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ABSTRACT

The network is a crucial resource in cloud computing, but
in contrast to other resources such as CPU or memory, the
network is currently shared in a best effort manner. How-
ever, sharing the network in a datacenter is more challeng-
ing than sharing other resources. The key difficulty is that
the network allocation for a VM X depends not only on the
VMs running on the same machine with X, but also on the
other VMs that X communicates with, as well as on the cross-
traffic on each link used by X. In this paper, we first propose a
set of desirable properties for allocating cloud networks with
fairness and show that there exist multiple tradeoffs between
some of these properties. Second, we show that the existing
allocation models violate one or more of these properties,
and propose a flexible mechanism that can be tuned to select
different points in this tradeoff space.

1. INTRODUCTION

Cloud computing is becoming increasingly popular
for deploying and running many of today’s businesses.
Core to cloud computing is the ability to share and
multiplex resources across users. While there has been
significant work on sharing CPU, memory or storage,
cloud networks are shared in a best-effort manner mak-
ing it hard for both users and cloud operators to reason
about how network resources are allocated.

The traditional networking literature is rich with strate-

gies for sharing individual links. These strategies, how-
ever, were generally aimed toward sharing access links
that connected end hosts to the Internet, because access
links are typically the bottlenecks. Unlike the Internet,
a user can rent multiple virtual machines (VMs) in the
cloud; consequently, sharing the network is not limited
to individual links any more. It becomes challenging
because it differs from independent resources like CPU,
memory or storage in several key ways: network usage
attribution involves at least two parties (the source and
the destination), it is a distributed resource and thus
cannot easily be divided, and network shares of a user
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on individual links depend on the communication pat-
terns and VM placements of other users. Given these
characteristics, the traditional notion of fairness on a
single link cannot be used in cloud networks.

In this paper, we explore the notion of fairness in
cloud networks. We define fairness across network shares
to have several primary attributes: work conservation
to completely utilize available resources, weight propor-
tionality to give a notion of prioritization across differ-
ent users with different payments, strategy-proofness to
disallow cheating, and envy-freeness to ensure user sat-
isfaction. In addition, given the distributed nature of
the network, we consider symmetry to be able to cal-
culate shares without explicit knowledge of the applica-
tions, independence between shares in individual links
to maximize utilization and limit cheating, and finally,
the amount of guaranteed minimum bandwidth to pro-
vide users with an upper bound on their communication
time. Section 3 discusses these properties in detail.

We show that there are inherent tradeoffs between
different sets of these attributes (e.g., envy-freeness vs
work conservation, work conservation vs strategy - proof-
ness vs independence, and weight proportionality vs
guaranteed bandwidth). We also explain how each of
the existing network sharing mechanisms (e.g., TCP-
based per flow sharing, per source [17] or per destina-
tion [19] sharing, static allocation schemes [4,11]) have
implicitly chosen their corners.

Given the knowledge of various tradeoff spaces, we
propose Per Endpoint Sharing( PES) that primarily aims
toward high resource utilization (by picking work con-
servation) and prioritization (by choosing weight pro-
portionality). We also propose two variants of PES,
LinkPES that calculates weights based on information
on individual links and favors independence, and Net-
workPES that calculates weights in the network level
and chooses strategy-proofness.

We compare our proposed schemes against the exist-
ing ones through flow-level simulation and click-based
implementation to find that GlobalPES hits a sweet
spot in the solution space with minimal CPU overheads
and throughout loss.



Property || Definition

|| Motivation

B1l. Work If the traffic between VMs X and Y is bottle- || If this property is not satisfied, the network is not fully
Conservation necked at link L, then it should not be possible || utilized even when there is unsatisfied demand.

to increase the allocation for X — Y without

decreasing the allocation of another source-

destination pair using the same link.
B2. Weight On any congested link L actively used by a set || This property can be seen as providing network shares that
Proportionality T of VMs, any subset @Q C T that communi- are proportional to payment. For example, if all VMs have

cates only to other VMs in @ (i.e., Q does not
communicate with 7'\ Q) is allocated at least
a total share of Wq/Wr of the bandwidth,
where Wy, is the total weight of the VMs in
set @, assuming all VMs in @ have unsatisfied
demand. This allocation should occur regard-
less of the distribution of the VMs in the set
Q@ between the two ends of the link and of the
communication pattern over L.

A set of VMs @ should not be able to increase

equal weight and we have one tenant with k1 VMs and
another tenant with k2 VMs that compete over L, then
the ratio of the bandwidths allocated to them is ki /ka2.

B3. Strategy This property prevents VMs from obtaining an unfair

Proofness its bandwidth allocation to another set of VMs || bandwidth allocation with respect to competing VMs.

P by modifying its behavior at the application

level (e.g., using multiple flows or adopting a

different traffic pattern).
B4. Envy A tenant should not favour the allocation of a || This property entails that a tenant may not want to swap
Freeness different tenant with the same payment. its position with another.

Table 1: Fairness Properties of a Resource Allocation Mechanism

Before proceeding, we clarify some of the assump-
tions our work builds on. We assume an Infrastructure-

to consider both sources and destinations in making allo-
cation decisions, because both endpoints are benefitted.

as-a-Service (TaaS) model where users pay per VM [1].
Our discussion is agnostic to VM placement and routing
algorithms which we assume are implemented indepen-
dently, and we only consider network sharing in a single
datacenter. Finally, our discussion is largely orthogo-
nal to work on network topologies to improve bisection
bandwidth [2, 10, 12], as the possibility of congestion
(and hence the need for sharing policies) remains even in
full bisection bandwidth networks—e. g., many-to-many
communication, as in map-reduce, can congest the links
of source or destination VMs.

2. CHALLENGES SHARING NETWORKS

The network differs from other resources in terms of

usage attribution, divisibility, and the impacts of com-
munication patterns and VM placements on its divisi-
bility.
1. Usage Attribution: One can clearly attribute the
consumption of a unit of CPU or memory to a single
VM. In contrast, network communication involves at
least two VMs—a source and a destination. Which of
the two VMs should consumption be attributed to?

At one extreme, one can attribute consumption en-
tirely to the source and consequently make bandwidth
allocation decisions with respect to sources; at the other
extreme one might do the same with respect to destina-
tions only. Prior models for network sharing have often
implicitly assumed a particular design point; e.g., RSVP
[19] is destination driven, while Diffserv [13] and Sea-
wall [17] adopt a source-based approach. We argue that
the appropriate approach for cloud networks would be

2. Distributed Resource: For resources such as CPU
and memory, it is relatively easy to take the total ag-
gregate resource and divide it into smaller units (cores,
cycles, or pages) that can be independently allocated
to different VMs. The network however is formed by a
topology of interconnected links and thus is not easily
divisible into independent units for allocation. The net-
work allocation for a VM A depends on any VM whose
traffic shares a link with traffic to/from A.

3. Communication Patterns: A further complica-
tion is that a source (destination) VM may simultane-
ously communicate with multiple destination (source)
VMs; hence, one has to consider the broader commu-
nication pattern of a VM. The network allocation for a
VM depends on the other VMs it communicates with.
4. VM Placements: Finally, each host can contain
more than one VMs that share the access link band-
width of that host. As a result, the network share of
a VM can very well be determined by the other VMs
collocated with it.

3. PROPERTIES FORNETWORK SHARING

Existing cloud providers price VMs based on differ-
ent shares of CPU, memory and storage they provide
but leave network sharing to the underlying transport
mechanisms. We extend this model to associate a (posi-
tive) network weight to each VM and factor this weight
in their prices alongside other resources.! Using this

'We consider the problem of appropriate placement of VMs
based on their desired shares/application level requirements
to be an orthogonal issue because private clouds already
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Definition

|| Motivation

El. Symmetry

Assume all links in the network have the same
capacity in both directions. If we switch the
directions of all flows in the network, then the
reverse allocation of each flow should match
the original (forward) allocation of that flow.

Existing allocation models make an implicit assumption
as to whether the allocation is receiver or sender centric;
however, in general, it is difficult to anticipate application-
level preferences. For example, server applications might
value outgoing traffic while client applications might value
incoming traffic. In the absence of application-specific in-
formation, we prefer allocations that provide equal weight
to both incoming and outgoing traffic.

E2. Independence

The bandwidth allocations for a VM along
two paths that share no congested links should
be independent. In particular, if a VM sends
traffic on an uncongested path, this should not
affect its traffic on other congested paths.

This is a property that is satisfied in today’s Internet.
Lack of this property would lead to inefficient utilization;
for example, an endpoint might refrain from sending on
an uncongested path in order to get a larger traffic share
on a different congested path.

Note: This property also comes into play between
network-level allocation and link-level allocation, any link-
level allocation has this property, while network level al-
locations tend not to have it.

E3. Guaranteed
Bandwidth

Each VM X is guaranteed a bandwidth allo-
cation of Bp,inx, as if X were connected by
a link of capacity Binx to a central switch
with infinite capacity to which all other VMs
are also connected (see Fig. 1). This is also

There is a lower bound on the bandwidth allocated to
X regardless of the traffic demands and the communica-
tion patterns of the other VMs. This property enables
predictability in tenant applications. For example, if one
knows the communication pattern between her VMs, she

known as the hose model [7].

can select the weights accordingly and predict the applica-
tion performance. Higher guaranteed bandwidths provide
stronger incentives for tenants to rent VMs with higher
weights.

Table 2: Desirable properties for sharing Network Bandwidth

model as a starting point for sharing cloud networks,
we consider its design implications without making any
claims about its superiority.

With the notion of explicit payment for the network
in place, we seek desirable properties that a mecha-
nism to share the network should provide. We clas-
sify such properties into two categories. The first set,
Table 1, enlists the properties that are common for
fair allocation of any resource. Work conservation il-
lustrates the efficiency of a resource allocation mecha-
nism to not waste resources if there exists a demand for
them. Weight proportionality is the ability of a mecha-
nism to bind resource allocations to weights (payments)
and provide at least a share that conforms with its pay-
ment. Such a mechanism should also be strategy-proof
against application-level tricks played by users to in-
crease their allocations. Finally, envy-freeness implies
that between two tenants paying equally, the alloca-
tions of one is not better than that of the other. It
is important to note that while weight proportional-
ity compares different points in the weight spectrum
and compares the relationships between resource allo-
cations and corresponding weights, envy-freeness com-
pares resource entitlements for different entities at the
same weight.

However, for a distributed resource like the network,
where (i) a network-wide allocation is a conglomerative
result of allocations in multiple links, and (i) which

allow users to specify custom placement constraints, and
public cloud providers might support that as well in the
future.

cannot be attributed to a single entity (source or des-
tination), any network sharing mechanism must satisfy
some additional properties (Table 2) as well.

For resources like CPU or memory, weighted maz-min
fairness satisfies all of the basic properties; however,
there is no clear way to achieve the same fairness at-
tributes for the network. Many of these properties pos-
sess inherent tradeoffs, and it comes down to selecting
the properties that are more desirable than the others.
To this end, we try to formalize the tradeoffs between
some of these properties in the remainder of this sec-
tion. For simplicity, assume the network weight of each
VM to be 1.

Tradeoff 1. Envy-Freeness vs. Work Conserva-
tion: We argue that considering VM placements to be
outside the scope of a network sharing mechanism cre-
ates a strict tradeoff between envy-freeness and work
conservation. Consider a tree topology for the data cen-
ter network, and two tenants, 77 and T5 each having x
VMs, with 77 having all its VMs on the left sub-tree and
T, having all its VMs on the right subtree. If another
tenant, T3 is also placed along with 77, it competes for
T1’s network share thereby decreasing it, whereas T5’s
share does not change if we want to be work conserving.
In such a scenario, T7 envies T5.

Tradeoff 2. Work Conservation vs. Strategy-
Proofness vs. Independence: There exists a three-
way tradeoff between the desired properties of work-
conservation, strategy-proofness and independence prop-
erties. A mechanism that tries to be resilient to the
different communication patterns exhibited by different
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Figure 1: Model for Guaranteed Bandwidth.

tenants will need to perform a global optimization by
allocating bandwidth at a network level rather than at
the level of each congested link, and thus violate the
independence property. In such a scenario, the entitle-
ment of a VM for one of its communications depends
on its usage across other communications. Both the
properties can be satisfied if a pre-determined share is
specified for every communication. However, this vio-
lates the work conservation property.

Tradeoff 3. Weight Proportionality vs. Band-
width guarantee: We observe another tradeoff be-
tween weight proportionality and minimum bandwidth
guarantee. Payment describes the degree of correla-
tion of the bandwidth allocation with weights. Band-
width guarantee, on the other hand, enables predictabil-
ity for the applications deployed in clouds. For exam-
ple, if a user rents two VMs (A and B), she receives a
lower-bound on the bandwidth that will be allocated
for the traffic between the two VMs, irrespective of
the communication demands of the other VMs in the
network. The guaranteed bandwidth in this case is
min(Bmina, Bming). Asshown in Figure 1, this is equiv-
alent to network shares provided by a star-topology net-
work where each VM is connected to a central switch
using a link with capacity equal to that of the VM’s
minimum guaranteed bandwidth. If allocations were to
be strictly bound to the weight, then the network share
of one particular VM can become arbitrarily small with
the increasing weights of its collocated VMs.

The example in Figure 2 helps illustrate this tradeoff.
A and B are two VMs collocated on the same server, and
A communicates with one other VM while B communi-
cates with 10 others. Let all VMs have unit weights. If
we consider a proportional allocation, A gets only 2/13
of the access link (as there are 13 VMs in total com-
peting for the access link). It is easy to see that if B
communicates with more VMs, A’s share of its access
link would further decrease. A strictly monotonic al-
location might provide a larger share of the access link
capacity to A compared to a proportional allocation, but
it would also reduce A’s share when any of the remote
hosts communicating with B increase their weight.

However, in a different model that satisfies only mono-
tonicity, A could be guaranteed a sizable fraction of its
access link capacity, regardless of the communication
pattern of B. For example, in a network with full bi-

Figure 2: Sharing the access link of one machine.

section bandwidth, A could be guaranteed half of the
access link capacity to communicate with other VMs in
the network. In this case, the flows of A and B would
each get % of the access link, which is not achievable
while having strict monotonicity, let alone proportion-
ality. Thus, one can achieve higher bandwidth guaran-
tees but be less sensitive to weights, or respect weights
strictly on each link but provide very small bandwidth
guarantees.

Strictly speaking, the guaranteed bandwidth prop-
erty is achieved by any allocation, since the number of
contenders is always bounded in practice (e.g., even
with a per flow allocation, there is a practical limit
to the number of flows used). Ideally, we would like
the minimum bandwidth guarantee to be comparable
to the bisection bandwidth of the network divided by
the number of VMs in the network, i.e., if we increase
the network size and scale the bisection bandwidth by
a similar factor, then the guaranteed bandwidth would
remain the same. We also note that preserving the value
of the guaranteed bandwidth during one VM’s lifetime
relies on a form of admission control of VMs and weights
into the network.?.

4. PER ENDPOINT SHARING (PES)

Given the desirable properties and tradeoffs between
them, we seek to explore some points in this design
space. First and foremost, we select work conservation
against enwvy-freeness with the belief that efficient uti-
lization of network bandwidth is of utmost importance.
With this preference, we present Per Endpoint Sharing
(PES), a flexible mechanism to share cloud networks
that enables us to achieve different points in the other
two tradeoffs. We build on the premise that a com-
munication between two VMs should be attributed to
both the sender and the receiver, and thus a natural ap-
proach is to assign each source-destination pair a weight
based on the weights of both the source and the desti-
nation, i.e., Wg_p = f(Ws,Wp), where Wy is the
weight of endpoint S. To satisfy the symmetry prop-
erty, the weight of the allocation should be the same in
both directions, i.e., Wa_p=Wpg_4.

Per Endpoint Sharing (PES) is a mechanism
that assigns to a communication between VMs A and

2The number of VMs per server is anyway limited by the
number of CPUs, memory, etc.
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Figure 3: Sharing a single link, examples. A
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ing them represents a communication. Each VM
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B on link L a weight of:

Wa_p = IJ/I\% + I]/I\% (1)
where N4 is the number of other VMs A is communi-
cating with (similarly Ng). On a particular link, the
weights are normalized by dividing them with Wy, the
total weight of all communications on that link. The
share of a particular tenant with VMs {A1,4,...,4,}
is then,
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In this way, PES achieves weight proportionality as
described in Table 1. For example, consider Figure 3 (c)
and assume that all VMs have unit weight. PES would
assign weights of 1.5, 1.5, and 2 to A-D, B-D, and C-E,
respectively. So the flows between A-D and B-D would
receive 1—55 of the link capacity, since D’s weight is split
across its two flows. In Figure 3 (d), PES would assign
weights of 1.5, 1.5, and 1 to A-C, B-D, and A-D, respec-
tively. The flow between A and D would then receive i
of the link capacity.

Note that a drawback of the PES mechanism, com-
mon to all mechanisms that compute a static weight
for each source destination pair, is that the properties
exhibited by the allocation are different for different de-
mands. For example, consider Figure 3 (c) and assume
that all VMs have unit weight. If the flow between A and
D has a very small demand ¢ the allocation between B-D
and C-E will respect the ratio of 1.5/2 instead of a more
desirable 1/1 ratio. Clearly, this could be addressed if
we also take into account the actual demands, however,
such a mechanism will in practice be more difficult to
apply, and we leave its exploration to future work.

Table 3 illustrates how PES satisfies the properties
discussed in the previous section. Note that the the-
oretical bandwidth guarantee offered by PES is small
since, in the worst case, one VM might have to divide
its access link fairly with all the other VMs in the net-
work. However, if the congestion is in the center of the
network (as it typically occurs) and the routing can bal-
ance the traffic across all available paths, a VM would

in fact get its fair share of the bisection bandwidth.

We return to the Equation (1), and specify two differ-
ent strategies for the computation of N4 and Ng that
lets us achieve two points in the tradeoff space. In the
first strategy, LinkPES, we chose N4 (similarly Ng),
to be the number of VMs A talks to on a link to link
basis. This enables the links to compute N4 (and Np)
locally for each of the communications and do weighted
fair queueing to give appropriate shares. However, this
also means that the weight of a communication can ar-
bitrary vary from one link to the other.

In the second strategy, NetworkPES, we choose N4 to
be the number of VMs A talks to in the entire network.
This implies that switches need to know the weight for a
particular communication and cannot locally compute
it, however this ensures that a communication has the
same weight across all links, and can thus be approxi-
mated using Core-stateless fair queueing.

We observe that since the weights in LinkPES only
depend on the communicating VMs on a single link and
is oblivious to the allocations at other links, it is able
to satisfy the independence property. However since in
NetworkPES, the weight of a communication depends
on parameters that are global in nature, it voids inde-
pendence across paths i.e., , a VM talking to N other
VMs can increase its weight on remaining N — 1 com-
munications by ceasing to communicate with one of the
VMs. In this way, these two policies align themselves
at the opposite ends of the strategy-proofness vs. inde-
pendence tradeoff.

We observe that NetworkPES can provide a worst-
case bandwidth guarantee of V(%’ where Wr is the to-
tal weights of the VMs in the network. If we consider
a particular VM-VM communication, A-B, and another
VM C, is co-located with A and is communicating with
all the VMs in the network, then the share of A-B can
go down to WLT Intuitively, to offer higher worst case
bandwidth guarantees, we would like to give higher im-
portance to some VMs compared to others based on the
“importance” of the link with respect to the VMs. For
example, on the access link of one host, we would like
to divide the link in a proportion closer to the VMs on
that host rather than to the remote VMs.

To this end, we generalize PES to Wa_gp =Wpg_a =
ozvj\[;—j + ﬁvj\‘?—BB. The coefficients o and S provide the
ability to weight differently the VMs located on the two
sides of the link: « is applied to all the VMs on one
side of L while 8 to the VMs on the other side. In
this way, the weights of the VMs on one side of L can
be scaled up/down or even completely disregarded by
using different values for o and .

By setting specific values for « and g at different links
in the network, one can use the generalized PES mech-
anism to achieve different design points along the the
described tradeoff, trading bandwidth guarantee with



Property \ Mechanism [ PerFlow | PerSource | Static Allocation | LinkPES | NetworkPES |

B1l. Work Conservation

B2. Weight Proportionality

B3. Strategy-Proofness

B4. Envy-Freeness

v

X X

X X

X X
El. Symmetry v/ X
E2. Independence v/ N

v
X
X
X
i
v

E3. Guaranteed Bandwidth None

Very small

e <] << %

act Very small Small

Table 3: Properties achieved by different network sharing mechanisms. The guarantees are discussed in the context

of a tree-based topology.

weight proportionality. For example, consider the fol-
lowing mechanism, called OSPES henceforth, applica-
ble to tree-based topologies (e.g., traditional datacen-
ter architectures, VL2 [9], fat-trees [2]). OSPES sets
a =1 and =0 for all links in the tree that are closer
to A than B and @ = 0 and 8 = 1 for all links closer
to B than A. Essentially, OS PES translates into apply-
ing per source fair sharing for the traffic towards the
tree root and per destination fair sharing for the traffic
from the root. In a full bisection bandwidth network,
each VM is guaranteed a bandwidth that represents its
fair share of the access link when competing only with
the other VMs collocated at the same host and not on
the entire network with the assumption that the total
weight of the VMs collocated on each host is the same
throughout the network.

Lastly, we note that one might consider as alternative
to PES to apply max-min [5] at the granularity of VMs
(max-min is the most common mechanism for allocat-
ing bandwidth between flows). Max-min fairness could
be applied at the granularity of VMs by maximizing
the minimum allocation for the traffic sent or received
by any VM. For example, assuming equal weight VMs
and infinite traffic demands in Figure 3 (b), VMs A, B, E
and F would each get an equal allocation to send/receive
1/4 of the link capacity. While this approach is fair at
the VM level and it satisfies the symmetry property, it
may lead to some flows not getting any traffic at all,
which would violate the non-zero flow allocation prop-
erty. For example, in Figure 3 (d), per VM max-min
fairness would allocate one half of the capacity to the
flows between A and C and one half to the flows between
B and D. This is a perfect distribution of the capacity
between the VMs (each would send/receive an equal
amount), but there is no traffic between A and D. This
allocation is also not strictly monotonic and does not
provide adequate bandwidth guarantees.

S. ALTERNATIVES TO PES

Traditional approaches to network sharing range from
using TCP-based fairness across multiple flows in one
extreme to static allocation across the whole network
in the other. In this section, we compare LinkPES and
NetworkPES with their counterparts and compare all

of them (Table 3) in the light of the properties and
tradeoffs defined in Section 3.

5.1 Per Flow Sharing and Variants

The traditional approach to sharing network resources
is to perform per flow fairness, where a flow is char-
acterized by the standard five-tuple in packet headers.
However, per flow allocation could lead to unfair band-
width allocation at the VM (endpoint) granularity [6].
Indeed, two VMs can increase the traffic allocation be-
tween them at the expense of other VMs by simply in-
stantiating more flows. Thus, a fundamental weakness
of the per-flow model is that a user has a strategy to
increase the traffic allocation between a pair of his VMs
by instantiating multiple flows in order to compete un-
fairly with other users.

A natural workaround for the per-flow allocation un-
fairness would be to use a per source-destination pair
(per S-D pair) allocation model, where each source-
destination pair is allocated an equal share of a link’s
bandwidth regardless of the number of flows between
the pair of VMs. However, this model is still arguably
unfair, as a VM that communicates with many VMs
gets more bandwidth than a VM that communicates
with fewer VMs. For example, a user that employs
an all-to-all communication pattern between N VMs
will get a bandwidth share of O(N?), while a user that
performs one-to-one communication between the same
number of N VMs will get a share of only O(N). Fig-
ure 3 (a) shows one such example, where the allocation
of hosts A,B,E,F is twice that of hosts C,D,G,H.

5.2 Per Source/Per Destination Sharing

To address this problem, previous works have pro-
posed using a per source allocation model, e.g., Sea-
wall [17]. With such a model, sources communicating
over a given link are assigned equal weights, and the
traffic is divided fairly between sources. While this
model is fair to sources, it might not be fair to des-
tinations. For example, in Figure 3 (b) E and F receive
four times less traffic than D, and for traffic flowing in
the opposite direction, A and B receive four times less
traffic than C.

Similarly, while a per destination allocation model
has some desirable properties, such as providing protec-



Table 4: Compared Strategies

Notation Strategy Description

PerFlow TCP fair sharing between flows

PerSource Share calculated by the source
VM (i.e., Seawall [17])

LinkPES PES using local knowledge

NetworkPES | PES using global knowledge

Table 5: Compared Communication Patterns

Notation | Pattern Description

11 Each VM talking to one other VM

1N One VM talking to (N — 1) VMs

NN All VMs talking between each other

MR M VMs talking to R VMs (similar to
MapReduce shuffle)

tion against DoS attacks [18], it is not fair to sources.
Thus, these allocation models are asymmetric in that
they can only be fair with either sources or destina-
tions, but not both. Such allocation asymmetry is un-
desirable, as it implicitly assumes that the network has
knowledge about whether a VM values more the in-
coming or the outgoing traffic, which is not the case in
practice. All examples in Figure 3 (b), (c) and (d) suf-
fer from asymmetry, as the allocation for each host and
each S-D pair will be different along the two directions
of the link.

5.3 Static Allocation Model

Static allocation models [4,11] take an extreme ap-
proach, where individual S-D pairs have exact band-
width reservations. These models satisfy all the desir-
able properties except for work conservation, because
unused bandwidth is never redistributed. Unfortunately,
this results in underutilization of resources. Reservation
schemes result in fragmentation as well.

6. EVALUATION

While link-level behavior of different network sharing
strategies can be calculated analytically, how they actu-
ally perform across the network cannot. We performed
flow-level simulations and experimental evaluation us-
ing a kernel-level Click implementation to measure the
overheads of the proposed strategies as well as to com-
pare them against the status quo.

6.1 Simulation

To better understand the network-wide behavior of
different strategies, we have performed flow-level simu-
lation by varying weights of each tenant and their com-
munication patterns on three-level eight-node fat tree
(Figure 5) and oversubscribed tree (Figure 6) topolo-
gies. Table 4 summarizes the strategies we have com-

Figure 4: Links in LinkPES do not get to see
yellow flows and compute weight of each of red
flows as % + 1, giving the red tenant 4 times as
much share as the blue tenant on this link.

pared in these simulations, and Table 5 describes the
communication patterns we have considered. Result
discussed below are averaged over 500 simulation runs.
We summarize the highlights of the simulation results
shown in Figure 5 and Figure 6 in the following:

TCP is not an option: Without any notion of ten-
ant weights, TCP cannot reflect the payment in net-
work shares. For example, in Figure 5(e) and Fig-
ure 6(e), PerFlow is giving equal shares to each tenant
even though the second tenant has three times more
weight; this is true even when both the tenants have
the same communication pattern.

LinkPES fails in the presence of differing com-
munication patterns: Consider the scenario where
two tenants having the same number of VMs paying
the same amount exhibit different communication pat-
terns. Consider our 8-node tree toplogy with three lay-
ers and tenants, 77 and T with T} having a workload in
which each VM talks to another VM, whereas T5 hav-
ing a workload which constitutes all VMs talking to all
other VMs. Assuming a unit payment for every VM
for both the tenants, the scenario at the outward ac-
cess link is depicted in Figure 4, with T} in red and T3
in blue. Since, the link lacks the knowledge that each
of the seven red destinations are also receiving from
other sources, LinkPES assigns a weight of % to each of
T1’s communications giving 7T; a total weight, 8 com-
pared to T3’s total weight, 2 (Figure 5. This implies
that LinkPES is not strategy-proof with respect to the
communication pattern of tenant.

NetworkPES has maximum resilience: By incor-
porating the most amount of network knowledge from
both sources and destinations, NetworkPES allocates
shares that respect to tenant weights (e.g., Figure 5(b)
and Figure 6(f)). However, this strategy-proofness comes
at the cost of independence, since a VM may decrease
the value of N4 by talking to only a few other VMs,
thereby increasing its weight on all links.

For similar communication patterns both, LinkPES
and NetworkPES exhibit better weight propor-



Table 6: Experimental vs Simulated Shares

Strategy T1 (Mbps) | T2 | Ratio
PerFlow (Sim) 10 759 | 18.08
PerFlow (Exp) 35 662 | 18.91
NetworkPES (Sim) 127 672 5.29
NetworkPES (Exp) 110 583 5.30

tionality: In the same topology, consider 5 tenants
each having 8 VMs, 4 of them sending data to the to
other 4 VMs (similar to MapReduce shuffle), with the
payments made by the tenants for their VMs in the pro-
portion 1:2:3:4:5. Averaged over 500 runs, we observe
that both LinkPES and NetworkPES give better pro-
portionality compared to PerFlow or PerSource strate-
gies (Figure 7).

6.2 Experimental Results

To validate the simulation results, we have imple-
mented NetworkPES in the kernel mode using the Click
modular router (Figure 8) and evaluated it in the DE-

TERIab testbed using the same oversubscribed tree topol-

ogy used in our simulations. Each router implements
weighted fair queueing (WFQ) across all the active flows
using weights calculated at end host hypervisors by Net-
workPES. We encode the weight of a flow, computed
using NetworkPES, in the packet header.

6.2.1 Simulation Validation

We have recreated the simulation settings for Fig-
ure 6(a), Figure 6(b), and Figure 6(d) in DETERIab
and compared the experimental results with that from
simulation. For situations where both the tenants have
11 or NN communication patterns, experimental re-
sults were the same as simulation (i.e., both tenants
got equal shares). Table 6 compares the shares between
two tenants when the first has a 11 communication pat-
tern, while the second has NN. Note that the ratios
match perfectly, even though the aggregate bandwidth
do not since even without click, the measured maximum
throughput in this testbed is 89Mbps on 100Mbps ad-
vertised links. We discuss the overheads next.

6.2.2 Throughput and Overheads

While performing the aforementioned experiments,
we also collected data to compute the overhead and
throughput of our implementation on individual links
between VMs. We found CPU overhead to be less than
3% and throughput decrease due to our Click imple-
mentation less than 1 Mbps.

7. RELATED WORK

Recently, there have been a few proposals on how to
share the network within a datacenter. Seawall [17] pro-
poses to enforce fairness in hypervisors based on ECN
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Figure 7: Weight Proportionality in the pres-
ence of 5 tenants, each having 8 VMs and per-
forming a Map-Reduce style shuffle with 4 Map-
pers and 4 Reducers.

feedback from switches, however it uses per source shar-
ing. Gatekeeper [16] proposes a per-VM hose model
similar to our guaranteed bandwidth model for full bi-
section - bandwidth networks. Gatekeeper uses a hyper-
visor - based approach and provides guarantees for shar-
ing access links. We are currently investigating whether
some variants of our more general sharing mechanism
can be implemented in hypervisors as well.

Other related work propose bandwidth allocations at
the granularity of tenants rather than VMs. We divide
these approaches into two broad categories: (a) reserv-
ing virtual networks for each tenant [4,11] and (b) net-
work multiplexing along with per tenant weights [14].
We discuss these schemes below.

Reserving virtual networks per tenant as proposed by
Oktopus [4] and SecondNet [11] does provide bandwidth
guarantees, but only when communicating with other
VMs of the same tenant. More importantly, a reserva-
tion system does not achieve the Pareto Efficiency prop-
erty, since the unused bandwidth is not shared between
tenants. For small tenants in oversubscribed networks,
per tenant reservation can offer higher bandwidth guar-
antees than per VM sharing, by reserving clusters of
nodes that are collocated on the same or nearby racks.
However, per VM sharing discussed in this paper could
also be extended to offer different bandwidth guaran-
tees to different sets of VMs (e.g., VMs rented by the
same tenant vs. other VMs), when it is integrated with
VM placement. And while specifying a virtual topol-
ogy could provide fine grain control to users, the allo-
cation at a VM level is simpler. Users do not need to
also specify network topologies and to possibly update
them when adding new VMs (especially since adding
machines on a daily /hourly basis is common).

Schemes that advocate network multiplexing through
the use of per tenant weights (e.g., NetShare [14]) pro-
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Figure 5: Simulated aggregate bandwidths of two tenants on a eight-node three-level full bisection
bandwidth tree with 100 Mbps duplex links to end hosts. Each tenant has one VM in each host. P;
and W, denote the communication pattern and weight of Tenant i, respectively. Numbers on top of
the second tenant’s bars denote the ratio of aggregate network shares.
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Figure 6: Simulated aggregate bandwidths of two tenants on a eight-node three-level tree with
oversubscription ratios 1: 2 in the aggregation level and another 1: 2 in the core level (i.e., all links
are 100 Mbps duplex). Each tenant has one VM in each host. P, and W; denote the communication
pattern and weight of Tenant i, respectively.
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Figure 8: Click implementation of the WFQ
router used to evaluate NetworkPES in the DE-
TERIlab testbed.

vide a different set of properties than those that use
per VM weights. The number of tenant VMs that com-
municate over a congested link varies across links and
is not necessarily reflected by the per tenant weight,
which is a network wide constant. Thus, the proper-
ties achieved by a placement agnostic network sharing
mechanism are more difficult to understand.

8. CONCLUSION AND FUTURE WORK

In this paper we addressed the problem of sharing
cloud networks in a fair manner. To this end, we enu-
merated a set of desirable properties for achieving fair-
ness and identified several tradeoffs between some of
these properties. We observed that the tradeoff between
envy-freeness and work conservation is strict and pro-
posed Per Endpoint Sharing, a flexible mechanism that
allows us to select different points in the solution space

11

considering the tradeoffs between conflicting properties.

We want to naturally extend this model to MapRe-
duce workloads, considering each job to be a separate
tenant. Assuming a unit weight for each of the MapRe-
duce slots, today, a job with M map tasks and R reduce
tasks is given total share proportional to M x R during
the shuffle phase since it has M x R flows; however, the
total weight of the job’s resources is M + R. This im-
plies that network allocations are quadratic, and thus
bigger jobs (with more slots) get unfair advantage over
small jobs (with less slots). We plan to study the impli-
cations of our mechanism in this setting, and whether
it can help penalize small jobs linearly instead of by a
quadratic factor that exists today.
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