Sharing Cloud Networks

Lucian Popa, Gautam Kumar, **Mosharaf Chowdhury** Arvind Krishnamurthy, Sylvia Ratnasamy, Ion Stoica

State of the Cloud

Guess the Share

Alice : Bob = ? : ?

Challenges

Network share of a virtual machine (VM) V depends on

- » Collocated VMs,
- » Placement of destination VMs, and
- » Cross-traffic on each link used by V

Network differs from CPU or RAM

- » Distributed resource
- » Usage attribution (source, destination, or both?)

Traditional link sharing concepts needs rethinking

Requirements

Requirement 1: Guaranteed Minimum B/W

Provides a minimum b/w guarantee for each VM

Captures the desire of tenants to get performance isolation for their applications

Requirement 2: Aggregate Proportionality

Shares network resources across tenants in proportion to the number of their VMs

Captures payment-proportionality

» Similar to other resources like CPU, RAM etc.

Desirable properties

- » Strategy-proofness: Allocations cannot be gamed
- » Symmetry: Reversing directions of flows does not change allocation

Design Space

High Utilization

Requirement 3: High Utilization

Provides incentives such that throughput is only constrained by the network capacity

» Not by the inefficiency of the allocation or by disincentivizing users to send traffic

Desirable properties

- » Work Conservation: Full utilization of bottleneck links
- » **Independence:** Independent allocation of one VM's traffic across independent paths

Design Space

Tradeoff 1: Min B/W vs. Proportionality

Share of Tenant A can decrease arbitrarily!

Design Space

Tradeoff 2: Proportionality vs. Utilization

To maintain proportionality, equal amount of traffic must be moved from A1-A2 to A1-A3 => **Underutilization of A1-A3**

Per-link Proportionality

Restrict to congested links only

Share of a tenant on a congested link is proportional to the number of its VMs sending traffic on that link

Per Endpoint Sharing (PES)

Five identical VMs (with unit weights) sharing a Link L

Per Endpoint Sharing (PES)

Resulting weights of the three flows:

To generalize, weight of a flow A-B on link L is $W_{A-B} = \frac{W_A}{N_A} + \frac{W_B}{N_B}$

Per Endpoint Sharing (PES)

Symmetric

$$W_{A-B} = \frac{W_A}{N_A} + \frac{W_B}{N_B} = W_{B-A}$$

Proportional

» sum of weights of flows of a tenant on a link L = sum of weights of its VMs communicating on that link

Work Conserving

Independent

Strategy-proof on congested links

Generalized PES

Scale weight of A by α

Scale weight of B by β

$$W_{A-B} = W_{B-A} = \alpha \frac{W_A}{N_A} + \beta \frac{W_B}{N_B}$$

 $\alpha > \beta$ if L is more important to A than to B (e.g., A's access link)

One-Sided PES (OSPES)

Scale weight of A by α

Scale weight of B by β

$$W_{A-B} = W_{B-A} = \alpha \frac{W_A}{N_A} + \beta \frac{W_B}{N_B}$$

$$\alpha = 1$$
, $\beta = 0$
 $\alpha = 0$, $\beta = 1$

Highest B/W Guarantee

*In the Hose Model

to source to destination

Comparison

	Per Flow	Per Source	Static Reservation	Link PES	OSPES
Link Proportionality			\odot	\odot	
Symmetry	✓	X	✓	✓	✓
Strategy-Proofness	×	✓	✓	✓	✓
Utilization	\odot	\odot		\odot	\odot
Independence	✓	✓	✓	✓	✓
Work Conservation	✓	✓	×	✓	✓
B/W Guarantee			\odot		$\stackrel{\smile}{=}$

Full-bisection B/W Network

Tenant 1 has one-to-one communication pattern Tenant 2 has all-to-all communication pattern

MapReduce Workload

W1:W2:W3:W4:W5 = 1:2:3:4:5

Summary

Sharing cloud networks is all about making tradeoffs

- » Min b/w guarantee **VS** Proportionality
- » Proportionality *VS* Utilization

Desired solution is not obvious

- » Depends on several conflicting requirements and properties
- » Influenced by the end goal