Fair Cloud

Sharing Cloud Networks across Multiple Entities

Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia Ratnasamy, Ion Stoica

The Problem

- Unlike CPU or memory, network is shared in a **best-effort** manner in the cloud
 - » Lack of predictability hurts applications
- Network sharing is difficult
 - » Usage Attribution
 - » Distributed Resource
- Objective
 - » Meaningful sharing of cloud networks

Requirements

1. Minimum Bandwidth Guarantee

» Captures the desire of tenants to get performance isolation for their applications

2. Aggregate Proportionality

» Captures payment-proportionality

3. High Utilization

» Provides incentives such that throughput is only constrained by the network capacity

Design Space

- Strategy-Proofness: Tenants cannot game allocations
- Symmetry: Allocation in any direction of a link is same
- Work Conservation: 100% utilization of bottlenecks
- Independence: Allocation on any link does not depend on allocation in another

Per Endpoint Sharing (PES)

- Associate weights to VM-VM communications
- Proportional allocation
- Weight of link A-B is $W_{A-B} = \frac{W_A}{N_A} + \frac{W_B}{N_B}$

PES Variants

1. Link PES

- » N_A : Number of VMs A communicates with on link L
- » Can be implemented in local switch
- » Weights differ on a link to link basis

2. Network PES

- » N_A : Number of VMs A communicates with in the entire network
- » Constant weights across all links, can be implemented using CSFQ

Comparison

	Strategy- Proofness	Symmetry	Work Conservation	Independence
Per-Flow	×	/	✓	✓
Per-Source	×	×		
Oktopus	✓	✓	×	
Link PES	×	/		
Network PES	✓	✓		×

Implementation

- Flow-level simulator
 - » Approximates TCP flow/congestion control
 - » Initially compared 13 different strategies
 - » ~4000 SLOC in Java
- Click implementation of Network PES using WFQ
 - » 15 node DETERlab testbed
 - ~ 1000 SLOC in C++/Python

Results

Figure: Simulation & DETER results showing tenant shares of the aggregate bandwidth in an eight-node three-level oversubscribed tree. Each tenant has four unicast flows through the core.

Figure: Simulation results showing tenant shares of the aggregate bandwidth in an eight-node three-level full bisection bandwidth tree. Each tenant is performing MapReduce shuffle with four mappers and four reducers.

Future Work

- Implement Network PES using CSFQ to avoid per-router state
- Simulate MapReduce trace from Facebook to compare different strategies