
Infiniswap
Efficient Memory Disaggregation

Mosharaf Chowdhury

with Juncheng Gu, Youngmoon Lee, Yiwen Zhang, and Kang G. Shin



Datacenter-Scale 
Computing

Geo-Distributed
Computing

Fast Analytics
Over the WAN

Rack-Scale
Computing

Proactive Analytics
Before You Think!

Coflow Networking Open Source

Apache Spark Open Source

Cluster File System Facebook

Resource Allocation Microsoft

DAG Scheduling Apache YARN

Cluster Caching Alluxio



Datacenter-Scale 
Computing

Geo-Distributed
Computing

Rack-Scale
Computing

< 0.01 ms ~ 1 ms > 100 ms



Memory-Intensive Applications

The volume of data we want to make sense of is increasing

Memory is getting bigger and cheaper
• Many workloads fit in memory

In-memory * is all the rage!



Perform Great!

36.18

6.619

1.542
0

5

10

15

20

25

30

35

40

100% 75% 50%

T
PS

 (
T

ho
us

an
ds

)

In-Memory Working Set

TPC-C on VoltDB



Perform Great Until Memory Runs Out

36.18

6.619

1.542
0

5

10

15

20

25

30

35

40

100% 75% 50%

T
PS

 (
T

ho
us

an
ds

)

In-Memory Working Set

TPC-C on VoltDB



Perform Great Until Memory Runs Out

36.18

6.619

1.542
0

5

10

15

20

25

30

35

40

100% 75% 50%

T
PS

 (
T

ho
us

an
ds

)

In-Memory Working Set

95
.8

44
.9

23
.8

0

20

40

60

80

100

120

100% 75% 50%
O

ps
 (

T
ho

us
an

ds
)

In-Memory Working Set

TPC-C on VoltDB FB Workload on Memcached



Perform Great Until Memory Runs Out

36.18

6.619

1.542
0

5

10

15

20

25

30

35

40

100% 75% 50%

T
PS

 (
T

ho
us

an
ds

)

In-Memory Working Set

57 67.5

453.4

1

10

100

1000

100% 75% 50%

C
om

pl
et

io
n 

T
im

e 
(s

)

In-Memory Working Set

TPC-C on VoltDB FB Workload on Memcached PageRank on PowerGraph
95

.8

44
.9

23
.8

0

20

40

60

80

100

120

100% 75% 50%
O

ps
 (

T
ho

us
an

ds
)

In-Memory Working Set



50% Less Memory Causes Slowdown of …

36.18

6.619

1.542
0

5

10

15

20

25

30

35

40

100% 75% 50%

T
PS

 (
T

ho
us

an
ds

)

In-Memory Working Set

57 67.5

453.4

1

10

100

1000

100% 75% 50%

C
om

pl
et

io
n 

T
im

e 
(s

)

In-Memory Working Set

TPC-C on VoltDB FB Workload on Memcached PageRank on PowerGraph
95

.8

44
.9

23
.8

0

20

40

60

80

100

120

100% 75% 50%
O

ps
 (

T
ho

us
an

ds
)

In-Memory Working Set



Between a Rock and a Hard Place

Overallocation
Leads to underutilization

Underallocation
Leads to severe performance loss

VS.



[1] Reiss, Charles, et al. "Heterogeneity and dynamicity of clouds at scale: Google trace analysis." SoCC’12. 

Memory Underutilization at Google[1]

Allocated

Fr
ac

tio
n 

of
 M

em
or

y

Time (days)

Used

0.8

0.5



Memory Load Imbalance

Measured as the 99th percentile to median memory utilization ratio

Perfect
Balance

Google
Cluster

Facebook
Cluster



How Can We Recover This Memory?



Disaggregates 
MemoryInfiniswap

Exposes memory across server boundaries in a 
• scalable,
• fault-tolerant, and
• efficient manner

without modifying any 
• applications,
• operating systems, or
• hardware



Machine 1 Machine 2 Machine 3 Machine N

Used Memory Free Memory

…

Disaggregated Memory

Memory Disaggregation

Remote Memory



Design Goals

Improve application performance and cluster efficiency

Minimize deployment overhead
• No new hardware
• No software modification

Tolerate failures
• Machine crash, network disconnection

Manage remote memory at scale



Selected Prior Efforts

No H/W
Design

No App 
Modification

Fault-
Tolerant

Scalable

Memory Blade[ISCA’09] ✔ ✔ ✔

HPBD[CLUSTER’05] / nbdX[1] ✔ ✔

RDMA key-value service
(HERD[SIGCOMM’14], FaRM[NSDI’14])

✔ ✔ ✔

Intel Rack Scale Architecture (RSA)[2] ✔ ✔ ✔

Infiniswap ✔ ✔ ✔ ✔

[2] http://www.intel.com/content/www/us/en/architecture-and-technology/rack-scale-design-overview.html
[1] https://github.com/accelio/NBDX 



Infiniswap
Exposes free remote 
memory as swap devices in 
a decentralized manner w/o 
affecting remote processes

1. Infiniswap Block Device
Finds free remote memory, maps pages, 
and provides fault tolerance without any 
central coordination

2. Infiniswap Daemon Proactively evicts remote pages to ensure 
transparent, best-effort service



Infiniswap in One Slide

Container 1 Container N
Infiniswap
Daemon

…

User Space

Kernel Space

Local Disk

Async Sync

RNIC

2 3 2

Machine-1

User Space

Kernel Space

Infiniswap
DaemonContainer A

Machine-2

X Mapped to memory of Machine-X

Virtual Memory Manager (VMM)

Infiniswap Block Device

Individual pagePage fault

User Space

Kernel Space

Infiniswap
DaemonContainer A

Machine-3

Container 1 Container N
Infiniswap
Daemon

…

User Space

Kernel Space

Local Disk

Async Sync

RNIC

2 3

Machine-N

Virtual Memory Manager (VMM)

Infiniswap Block Device



Are We There Yet?

Improve application performance and cluster efficiency

Minimize deployment overhead
• No new hardware
• No software modification

Tolerate failures
• Machine crash, network disconnection

Manage remote memory at scale

Remote memory paging 
over RDMA

Async. backup to disk

?



Scalability Challenges

How to find remote memory in the cluster?
• Too many pages lead to too much management overhead
• Centralized solution can be slow and expensive



Decentralized Mapping

Infiniswap Block Device

3 2 3 2S3

Infiniswap
Daemon

Infiniswap
Daemon

Infiniswap
Daemon

Infiniswap
Daemon

Select the least-loaded of the 
two machines to map slab SUse large slab instead of page for 

memory management

Power of two choices
• Select from new machines
• After activity crosses a threshold



Scalability Challenges

How to find remote memory in the cluster?
• Too many pages lead to too much management overhead
• Centralized solution can be slow and expensive

Which remote mapping should we evict?
• Should be performed to avoid affecting remote applications’ performance
• Problem: Paging estimation is hard because one-sided RDMA do not involve CPU



Batch Eviction

Infiniswap Block Device
Infiniswap

DaemonInfiniswap Block Device

Infiniswap Block Device

Infiniswap Block Device Contact up to E+E’
machines to evict E slabsPower of many choices

• Approximate LFU
• Without contacting all slabs
• When free memory falls 

below a threshold



Infiniswap Design Choices

Improve application performance and cluster efficiency

Minimize deployment overhead
• No new hardware
• No software modification

Tolerate failures
• Machine crash, network disconnection

Manage remote memory at scale

Remote memory paging 
over RDMA

Async. backup to disk

Decentralized mapping 
and eviction



1. Does it improve performance?
2. Does it improve utilization?
3. Does it scale?
4. Can it handle failure?
5. …

YES

Evaluation
Deployment and evaluation on 
a 32-node 56-Gbps InfiniBand 
network on CloudLab using 
memory-intensive applications



35.89

27.74

19.33

0

5

10

15

20

25

30

35

40

100% 75% 50%

T
PS

 (
T

ho
us

an
ds

)

In-Memory Working Set

56.1 63.9 64.2

1

10

100

1000

10000

100% 75% 50%

C
om

pl
et

io
n 

T
im

e 
(s

)

In-Memory Working Set

99
.1

10
0.

4

91
.3

0

20

40

60

80

100

120

140

160

100% 75% 50%
O

ps
 (

T
ho

us
an

ds
)

In-Memory Working Set

TPC-C on VoltDB FB Workload on Memcached

Even on 50% Memory, Slowdown is

PageRank on PowerGraph



Higher & More Balanced Memory Utilization

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29M
em

or
y 

U
til

iz
at

io
n 

(%
)

Rank of Machines

Infiniswap w/o Infiniswap



Higher & More Balanced Memory Utilization

Higher Utilization

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29M
em

or
y 

U
til

iz
at

io
n 

(%
)

Rank of Machines

Infiniswap w/o Infiniswap



Three
Followups

#3
Rethink Paging 

Subsystem

For high-speed block devices
Infiniswap & NVMe devices

#1
Performance

Isolation

Between multiple tenants
In VMM and RDMA API

#2
Avoid Disk 

Backups

Performance during failures
Handle large paging bursts



Disaggregates 
MemoryInfiniswap

Exposes memory across server boundaries in a 
• scalable,
• fault-tolerant, and
• efficient manner

without modifying any 
• applications,
• operating systems, or
• hardware



Infiniswap

• Learn more in our NSDI’17 paper
• Try it from https://github.com/infiniswap
• Contact us at infiniswap@umich.edu Juncheng Gu Youngmoon Lee Yiwen Zhang

Disaggregates 
Memory





Infiniswap Microbenchmarks

0

1000

2000

3000

4000

5000

6000

7000

4K 16K 64K 256K

Ba
nd

w
id

th
 (

M
B/

s)

Block Size

Infiniswap Write
Infiniswap Read
nbdX Write
nbdX Read

0

5

10

15

20

25

4K 16K 64K 256K

%
 C

PU
 U

sa
ge

 o
f 3

2 
vC

PU
s

Block Size

Infiniswap
nbdX

NO Remote CPU UsageHigher I/O Bandwidth



Host Performance Unaffected

0

20

40

60

80

100

0 50 100 150 200 250 300M
em

or
y 

U
til

iz
at

io
n 

(%
)

Time (s)

Local Memory Remote Memory

95
.8

94
.1

0
20
40
60
80

100
120
140
160

Baseline Infiniswap

O
ps

 (
T

ho
us

an
ds

)

NO Impact on PerformanceProactive Eviction


