
Performance Isolation Anomalies in RDMA
Yiwen Zhang

University of Michigan
Juncheng Gu

University of Michigan
Youngmoon Lee

University of Michigan

Mosharaf Chowdhury
University of Michigan

Kang G. Shin
University of Michigan

ABSTRACT
To meet the increasing throughput and latency demands of modern
applications, many operators are rapidly deploying RDMA in their
datacenters. At the same time, developers are re-designing their
software to take advantage of RDMA’s benefits for individual ap-
plications. However, when it comes to RDMA’s performance, many
simple questions remain open.

In this paper, we consider the performance isolation characteris-
tics of RDMA. Specifically, we conduct three sets of experiments
– three combinations of one throughput-sensitive flow and one
latency-sensitive flow – in a controlled environment, observe large
discrepancies in RDMA performance with and without the pres-
ence of a competing flow, and describe our progress in identifying
plausible root-causes.

CCS CONCEPTS
• Networks→ Network performance analysis;

KEYWORDS
RDMA, performance isolation, fairness

ACM Reference format:
Yiwen Zhang, JunchengGu, Youngmoon Lee,Mosharaf Chowdhury, and Kang
G. Shin. 2017. Performance Isolation Anomalies in RDMA. In Proceedings of
KBNets ’17, Los Angeles, CA, USA, August 21, 2017, 6 pages.
https://dx.doi.org/10.1145/3098583.3098591

1 INTRODUCTION
To deal with the growing application demands of ultra-low latency
(e.g., in key-value stores [8, 13] and remote paging [9]) as well as
very high bandwidth (e.g., in cloud storage [11, 16] and memory-
intensive workloads [9, 19, 23]), cloud operators are aggressively
deploying RDMA in their datacenters [10, 17, 25]. The intuition
behind this is simple: RDMA can simultaneously provide both low
latency and high bandwidth without noticeable CPU overhead.

Indeed, RDMA-based implementations of latency-sensitive appli-
cations have experienced order-of-magnitude improvements [8, 13]
in latency (<10 µs) and throughput (tens of millions ops/second).
Similarly, throughput-sensitive applications have been scaled to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KBNets ’17, August 21, 2017, Los Angeles, CA, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5053-2/17/08. . . $15.00
https://dx.doi.org/10.1145/3098583.3098591

many customers without bottlenecking the CPU demands of the
TCP/IP stack [9, 11, 25]. However, attaining these benefits is not
always straightforward. Compared to TCP/IP, RDMA exposes a
wider interface to applications with many parameters that require
careful tuning on a case-by-case basis. For example, sending the
same data from machine A to machine B can be accomplished by
any of READ, WRITE, or SEND/RECEIVE operations over three dif-
ferent transport types, each combination with its own advantages,
drawbacks, and constraints [14]. Consequently, the state-of-the-
art in RDMA usage is primarily limited to optimizing individual
applications.

Given the proliferation of cloud computing and large-scale RDMA
deployments, RDMA-enabled latency- and throughput-sensitive
applications are unlikely to run in vacuum; they must share the net-
work with each other. Therefore, we ask a simple yet fundamental
question: what happens when multiple RDMA-enabled applications
must share the network?

Traditionally, RDMA has been used by the HPC community in
special-purpose clusters over InfiniBand (IB). Because the typical
application deployment model in these environments closely re-
sembles static partitioning (e.g., all MPI processes are often gang
scheduled), fine-grained sharing of RDMAnetworks or even a single
link has not received as much attention from the HPC community
[21, 22] as link and network sharing have received in commodity en-
vironments [4–7, 12, 20]. Although some recent work on deploying
RDMA over IP/Ethernet-based datacenters have explored RDMA
sharing between large flows [10, 17, 25], their primary focus has
been on dealing with the vagaries of Priority-based Flow Control
(PFC) in large networks.

In this paper, we summarize our key findings from a simple
set of experiments. Specifically, we focus on three sharing scenar-
ios on a single link: bandwidth sharing between two large flows,
latency characteristics of two competing latency-sensitive flows,
and sharing characteristics of a latency-sensitive application and
a throughput-sensitive one. At a high level, performance isola-
tion is relatively good among throughput-sensitive flows but poor
among latency-sensitive flows. More specifically, fair sharing be-
tween throughput-sensitive flows depends primarily on the CPU;
small messages (~1MB) fail to gain fair bandwidth if the CPU is
not posting requests to the RNIC fast enough. Furthermore, in the
latency-sensitive regime (i.e., flows using small messages), a smaller
message size begets relatively better latency; however, two flows
using the same message sizes can result in unpredictability. Finally,
latency-sensitive flows lose both in terms of latency and throughput
(messages per second) in the presence of large background flows.

https://dx.doi.org/10.1145/3098583.3098591
https://dx.doi.org/10.1145/3098583.3098591

KBNets ’17, August 21, 2017, Los Angeles, CA, USA Y. Zhang et al.

Table 1: RDMA Transport Types and Supported Verbs.

SEND RECEIVE WRITE/WIMM READ ATOMIC

RC ✓ ✓ ✓ ✓ ✓
UC ✓ ✓ ✓
UD ✓ ✓

2 BACKGROUND AND RELATEDWORK
2.1 RDMA and Underlying Networks
RDMA allows direct access to the remote machine’s memory with-
out involving the CPU, cache, or operating system of either host. It
is supported by multiple interconnects, including InfiniBand and
RoCE (RDMA over Converged Ethernet). In this paper, we focus
on InfiniBand-based RDMA.

RDMA Verbs. RDMA NICs expose the verbs API to applications
for directly accessing the network interface using queue pairs (QP).
Each QP consists of a send queue and a receive queue. A work
request places a work queue element (WQE) on the appropriate
work (send/receive) queue. The completion signal of verb operation
can insert a work completion (WC) at the tail of the completion
queue (CQ) associatedwith theQP. There are two transfer semantics
for verbs: SEND and RECEIVE follow the channel semantic (similar
to traditional TCP/IP); in contrast, READ, WRITE/WRITE-with-
immediate (WIMM), and ATOMICs use the memory semantic.

Transport Types. Current RDMA implementations support three
transport types: Reliable Connection (RC), Unreliable Connection
(UC), and Unreliable Datagram (UD). RC supports guaranteed-order
packet delivery by enforcing packet acknowledgement. Connected
transports (RC, UC) require one-to-one QP, while single QP can
communicate with multiple QPs in connectionless transport (UD).
Therefore, UD can offer better scalability to some applications [13–
15]. However, not all transport types support all verbs (Table 1).

Network Layer in InfiniBand. The InfiniBand network layer uses
Global Route Header (GRH) to route packets between subnets. The
source and destination of a packet is identified by a 128-bit global
ID (GID), which has a unique subnet ID and a globally unique
device ID (GUID). The GRH of a packet contains both its source
and destination GIDs. The packet is forwarded by routers until it
reaches the target subnet.

Link Layer in InfiniBand. The link layer in InfiniBand handles
packet forwarding and switching within a subnet. Each device is
assigned with a 16-bit local ID (LID), which is used for addressing
within a subnet. The destination LID of a packet is specified by its
Local Route Header (LRH).

The link layer also supports QoS to traffic flowing through virtual
lanes (VL) [2]. These VLs are separate logical links sharing a single
physical link. The service level (SL) field in a packet is defined to
ensure its QoS. Upcoming packets are mapped to the output VLs
based on the SL-to-VL map set by the switch. Arbitration between
different VLs is determined by a two-priority-level weighted round
robin arbiter [1].

Flow control in InfiniBand is handled on a per VL basis. Contrary
to TCP/IP, InfiniBand (also RoCE) applies a credit-based approach

for lossless flow control [2]. Packets are not transmitted unless the
receiver indicates it has enough buffer space, and no packet loss
happens due to buffer overflow. Lossless flow control brings deter-
ministic traffic flow and efficient bandwidth usage to InfiniBand.

2.2 RDMA-Enabled Applications
Due to its potential for ultra-low latency and high throughput to
applications, RDMA [10, 17, 25] has received considerable attention
in recent years. While the bulk of the work in this category focused
on latency-sensitive applications such as key-value stores [8, 13]
that require O(1) µs latency, RDMA-based communication layers are
increasingly being used in throughput-sensitive applications as well
[9, 11, 16, 19, 24]. However, regardless of target domains, they focus
on optimizing independent applications’ latency or throughput.
We focus on performance isolation in scenarios where multiple
applications must coexist and share RDMA networks.

2.3 Network Sharing
Sharing individual links is a classic networking problem with max-
min fairness [12] being a well-established solution. Many mech-
anisms have been proposed over the years to achieve this goal –
most notably weighted fair queueing (WFQ) [7] and its variants –
that ensure at least 1

n -th of a link’s capacity to each of the n flows.
While max-min fair sharing works well for throughput-sensitive
elephant flows, latency-sensitive mice flows must rely on some
form of prioritization to achieve performance isolation [4].

With the advent of cloud computing, the focus on link sharing
has expanded to network sharing between multiple tenants with
solutions ranging from static allocation to a variety of network-
wide sharing mechanisms [5, 6, 20]. Mogul and Popa [18] have
recently summarized many of them. Almost all of them – except
for static allocation – deal with bandwidth isolation and ignore
latency-sensitive flows.

Finally, in recent years, large-scale RDMA deployment over Ro-
CEv2 [10, 17, 25] have received considerable attention because of
its effectiveness in providing low-latency communication. The re-
sulting RDMA congestion control algorithms primarily deal with
issues arising from Priority-based Flow Control (PFC) and ensure
fair sharing between throughput-sensitive elephant flows.

3 PERFORMANCE ISOLATION IN RDMA
Our focus in this paper is establishing a baseline understanding of
link-level sharing in RDMA networks instead of considering more
complicated tenant- or network-level sharing scenarios. We per-
form a set of experiments to highlight performance isolation char-
acteristics of RDMA in three scenarios: (1) between two through-
put-sensitive flows; (2) between two latency-sensitive flows; and
(3) between a throughput-sensitive and a latency-sensitive flow.
Throughout this section, we refer to large, throughput-sensitive
flows as elephants and small, latency-sensitive flows as mice.

We performed our primary experiments on two machines with
56 Gbps InfiniBand NICs, where both are connected to the same
InfiniBand switch. This allows us to avoid issues arising from path
length asymmetry [25]. We also verified the results on newer gen-
eration hardware, where machines have 100 Gbps InfiniBand NICs

Performance Isolation Anomalies in RDMA KBNets ’17, August 21, 2017, Los Angeles, CA, USA

Table 2: Testbed Hardware Specifications.

(a) Primary Setup

Component Specification

CPU 2× Xeon E5-2650v2 (8 cores, 2.6 Ghz)
DRAM 8× 8GB DDR-3 RDIMMs, 1.86 Ghz
IB NIC Mellanox FDR ConnectX-3, 56 Gbps
IB Switch Mellanox SX6036G, 4.032 Tbps

(b) Secondary Setup

Component Specification

CPU 2× POWER8NVL (10 cores, 4.02 Ghz)
DRAM 16× 16GB DDR-3 DIMMs, 1.33 Ghz
IB NIC Mellanox EDR ConnectX-4, 100 Gbps
IB Switch Mellanox SB7700, 7 Tbps

(Mellanox ConnectX-4), and highlighted the differences in §3.7.
Table 2 shows the hardware specifications of our testbeds.

3.1 Benchmarking Tool
We implemented a benchmark tool1 – based on Mellanox Perftest
[3] – that can simultaneously run two RDMA flows with different
configurations. Specifically, it creates two flows, each transferring
a continuous stream of messages of a given size using RDMA verbs,
and measures their bandwidth allocation and latency character-
isitics when both flows are active. Across experiments, we consider
the following RDMA design parameters.

RDMAVerbs and Transport. We comparedWRITE, READ,WIMM,
and SEND/RECEIVE verbs in our experiments. Consequently, we
performed all experiments using RC connections to give all verbs a
level playing field. Different types of verbs may impact fair sharing
since it impacts on RDMA performance for different application
scenarios [13, 14].

Event-Triggered Polling vs. Busy Polling. An application can choose
to be notified of the completion of its RDMA verb operation either
via interrupt/event or using busy polling. While busy polling occu-
pies an entire CPU core, events cause context switching and hurt
performance of latency-sensitive applications. However, as shown
in Figure 3, event-triggered polling leads to significant CPU sav-
ings. In throughput-sensitive applications with large message sizes,
event-triggered polling leads to negligible CPU usage. In latency-
sensitive applications with smaller messages, the relatively higher
CPU usage comes from frequent request posting instead of polling.

Message Acknowledgement. While SEND and WIMM require the
receiver to explicitly post a receive request, other verbs use different
acknowledgement methods such as busy polling of a specified
memory address and zero-byte acknowledge messages. To focus
on performance isolation between two RDMA flows, we remove
acknowledgements and memory copy in different verbs for fair
comparison. In our experiments, the next request will not be posted

1https://github.com/Infiniswap/frdma_benchmark

123456
10 100 1K 10K

WRITE Median READ Median SEND Median

WRITE 99th READ 99th SEND 99th

1
10

100
1000

10000
100000

1000000

10 1K 100K 10M 1G

La
te

nc
y

(u
s)

Message Size (Byte)

La
te

nc
y

(u
s)

(a) Latency vs. message size

1G
1

2

3

4

5

10 100 1K 10K

La
te

nc
y

(u
s)

Message Size (Byte)

(b) Zoomed in for small sizes

Figure 1: Median latencies for different RDMA verbs and
message sizes.

1
10
100
1000
10000
100000
1000000

0
10
20
30
40
50
60

10 1K 100K 10M 1G M
es

sa
ge

s
pe

r
se

co
nd

T
hr

ou
gh

pu
t (

G
bp

s)

Message Size (Byte)

WRITE_Tput READ_Tput SEND_Tput
WRITE_Mps READ_Mps SEND_Mps

Figure 2: Throughput in terms of bandwidth (for elephants)
and messages per second (for mice) for different RDMA
verbs and message sizes.

0
20
40
60
80

100

10 100 1K 10K 100K 1M 10M 100M 1G

C
PU

 U
sa

ge
 (

%
)

Message Size (Byte)

Event-triggered

Busying polling

Figure 3: CPU usage of a RDMA WRITE flow for different
message sizes.

to the send or receive queue using a single QP until the WC of the
previous request is polled from CQ.

INLINE Message. The payload of an INLINE message can be
inlined in its WQE buffer, eliminating the need to perform extra
read for the payload. INLINE messages can be beneficial for latency-
sensitive applications. We enabled INLINE messages for 10B and
100B in all latency-sensitive flows unless specified otherwise. The
maximum INLINE data on the devices we can send is around 900
bytes. When INLINE-d data is too big, the CPU needs to write the
send request onto the NIC using several rounds of memory-mapped

https://github.com/Infiniswap/frdma_benchmark

KBNets ’17, August 21, 2017, Los Angeles, CA, USA Y. Zhang et al.

Table 3: Bandwidth Ratio (Left w.r.t. Top) of Two Event-
triggered Elephants for Different Message Sizes.

SEND WIMM READ WRITE
1MB 1GB 1MB 1GB 1MB 1GB 1MB 1GB

WRITE
1GB 1.41 1.00 1.44 1.00 1.39 1.00 1.40 1.00
1MB 1.02 0.71 1.00 0.72 0.99 0.71 1.00

READ
1GB 1.40 1.00 1.43 1.00 1.37 1.00
1MB 1.08 0.71 1.04 0.71 1.00

WIMM
1GB 1.40 1.00 1.44 1.00
1MB 1.00 0.70 1.00

SEND
1GB 1.41 1.00
1MB 1.00

I/O (MMIO), and that extra overhead becomes more expensive than
the Direct Memory Access (DMA) read issued by the NIC [13]. In
summary, using INLINE messages does not always reduce latency.
Users need to verify the optimal INLINE data size in practice [14].

Request Pipelining. Pipelining SEND or RECEIVE requests can
be useful when senders or receivers have a clear sense of how many
messages they want to transfer. Unless otherwise specified, we
disabled pipelining in the experiments.

Service Level (SL). Flows with a higher SL have higher priority. In
theory, this can be useful to ensure QoS of starved flows or to prior-
itize latency-sensitive flows. However, SL is often not configurable
by users in multi-tenant infrastructure; we failed to configure the
service level from applications in three different RDMA clusters.

3.2 Defining an Elephant and a Mouse
The size of a message transferred in each RDMA operation deter-
mines whether the flow is throughput- or latency-sensitive. To
clearly identify throughput- and latency-sensitive flows, we mea-
sured throughput, median and 99th-percentile latencies, and mes-
sages per second (MPS) for different message sizes (Figures 1 and 2).
We observe that the latency for flows using message sizes smaller
or equal to 1KB is similar, and flows using messages larger than
1MB are bandwidth-limited; message sizes in between 1KB and
1MB are harder to clearly classify.

Consequently, in this paper, we consider flows with individ-
ual messages up to 1KB to be latency-sensitive, mice flows, and
those with individual messages larger than 1MB to be throughput-
sensitive, elephant flows.

3.3 Elephant vs. Elephant
We compared two elephant flows by varying their verb types, mes-
sage sizes, as well as the polling mechanism. Each flow transfers 1
TB data. All flows are running using our default setting with one
exception: for SEND, the receiver needs to pre-post a small number
of RECEIVE requests (we used 5 in this paper) to make SEND com-
patible with others.2 We first explored the impact of message sizes
on two elephant flows when both rely on event-triggered polling.
Ratios of the two flows’ bandwidth allocation – one using 1MB
message size and the other 1GB – are shown in Table 3.
2However, increasing the number of pre-post RECEIVE requests does not help the
SEND flow gain more bandwidth against others.

0.75

1

1.25

1.5

1 2 5 10 100 1000

T
hr

ou
gh

pu
t

R
at

io

Message Size Ratio

1MB 2MB 5MB 10MB 100MB
(a) Both flows using event-triggered polling

0.75

1

1.25

1.5

1 2 5 10 100 1000

T
hr

ou
gh

pu
t

R
at

io

Message Size Ratio

1MB 2MB 5MB 10MB 100MB
(b) Both flows using busy polling

Figure 4: Ratio of bandwidth allocations of two elephant
flows for increasing gaps between their message sizes for
varying base flow sizes (1MB to 100MB).

We observe that when both flows are event-triggered, the mes-
sage size has a large impact on bandwidth sharing between elephant
flows. More precisely, when two flows use the same message size,
the link bandwidth is equally shared; otherwise, the flow using the
larger message size receives more bandwidth. In contrast, recall that
the flow using 1MB messages achieved relatively higher bandwidth
when running alone (Figure 2).

However, the verb type does not appear to affect fairness. As
long as the message sizes equal, the bandwidth is equally shared no
matter which verb we pick, assuming users would prepare a small
receive pipeline when using SEND.

To further explore how differences in message sizes affect shar-
ing, we measured the throughput ratio of different sizes of small
base flow (from 1M to 100M) to competitors using varying message
sizes (Figure 4a). Both flows use WRITE and transfer 1TB with
event-triggered polling. When the base flow is small (e.g., 1MB), the
ratio increases with message size ratio and saturates at a message
size ratio of 5× and above. This implies that although bandwidth
sharing is not fair, the amount of unfairness is perhaps bounded
and relatively predictable. Also, this unfairness is alleviated for base
flows with larger message sizes (5MB and above).

Next, we repeated the same experiments with busy polling for
both flows (Figure 4b) and found it to eliminate unfairness. More-
over, we discovered that when a 1MB flow with busy polling com-
peted with a 1GB flow with event-triggered pollling, their band-
width was equally shared. When two 1MB flows – one using busy

Performance Isolation Anomalies in RDMA KBNets ’17, August 21, 2017, Los Angeles, CA, USA

0

0.5

1

1.5

2

10B
vs.

10B

100B
vs.

100B

1KB
vs.

1KB

10B
vs.

100B

10B
vs.
1KB

100B
vs.

1KB

La
te

nc
y

R
at

io

(a) Latency Ratio

0

0.5

1

1.5

2

10B
vs.

10B

100B
vs.

100B

1KB
vs.

1KB

10B
vs.

100B

10B
vs.
1KB

100B
vs.

1KB
M

PS
 R

at
io

(b) MPS Ratio

Figure 5: Ratio of median latencies and MPS between two
mouse flows with different message sizes.

1.3 1.3 1.4 1.3

5.4 5.8
7.0

7.8

0.0
2.0
4.0
6.0
8.0

10.0

10B
Along

10B
vs.

(10B)

10B
vs.

(100B)

10B
vs.

(1KB)

La
te

nc
y

(u
s)

Median 99.99th

(a) Latency

0.78 0.76 0.72 0.75

0
0.2
0.4
0.6
0.8

1

10B
Along

10B
vs.

(10B)

10B
vs.

(100B)

10B
vs.

(1KB)

M
ill

io
n

M
es

sa
ge

s/
se

c

(b) MPS

Figure 6: Latency and throughput of a 10Bmouse flowwhen
it is running alone andwith another backgroundmouseflow
with different message sizes.

polling and the other event-triggered – competed, the former re-
ceived 20% more bandwidth.

Summary of Observations

• When both flows are event-triggered, the larger-message
flow receives more bandwidth; unfairness subsides when
both use messages bigger than 5MB.

• When both flows use busy polling, isolation is maintained.
It can also help gain more bandwidth when both flows use
small messages (~1MB).

• RDMA verb type does not affect isolation as long as the
receiver pre-posts a few RECEIVE requests when the sender
transfers large data using SEND.

3.4 Mouse vs. Mouse
Next, we focused on latency-sensitive applications – specifically,
on flows with three message sizes 10B, 100B, and 1KB. For each
comparison, we took 5 runs and recorded the median latency and
MPS. All flows used busy polling. Figure 5 shows the latency ratio
and MPS ratio of two latency-sensitive flows sharing the same link.
The bars in the graph indicate the range of median latency ratio
out of the 5 runs. We observe that when both flows are less than
1KB, the sharing pattern is unpredictable. Even when both flows
are using the same message size, the latencies are no longer similar;
they are not predictable either. When there is a difference in the
message size, all ratios appears to be below 1, indicating the flow
with smaller message size runs faster.

1.3
2.8 2.9

1.4 2.6 2.9 2.4

6.3 6.05.4
8.1 9.2

5.5
8.5 9.5

6.0

11.1

14.7

0

4

8

12

16

10B
Alone

10B
vs.

(1MB)

10B
vs.

(1GB)

100B
Alone

100B
vs.

(1MB)

100B
vs.

(1GB)

1KB
Alone

1KB
vs.

(1MB)

1KB
vs.

(1GB)

La
te

nc
y

(u
s)

Median 99.99th

(a) Latency

0.78

0.37 0.33

0.71

0.40 0.36 0.41

0.18 0.17

0

0.2

0.4

0.6

0.8

1

10B
Alone

10B
vs.

(1MB)

10B
vs.

(1GB)

100B
Alone

100B
vs.

(1MB)

100B
vs.

(1GB)

1KB
Alone

1KB
vs.

(1MB)

1KB
vs.

(1GB)
M

ill
io

n
M

es
sa

ge
s/

se
c

(b) MPS

Figure 7: Latency and throughput of mouse flows w.r.t. ele-
phant flows.

Figure 6 compares the latency and MPS of a base flow of 10B
message size running with a background mouse flow. In this plot,
the target 10B flow was not stopped running until it sent 10 million
messages using WRITE. All data points in the plot are taken from
the median value among 5 runs. When the size of the competitor
increases, the median latency of the 10B flow does not vary greatly,
but the tail latency increases by up to 1.5×.

Summary of Observations

• Performance isolation is not guaranteed when two latency-
sensitive flows with the same message size share a link (un-
like throughput-sensitive flows).

• Latencies and MPS are stable when flows run alone but un-
predictable when there is competition.

3.5 Elephant vs. Mouse
Finally, we focused on the performance variations of a latency-
sensitive flow running with a background throughput-sensitive
flow. All mouse flows are sending 10 million messages. We used
busy polling for latency-sensitive flows and event-triggered polling
for throughput-sensitive flows. Figure 7 plots the median and tail
latencies as well as the MPS for a latency-sensitive flow running
alone or accompanied by a 1MB or 1GB flow. From our measure-
ments, the median latency of the latency-sensitive flow increases
by around 2× and the MPS gets roughly halved when a throughput-
sensitive flow is running in the background. Increasing the message
size of the background flow further hurts the performance of the
mouse, but the impact is relatively small. In contrast, the bandwidth

KBNets ’17, August 21, 2017, Los Angeles, CA, USA Y. Zhang et al.

allocation of the background elephant flow remains unaffected in
the presence of the latency-sensitive flow.

Summary of Observations

• Running small latency-sensitive flows under a big back-
ground flow loses both latency and MPS.

• Mice flows cannot be isolated from an elephant flow regard-
less of the message size the latter uses.

• The elephant flow is never affected by the mouse.

3.6 Dedicating CPU Cores Does Not Help
To determine whether the isolation issues are due to CPU con-
tentions, we pinned each flow-generating process to its own core
and re-ran our experiments. We confirmed that dedicated cores do
not mitigate RDMA performance isolation anomalies.

3.7 Hardware is Not Enough for Isolation
We re-ran the same experiments onmachineswith 100Gbps ConnectX-
4 NICs to evaluate performance isolation on the newer generation
hardware. The isolation problem in the elephant vs. elephant case
still exists with a throughput ratio of 1.32. In the elephant vs mouse
scenario, mouse flows are still affected by large background flows,
where the median latency increases by up to 5×. In the mouse vs.
mouse case the problem appears to be mitigated; we did not observe
large tail-latency variations when two mouse flows compete.

4 DISCUSSION AND NEXT STEPS
It is too early to draw conclusions from the anomalies observed in
this paper. Instead, we summarize our observations and hypothesize
on the plausible reasons that may have caused those anomalies.

For throughput-sensitive elephants, we observed that the polling
mechanism dictates bandwidth allocation: how fast an application
can post RDMA requests onto the RNIC is the only thing that matters in
a throughput-sensitive environment.This poses a tradeoff. On the one
hand, to achieve high bandwidth and application-level pipelining
(e.g., in streaming applications) with a reasonably largemessage size
(1MB), one must dedicate CPU to achieve high bandwidth against
other elephants. On the other hand, saving CPU via event-triggered
polling can result in bandwidth loss.

For latency-sensitive mice, we observed little predictability be-
tween flows using equal-sized messages. However, when one is us-
ing small messages against another using a relatively larger mouse
flow, the median latency of the smaller mouse appears to be stable.
The tail latency, however, increases by up to 1.5×, and the MPS can
sharply drop. One hypothesis is that in the latency-sensitive case,
requests are posted fast and packets are not so easily blocked, thus
causing more random behaviors.

Finally, in the presence of both types of flows, latency-sensitive
flows suffer. In this scenario, the RNIC will be doing continuous
DMA reads from the client’s memory. The mouse flow posts re-
quests more often, and its own packets may queue up in RNIC’s
queue buffer, thus causing degradation in latency and MPS.

Next Steps. We are currently studying the driver code for our
RNICs to better understand how libibverbs interact with the
RNIC and how RNIC interacts with the host’s PCI Express and
memory subsystems. We hope to be able to fix or mitigate some of

the highlighted anomalies using software techniques. We also plan
to expand our scope to larger scales – for example, in the presence
of more than two flows, in scenarios where flows have different
path lengths, and in RoCE environments.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful comments
and feedback. This work was supported by National Science Foun-
dation grants CNS-1617773, CCF-1629397, and CNS-1563095.

REFERENCES
[1] 2008. Infiniband Technology Overview. https://goo.gl/tyszb4. (2008).
[2] 2015. Infiniband architecture specification volume 1. https://cw.infinibandta.org/

document/dl/7859. (2015).
[3] 2017. Mellanox Perftest Package. https://community.mellanox.com/docs/

DOC-2802. (2017).
[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick Mckeown,

Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal Near-Optimal Data-
center Transport. In SIGCOMM.

[5] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. 2011. To-
wards predictable datacenter networks. In SIGCOMM.

[6] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. 2016. HUG: Multi-Resource
Fairness for Correlated and Elastic Demands. In NSDI.

[7] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair
Queueing Algorithm. In SIGCOMM.

[8] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, andMiguel Castro.
2014. FaRM: Fast Remote Memory. In NSDI.

[9] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin. 2017. Efficient Memory
Disaggregation with Infiniswap. In NSDI.

[10] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Padhye,
and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale. In
SIGCOMM.

[11] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure Coding in Windows Azure
Storage. In USENIX ATC.

[12] Jeffrey M Jaffe. 1981. Bottleneck flow control. IEEE Transactions on Communica-
tions 29, 7 (1981), 954–962.

[13] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2014. Using RDMA
efficiently for key-value services. In SIGCOMM.

[14] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design guidelines
for high performance RDMA systems. In USENIX ATC.

[15] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST: fast, scalable
and simple distributed transactions with two-sided (RDMA) datagram RPCs. In
OSDI.

[16] Haoyuan Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, and Ion Stoica. 2014.
Tachyon: Reliable, memory speed storage for cluster computing frameworks. In
SoCC.

[17] Radhika Mittal, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi,
Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. 2015. TIMELY:
RTT-based Congestion Control for the Datacenter. In SIGCOMM.

[18] Jeffrey C Mogul and Lucian Popa. 2012. What we talk about when we talk about
cloud network performance. SIGCOMM CCR 42, 5 (2012), 44–48.

[19] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon
Kahan, and Mark Oskin. 2015. Latency-tolerant software distributed shared
memory. In USENIX ATC.

[20] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
2012. FairCloud: Sharing the Network in Cloud Computing. In SIGCOMM.

[21] Adit Ranadive, Ada Gavrilovska, and Karsten Schwan. 2010. FaReS: Fair resource
scheduling for VMM-bypass Infiniband devices. In CCGRID.

[22] Sayantan Sur, Matthew J Koop, Dhabaleswar K Panda, and others. 2007. Perfor-
mance analysis and evaluation of Mellanox ConnectX InfiniBand architecture
with multi-core platforms. In IEEE Hot Interconnects.

[23] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin,
S. Shenker, and I. Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In NSDI.

[24] Fang Zheng, Hongbo Zou, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,
Jai Dayal, Tuan-anh Nguyen, Jianting Cao, Hasan Abbasi, Scott Klasky, Norbert
Podhorszki, andHongfeng Yu. 2013. FlexIO : I/OMiddleware for Location-Flexible
Scientific Data Analytics. In IPDPS.

[25] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. In
SIGCOMM.

https://goo.gl/tyszb4
https://cw.infinibandta.org/document/dl/7859
https://cw.infinibandta.org/document/dl/7859
https://community.mellanox.com/docs/DOC-2802
https://community.mellanox.com/docs/DOC-2802

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 RDMA and Underlying Networks
	2.2 RDMA-Enabled Applications
	2.3 Network Sharing

	3 Performance Isolation in RDMA
	3.1 Benchmarking Tool
	3.2 Defining an Elephant and a Mouse
	3.3 Elephant vs. Elephant
	3.4 Mouse vs. Mouse
	3.5 Elephant vs. Mouse
	3.6 Dedicating CPU Cores Does Not Help
	3.7 Hardware is Not Enough for Isolation

	4 Discussion and Next Steps
	References

