for an existing lease to expire before

acquiring an exclusive lock whenever the object has an existing

shared lock (and lease). This severely impacted performance, when-

ever there were exclusive locks waiting for shared locks. Note that

DSLR uses a lease differently, i.e., only to determine transaction fail-

ures. To confirm this, we ran another experiment where we varied

the ratio of shared locks while fixing α to be 2. The results are

shown in Figure 15.

Due to the aforementioned reasons, the performance of DrTM

dropped significantly as soon as there were shared locks (since

exclusive locks started to wait for the leases from shared locks).

However, its performance became better than all other baselines

when the workload became read-only (i.e., ρ = 1). This is because, in

that setting, there were no more exclusive locks to wait on existing

leases. Also, with no exclusive locks, DrTM required less number of

RDMA operations than other protocols as DrTM only uses 1 CAS for

locking and no operations are required for unlocking shared locks.

Except for this special case (i.e., read-only workload), DSLR demon-

strated better overall performance than other baselines across all

configurations that we tried.

A.5 Effectiveness of Random Backoff
To study the effectiveness of the random backoff strategy in DSLR,

we conducted additional experiments with TPC-C. We used the

setup with much higher contention than the high-contention setting

in Section 6.2. Out of 32 nodes, we had a single dedicated node,

which hosted one warehouse, that served all lock requests, and used

the remaining 31 nodes to generate lock requests. We varied the

maximum backoff time (i.e., L in Appendix A.3) from 10 to 10,000

µs, while fixing the default backoff time (i.e., R) to 10 µs.
Figure 16 shows the throughput of DSLR with different maxi-

mum backoff times. Throughput was very low as the setup had an

extremely high contention. There was a clear difference in through-

puts between the maximum backoff of 100 µs and 1,000 µs. Results
showed that DSLR experienced a very hard time in resetting counters

with a maximum backoff time of less than 1,000 µs. As soon as the

counters of objects reached COUNT_MAX, the throughput plummeted

as DSLR kept failing to reset counters.

Once DSLR was provided with enough time to reset counters on

lock objects (i.e., L ≥ 1,000 µs), its throughput was stabilized with

DSLR successfully resetting counters as required. This experiment

shows that the random backoff strategy is effective for resetting

counters in DSLR even under extremely high contention settings.

A.6 Lease Time and Transaction Failures
We studied the impact of lease times on DSLR’s ability to handle

transaction failures. Transactions may fail due to client or appli-

cation error, network problems, or even node failures. Again, we

used TPC-C in a high contention setting, but intentionally made a

transaction fail, without releasing its acquired locks properly, with

probability p. We experimented with p=0.1%, 1% and 10%. We also

varied DSLR’s lease time from 10µs to 10,000µs and used the fixed

lease time for this experiment. Figure 17 and 18 show the through-

put and transaction abort rates under these different configurations.

When the lease times were 10µs and 50µs, transaction abort rates

were high and throughputs were low, confirming that too short of

a lease time can lead to unnecessary aborts and hurt performance.

However, too long of a lease time was more problematic (i.e., ≥ 500

µs), since it forced transactions that could have been aborted and

retried to wait unnecessarily long. This had a cascading effect on

other transactions, which in turn waited for objects held by those

transactions. This resulted in a decreased throughput. The optimal

lease time in this experiment was around 100 µs. However, note
that the failure rate of transactions in real-world (and especially

in rack-scale computing) is typically much lower than what we

used in this experiment. In general, the lease time should be chosen

conservatively in order to avoid premature aborts. This is why DSLR

uses a lease time of 10 milliseconds by default. Together with the

previous experiment in Section 6.5, this experiment shows that

the lease time should be tuned according to the workload and the

environment for an optimal performance in face of transaction

failures.

A.7 DSLR with Dynamic Interval Polling
DSLR uses READ for polling. To prevent DSLR from congesting the net-

work with excessive READ operations, especially in high-contention

scenarios, we use a dynamic interval polling (see §4.6 for details)

rather than a naïve busy polling. To study the effectiveness of

this technique, we evaluated DSLR with dynamic versus naïve busy

polling. For finer control over the contention level, we modified the
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Figure 14: Performance of different algorithms under the microbenchmark with varying degrees of skew (α ).
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Figure 15: Performance of different algorithms under the microbenchmark with varying degrees of contention.
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Figure 16: Throughput with different maximum backoff
times under an extremely high contention.
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Figure 17: Impact of lease time on throughput.

high-contention TPC-C setting (described in Section 6.2) by intro-

ducing a delay between sending consecutive transactions from 0

(more contention) to 100 (less contention) milliseconds.

Figure 19 shows DSLR’s transaction throughput against the per-

centage of RDMA capacity used in these scenarios. We measured

the maximum RDMA capacity (i.e., the maximum number of RDMA

operations the cluster can perform) of the network usingMellanox’s

Perftest package [9]. Even with busy polling, DSLR used less than

15% of the available capacity. DSLR’s utilization of the network was

considerably reduced with the use of our dynamic interval polling,

to a little over 5%. Interestingly, DSLR was even able to achieve a
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Figure 18: Impact of lease time on abort rate.
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Figure 19: Transaction throughput and % of the RDMA net-
work capacity used by DSLR with dynamic vs. busy polling.

slightly better throughput with dynamic polling, due to the re-

duction of unnecessary READ operations. This experiment shows

that dynamic interval polling enables DSLR to retain its locking

performance while reducing unnecessary READs.
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