Coflow

Mending the Application-Network Gap
in Big Data Analytics

Mosharat Chowdhury |
ab

UC Berkeley

Big Data

The volume of data businesses want to make sense of is increasing

Increasing variety of sources
 Web, mobile, wearables, vehicles, scientific, ...

Harvard ::
Busmess e
Review

THE BITER BIT -
Viral i
u i GETTING
e N CONTRO‘]
nnvvimdo-(un&t]

Cheaper disks, SSDs, and memory

SCIENCEIN

Stalling processor speeds B

DRATAH AND e - G
THE CITY

Big Datacenters for Massive Parallelism

BlinkDB

Storm | | Spark-Streaming

Pregel || GraphLab GraphX

DryadLINQ Dremel
MapReduce || Hadoop | | Dryad Hive

2005 2010 2015

Data-Parallel Applications

Multi-stage dataflow

* Computation interleaved with communication

Computation Stage (e.g., Map, Reduce)
* Distributed across many machines
e TJasks run in parallel

Communication Stage (e.g., Shuffle)
* Between successive computation stages

Reduce Stage

A communication stage cannot complete
until all the data have been transferred

g Map Stage

Communication 1s Crucial

Performance

Facebook jobs spend ~25 % of runtime on average in intermediate comm.

As SSD-based and in-memory systems proliferate,
the network is likely to become the primary bottleneck

|. Based on a month-long trace with 320,000 jobs and |50 Million tasks, collected from a 3000-machine Facebook production MapReduce cluster.

Flow

Transfers data from a source
to a destination

Independent unit of allocation,
sharing, load balancing, and/or
prioritization

Faster
Communication
Stages:

“Configuration should be handled
at the system level”

Existing Solutions

WFQ CSFQ D3 | [DeTail || PDQ || pFabric
GPS RED || ECN XCP 1| RCP DCTCP D2TCP || FCP
1980s 1990s 2000s 2005 2010 2015

Per-Flow Fairness

[
I
[
- Flow Completion Time
I

Independent flows cannot capture the collective communication
behavior common in data-parallel applications

Why Do They Fall Short?

oA

OO EII H[N

Why Do They Fall Short?

777

Why Do They Fall Short?

2 E
/163_

Network |
Per-Flow Fair Sharing
| | Shuffle
: Completion
Link to : P i i
ink to r, 3 : Time = & Solutions focusing on flow
completion time cannot further
Link to r, Avg. Flow decrease the shuffle completion time
__ Completion

s > Time = 3.66

time

RG

Slow down faster

2)—@EH:I flows to accelerate
L slower flows
3 Datacenter |
| Network |
Per-Flow Fair Sharing Data-Proportional Allocation
Shuffle | | | Shuffle
: Completion : 2 Completion
Link t 3 Link t :
nktor, 3 : Time = 5 e e Time = 4
Link to r, Avg. Flow Link to r, Avg. Flow
Completion __ Completion
2 4 6 > Time = 3.66 2 4 6 Time =4
time time

|. Managing Data Transfers in Computer Clusters with Orchestra, IGCOMM’201 .

Faster
Communication
Stages:

“Configuration should be handled
by the end users”

Applications know their

performance goals, but

they have no means to
let the network know

Faster Faster
Communication Communication
Stages: Stages:

“Configuration should be handled
by the end users”

“Configuration should be handled
at the system level”

Holistic Approach

Applications and the Network Working Together

Communication abstraction for
data-parallel applications to
express their

|. Minimize completion times,

2. Meet deadlines, or

3. Perform fair allocation.

N

Broadcast

A

Aggregation

g\

Shuffle

Single Flow

All-to-All

Parallel Flows

Datacenter

... for faster
completion
of coflows?

... LO Mmeet
more
deadlines?

... for fair
allocation of
the network?

Enables coflows in
data-intensive clusters

Faster, application-aware data transfers

|. Coflow Scheduler throughout the network

Consistent calculation and enforcement of
scheduler decisions

2. Global Coordination

Decouples network optimizations from
applications, relieving developers and end users

3. The Coflow API

|. Efficient Coflow Scheduling with Varys, SIGCOMM’201 4.

Communication abstraction for
data-parallel applications to

express their performance goals

ne size of each flow,

|
2. The total number of flows, and
3

ne endpoints of individual flows.

Benefits of Inter-Coflow Scheduling

Coflow | Coflow 2
(R
Link 2 : |
—— e [2 uns A
S / N e e e e e e e =
Fair Sharing Smallest-Flow First!'-2 The Optimal
L2 L2 - L2 [
L] —] LI L/ I
1 | | | | | > - | | | | | > | | I | l | >
> time * ¢ time ° time ¢
Coflow | comp. time = 5 Coflow | comp. time = 5 Coflow | comp. time = 3
Coflow?2 comp. time = 6 Coflow?2 comp. time = 6 Coflow?2 comp. time = 6

|. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’201 2.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’201 3.

Inter-Coflow Scheduling

Coflow | Coflow 2

Link 2 I

——— s {0
/

N\

Concurrent Open Shop Scheduling!

* Examples include job scheduling and
caching blocks
* Solutions use a ordering heuristic

|. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’201 2.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’201 3.

Inter-Coflow Scheduling

Coflow | Coflow 2

Concurrent Open Shop Scheduling | =

with Coupled Resources | L

* Examples include job scheduling and

caching blocks ﬁ—'“
* Solutions use a ordering heuristic
* (Consider matching constraints

| Datacenter

Employs a two-step
algorithm to minimize
coflow completion times

: .. Keep an ordered list of coflows to be scheduled,
|. Ordering heuristic breempting if needed

2 All ti | ith Allocates minimum required resources to each coflow
. ocation algorithm to finish in minimum time

Ordering Heuristic

C, end):f C, endAs G, e)?ds

| ; I o] p——
| S [0
2 2 ——— I 03
[>
3 13 19
[3 3; Datacenter f_ I Time . >
I Shortest-First
: (Total CCT = 35)
C| C2 C3 I
Length 31 5| 6 :
[
[
[

Ordering Heuristic

Datacenter

Width

C, end)f G, ends C, ends C ends
0, | O |h
0, 0,
0, oF
> >
3 I3 I9 6 16 19
Time Time >

Shortest- Flrst (35) Narrowest-First
(Total CCT = 41)

Ordering Heuristic

Datacenter '+
C I C2 C3
Size 91 10| 6

C, ends
A
0, '
0,
0;
>
3 I3 I9

Time

Shortest- Flrst (35)

4C3 end)f % ends C, egds
0:|ﬂ i

0,

0;

>
6 9 I9

Time

Smallest-First (34)

C, ends
0,
0,
0;
6 16 I9
Time

Narrowest- Flrst (11)

Ordering Heuristic

[3 Datacenter I
C I C2 C3
Bottleneck 31 10 6

C, ends

A

0, !
0,
0;

>
3 I3 I9
Time

Shortest- Flrst (35)

C, ends
A
0,]
2
O3
>
6 9 I9

Time

Smallest-First (34)

C, ends
0,
0,
0;
>
6 16 I9
Time

Narrowest- Flrst (11)

C, enck G, e)ilds C, endj

i .

>
3 9 19
>

Time

Smallest-Bottleneck (51)

Allocation Algorithm

Finishing flows Allocate minimum
A coflow
. faster than the flow rates such
cannot finish
. bottleneck cannot that all flows of a
before its , :
decrease a coflow's coflow finish
very last flow o :
completion time together on time

Enables coflows in
data-intensive clusters

Faster, application-aware data transfers

l. Coflow Scheduler throughout the network

Consistent calculation and enforcement of
scheduler decisions

2. Global Coordination

Decouples network optimizations from
applications, relieving developers and end users

3. The Coflow API

The Need for Coordination

[4 | 1 I a A
| I — PO H
= N
2 2 ———
1~
:F4 3 3 — I 4 9 >
| | Time >
: Scheduling
C |G, \ with
Bottleneck 4] 5 I Coordination

(Total CCT = 13)

The Need for Coordination

Coordination Coordination
(Total CCT = 13)) (Total CCT = 19)

C,ends C,ends C,ends
[4 I l I A I | a A
| | I 0, - I 0, H
I 0,] I 0,
l:#— 2 2 ——
1~ TR
>
4] 3 3 |— I 49 I 7 12 g
| Time > Time ——mm88 >
: Scheduling : Scheduling
with without
[[
[[

Uncoordinated local decisions interleave coflows, hurting performance

Architecture

Coflow Scheduler TaskName

Comp.Tasks calling
j Varys Client Library

a Q= a
Sender = Receiver == Driver =
. . Put = Get = Reg ==
Centralized master-slave architecture e e e
: : . : (| Daemon [| Daemon [| Daemon
* Applications use a client library to T T T
communicate with the master J o .
18 !
.« . . gllal Network Interfc
Actual timing and rates are determined it || Estmror || | |;H5 ot Tniertace |
by the COﬂOW Scheduler v v i (Distributed) File System :
|
' !
' |

Varys Master

|. Download from http://varys.net

Enables coflows in
data-intensive clusters

Faster, application-aware data transfers

l. Coflow Scheduler throughout the network

Consistent calculation and enforcement of
scheduler decisions

Decouples network optimizations from
3. The Coflow API applications, relieving developers and end users

2. Global Coordination

The Coflow API 5 o e o et |

@driver

. b €—register()
¢ regl Ste I ; s € register(SHUFFLE)

id €= b.put(content)

* put

shuffle

b 0
¢ get s.unregister ()

e mappers
()
= u n regl Ste r -‘g @mapper @reducer
- driver b.get(id) s.get(id)
(JobTracker) e

id, | <€=s.put(content)

A 3000-machine trace-driven
simulation matched against a
[00-machine ECZ deployment

|. Does it improve performance!?

2. Can It beat non-preemptive solutions! ‘ E S

3. Do we redlly need coordination?

Better than Per-FHow Fairness

Comm. Heavy
Comm. Improv.

Preemption i1s Necessary [Sim.]

” NO

; | e Starvation
Y |

Overhead Over Varys
»

Varys Per-Flow FIFO'
Fairness

|. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’201 |

| ack of Coordination

Hurts [Sim.]

25 -
22.07
X
§207
o
2
O 157
>
(o}
()]
< 10 -
2
3 5.65 5.53
5 321
1.00
O L T T T T
Varys PerFlow FIFO' Per-Flow” FIFO-LM*
Fairness Prioritization

|. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’201 |
2. Finishing Flows Quickly with Preemptive Scheduling, SSIGCOMM’201 2

3. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’201 3

4. Decentralized Task-Aware Scheduling for Data Center Networks, SIGCOMM’201 4

Smallest-flow-first (per-flow priorities)
* Minimizes flow completion time

FIFO-LM* performs decentralized

coflow scheduling
o Suffers due to local decisions
Works well for small, similar coflows

Communication abstraction for
data-parallel applications to
express their performance goals

€ Pipelining between stages

€ Speculative executions

3. lhe—eﬂéﬁaﬂﬂés—ef—méﬁvqéaﬁl—ﬂe% € Task failures and restarts

How to Perform Coflow Scheduling
Complete Knowledge?

Implications

Minimize Avg. Comp.Time Flows in a Single Link Coflows in an Entire Datacenter

: : Ordering by Bottleneck-Size +
With complete knowledge Smallest-Flow-First Datap onal Rate Allocation
Without complete knowledge Least-Attained Service (LAS) z

Revisiting Ordering Heuristics

C, ends
A
0, '
0,
0;
>
3 I3 I9

Time

Shortest- Flrst (35)

C, ends C ends G, ends

0 |ﬂ H
0,
03
6 9 I 9>
Time

Smallest-First (34)

C, ends
0,
0,
0;
6 16 I9
Time

Narrowest- Flrst (41)

C, ends

A
0, I
OZ
03
>
3 9 |19
Time >

Smallest-Bottleneck (31)

Coflow-Aware LAS (CLAS)

Set priority that decreases with how much a coflow has already sent
* The more a coflow has sent, the lower its priority

* Smaller coflows finish faster

Use total size of coflows to set priorities

e Avoids the drawbacks of full decentralization

Coflow-Aware LAS (CLAS)

Continuous priority reduces to fair
sharing when similar coflows coexist

* Priority oscillation

FIFO works well for similar coflows

e Avoids the drawbacks of full
decentralization

N I
Coflow | Coflow 2
>
2 time * é

Coflow | comp. time = 6
Coflow?2 comp. time = 6

2 4 6

time

Coflow | comp. time = 3
Coflow2 comp. time = 6

Discretized Coflow-Aware LAS (D-CLAS)

Priority discretization

* Change priority when total size exceeds
predefined thresholds

Scheduling policies
* FIFO within the same queue
* Prioritization across queue

Weighted sharing across queues

 Guarantees starvation avoidance

FIFO

FIFO

FIFO

Qk

Q

Q

Lowest-

Priority

Queue
A

Highest-
Priority
Queue

How to Discretize Priorities?

Exponentially spaced thresholds

Lowest-
Priority

* K:number of queues
e A :threshold constant

Queue
FIFO|lQc 4

* E :threshold exponent

L oose coordination suffices to calculate
global coflow sizes

* Slaves make independent decisions in between

Small coflows (smaller than E'A) do not
experience coordination overheads!

EKIA

FIFO|Q,

E°A E'A

FIFO|Q,

EIA o Highest-
Priority
Queue

Closely Approximates [Sim. & EC2]

N
U
)

22.07

N
o
1

Overhead Over Varys
) -

5.65 5.53
5 1 3.21
1.00 1.10
0 . : : —
Varys PerFlow FIFO' PerFlow " FIFO-LM* Varys
Fairness Prioritization w/o Complete
Knowledge

|. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’201 |
2. Finishing Flows Quickly with Preemptive Scheduling, SSIGCOMM’201 2

3. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’201 3

4. Decentralized Task-Aware Scheduling for Data Center Networks, SIGCOMM’201 4

My Contributions
S

My Contributions

Orchestra
SIGCOMM'| |

Varys
SIGCOMM' |4

Aalo

SIGCOMM'[5

Application-Aware
Network Scheduling

My Contributions

Spark Sinbad
NSDI'12 SIGCOMM' 13
Orchestra Varys Aalo
SIGCOMM'| | SIGCOMM' 14 SIGCOMM'|5
FairCloud HARP ViNEYard
SIGCOMM' |2 SIGCOMM'12 ToN'I2

Network-Aware
Applications

Application-Aware
Network Scheduling

Datacenter
Resource Allocation

My Contributions

Spark

NSDI'[2

Sinbad

SIGCOMM'I 3

Merged at Facebook

Orchestra
SIGCOMM'| |

Merged with Spark

Varys
SIGCOMM' |4

Open-Source

Aalo

SIGCOMM'[5

Open-Source

FairCloud

SIGCOMM'|2

HARP

SIGCOMM'| 2

ViNEYard

ToN'[2

Open-Source

Network-Aware
Applications

Application-Aware
Network Scheduling

Datacenter
Resource Allocation

Communication-First Big Data Systems

In-Datacenter Analytics
* Cheaper SSDs and DRAM, proliferation of optical networks, and resource
disaggregation will make network the primary bottleneck

Inter-Datacenter Analytics
 Bandwidth-constrained wide-area networks

End User Delivery
* Faster and responsive delivery of analytics results over the Internet for better end
user experience

Better capture application-level performance goals using coflows

Coflows improve application-level performance and usability
* Extends networking and scheduling Iiterature

Coordination — even if not free — is worth paying for in many cases

mosharaf@cs.berkeley.edu
http://mosharaf.com

Improve Flow Completion Times

3 3 —
| Datacenter |
Per-Flow Fair Sharing Smallest-Flow First!?2
Shuffle |
Link to r, C_Ic_b.mpletl;n Linktor | || 1 4
ime =
Link to r, Avg. Flow Link to r,
Completion
4

' 5 > Time = 3.66
time

|. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’201 2.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’201 3.

time

Shuffle
Completion
Time =6

Avg. Flow
Completion

s > Time = 2.66

Distributions of Coflow Characteristics

Frac. of Coflows

Frac. of Coflows

| -
0.8 -
0.6 -
0.4 1
0.2 -

O T T T |
|.E+06 [.E+08 I.E+I0 I1.E+12 |.E+I14

Coflow Length (Bytes)

| -
0.8 1
0.6 -
0.4 1
0.2 1

O T T T |
|.E+06 |.E+08 I.E+I0 I1.E+12 |.E+I14

Coflow Size (Bytes)

| -
0.8 1
0.6 -
0.4 -
0.2 1

O I T T
| .E+00 | .E+04 | .E+08

Coflow Width (Number of Flows)

Frac. of Coflows

| -
0.8 -
0.6
04 -
0.2 1

O T T T |
|.E+06 [|.E+08 I.E+I0 I1.E+12 |.E+I14

Coflow Bottleneck Size (Bytes)

Frac. of Coflows

Traffic Sources

|. Ingest and replicate new data
2. Read input from remote machines,

when needed []
3. Transfer intermediate data []
4. Write and replicate output []

Y

Percentage of

O >

Iraffic by O O
Category at v 1 11
Facebook - E) L

Distribution of Shuffle Durations

Performance

Facebook jobs spend ~25 % of runtime on average in intermediate comm.

|-
8 08 Month-long trace from a 3000-
5 06 machine MapReduce production
g 04 - cluster at Facebook
£ 02
0 - - - 320,000 jobs
0 02 04 06 08 150 Million tasks
Fraction of Runtime Spent in Shuffle

T heoretical Results

Structure of optimal schedules

* Permutation schedules might not always lead to the optimal solution

Approximation ratio of COSS-CR

* Polynomial-time algorithm with constant approximation ratio (-

64)/

3

I. Due to Zhen Qiu, CIiff Stein, and Yuan Zhong from the Department of Industrial Engineering and Operations Research, Columbia University, 20| 4

The Coflow API

register
put
get

unregister

broadcast

@driver

b €=register(numFlows)

s € register(SHUFFLE, numFlows, {b})
reducers

= id €= b.put(content, size)

b 0

s.unregister()
mappers

@mapper @reducer
driver b () S'get(lds/)
(JobTracker) e

id, | €=s.put(content,
size)

|. Admission control

2. Allocation algorithm

Employs a two-step
algorithm to support
coflow deadlines

Do not admit any coflows that cannot be completed
within deadline without violating existing deadlines

Allocate minimum required resources to each coflow
to finish them at their deadlines

More Predictable

Facebook Trace Simulation EC2 Deployment

100 1

07 .

N

U
~
(0

% of Coflows
(0]
o

% of Coflows
(0]
o

N

(0,
N
U

. |
Varys Fair - EDF Varys Fair
(Earliest-Deadline First)

———

|. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012

Optimizing
Communication
Performance:

“Let users figure it out”

Comm.
Params”

Spark-v1.11 6

Hadoopv1.2.1 10
YARN-2.6.0 20

“Lower bound. Does not include many parameters that can
indirectly impact communication; e.g., number of reducers etc.
Also excludes control-plane communication/RPC parame ters.

Experimental Methodology

Varys deployment in EC2

* 100 m2.4xlarge machines
* Each machine has 8 CPU cores, 68.4 GB memory, and | Gbps NIC

* ~900 Mbps/machine during all-to-all communication

Trace-driven simulation
* Detailed replay of a day-long Facebook trace (circa October 2010)

* 3000-machine, | 50-rack cluster with 10:1 oversubscription

