
Packet Classification with Explicit Coordination

Mosharaf Chowdhury and Sameer Agarwal
∗

University of California, Berkeley

ABSTRACT
Packet classification is a key building block of many net-
work services and functionalities (e.g., switching, filtering,
load balancing). Despite its prevalence, packet classification
is implemented and deployed in an ad-hoc manner at dif-
ferent layers of the protocol stack. Moreover, high speed
packet classification, in presence of arbitrarily large number
of classification rules, is resource and computation intensive.

We argue that instead of developing classification solu-
tions in isolation, packet classification should be considered
as a fundamental primitive in the protocol stack. We pro-
pose a classification layer or CLayer as part of the protocol
stack and a generic mechanism to explicitly configure and
implement capability-driven classification offloading. Our
approach allows classifiers (e.g., routers, firewalls) to offload
part of their classification related computation and memory
requirements to helpers (e.g., end hosts, edge routers) with-
out introducing additional states in the classifiers. Eval-
uation results from our prototype implementations attest
CLayer’s scalability and show increasing performance gain
as traditional classification complexity grows.

1. INTRODUCTION
Packet classification is a key building block of many crucial

network services and functionalities across different layers.
While traversing an end-to-end path in the current Internet,
a packet encounters multiple network entities that perform
packet classification – firewalls may classify the packet to de-
cide whether to drop it or not, routers classify it to determine
its next hop destination and QoS requirements, and a load
balancer may classify the packet to direct it to a particular
service instance. Packet classification is only going to be-
come even more pervasive in the future. As networks evolve
toward using commodity hardware (e.g., OpenFlow [7]) for
greater flexibility and simpler management, classification is
becoming an integral part of the architecture.

High speed packet classification, in presence of arbitrarily
large number of classification rules, is known to be computation-
intensive, power hungry, and consequently, expensive [15]. It
leads to high implementation and configuration complexity
as well as difficulties in accurately capturing classification
semantics.

Classification involving multiple fields exhibits a funda-
mental trade-off between computational complexity and mem-
ory requirements [15]. Routers and firewalls commonly uti-
lize expensive and power-hungry TCAMs for fast pattern-

∗This is a joint work with Dilip Joseph and Ion Stoica.

Table 1: Packet classification across different layers
of the network protocol stack

Layer Network service/functionality

Link (2.5) Switching, MPLS
Network Forwarding
Transport Filtering, IntServ, DiffServ
Application Load balancing, Intrusion detection

End host A

FTP

Server B
Load

balancer L

Load

balancer M

Firewalls

F

G

Figure 1: Coordinating multiple classifiers for fire-
wall load balancing.

based classification on multiple packet header fields for ev-
ery single packet. Classification involving packet payloads
is even more complex.

The lack of support for explicit coordination between dif-
ferent entities involved in packet classification makes config-
uration hard. Consider the pair of firewall load balancers in
Figure 1. The load balancers must select the same firewall
instance for both forward and reverse directions of a TCP
flow, since the classification decision at a firewall instance
uses stored information about packets previously seen in the
reverse direction. To achieve this level of coordination, to-
day’s load balancers have to use ad-hoc mechanisms that
leverage the physical wiring configuration and the 5-tuples
of the packets received on each network interface [20].

Typically, there is a semantic gap between the end-points
and the entities performing classification. For example, an
edge router is in a better position to determine a packet’s
QoS. Its closeness to traffic sources provides access to finer-
grained local QoS policies and traffic accounting than a core
router.

Despite its prevalence, packet classification is implemented
and deployed in an ad-hoc manner at different layers of the
protocol stack. Most implementations follow roughly the
same sequence of actions – a classifier determines which flow
or class an arrived packet belongs to, looks up rules for that
class, and takes actions based on corresponding rules. Exist-
ing approaches to ameliorate the aforementioned challenges
are also limited to reinventing the wheel. For instance, to
improve classification performance and to reduce semantic
gaps, several solutions (e.g., MPLS, DiffServ) have proposed

pushing packet classification tasks to edge network elements
that handle less traffic and have more semantic context. The
lack of architectural support for a general mechanism forced
each of these solutions to devise their own set of protocols.

We argue that rather than developing ad-hoc classifica-
tion solutions in isolation, packet classification should be in-
cluded as a fundamental primitive in the protocol stack. Fur-
thermore, it should be simultaneously accessible from dif-
ferent applications and services to avoid unnecessary reim-
plementation of common functionalities. In this report, we
propose a classification layer or CLayer as part of the pro-
tocol stack and a generic mechanism to efficiently configure
and implement capability-driven classification offloading us-
ing CLayer. We introduce the concept of Fate-Carrying La-
bels (FCLs) that allow classifiers – entities like routers, fire-
walls, and load balancers that traditionally perform packet
classification – to include helpers – end hosts, edge routers,
and other network entities that have more semantic context
– in classification-related computation and memory require-
ments in a per-flow basis without introducing any additional
states in the classifiers.

In developing CLayer, we have (i) designed a generic solu-
tion that can simultaneously handle a wide variety of exist-
ing and future classification applications and (ii) a robust
signaling protocol that can handle non-symmetric paths,
path changes, and state discrepancies at participating en-
tities. (iii) We have made offloading robust to tampering,
cheating, or malfunctioning of helpers, and (iv) developed an
API interface to easily CLayer-enable existing applications.

We have prototyped CLayer in software using the Click
[19] modular router and have provided CLayer support for
a variety of existing network applications with minor modi-
fications to their source code. Our experience with CLayer-
enabled applications provide several insights into the ben-
efits of using CLayer: Our implementation of a CLayer-
enabled firewall can achieve two to three times more through-
put than a regular firewall implementation over multiple
rule sets, and we have observed noticeable performance im-
provement after enabling CLayer in layer-4 load balancers.
CLayer also reduces network complexity by obviating sep-
arate implementation and configuration of diverse mecha-
nisms.

The remainder of the report is organized as follows. Sec-
tion 8 puts CLayer into perspective with its related work.
Section 2 and Section 3 explain the basics of CLayer. We
discuss additional design and performance issues of CLayer
in Section 4. Section 5 and Section 6 cover CLayer pro-
totyping details followed by evaluation results. We outline
currently known limitations of CLayer in Section 7, then put
forth our future work plan in Section ??, and conclude with
a summary in Section 9.

2. OVERVIEW
In this section we present an overview of CLayer. We

start with the basic classification model and signaling mech-
anism, then briefly describe properties and format of labels
in CLayer, and finally make our case for a new classification
layer.

2.1 Classification Model
Network entities can be assigned two different roles in

CLayer: classifiers and helpers. Classifiers are network enti-
ties like routers, firewalls, load balancers, and other middle-

Webserver 1

Webserver 2

Load balancerQoS enabled router

Capability TCPFLow, WebSess1. 2a. ClassReq QoS:q1

2b. ClassReq QoS:q1, WebSess:1

3. ClassRsp QoS:q1, WebSess:1

End host A

(a) Control Plane

Load balancerQoS enabled

router

4a.

End host A

(b) Data Plane

QoS:q1, WebSess:1 Payload4b.

Webserver 1

Webserver 2

QoS:q1, WebSess:1 Payload

Figure 2: Packet classification using CLayer.

boxes that traditionally perform packet classification. Helpers
aid classifiers by performing classification tasks on their be-
half. Examples of helpers include end hosts that provide
HTTP cookies to web load balancers to aid them in session
identification and edge routers in a DiffServ domain that set
code points in packet headers to be used by core routers in
packet processing.

The overall CLayer proposal consists of three main com-
ponents:

1. A signaling protocol that coordinates classifiers and
helpers.

2. The CLayer header that carries signaling information
and classification results using Fate-Carrying Labels
(FCLs).

3. A new socket API that provides CLayer-interaction
interface to network services and applications.

The purpose of CLayer is to provide a generic classifi-
cation mechanism and at the same time offloading part of
computation and memory requirements of classifiers to rele-
vant helpers in order to improve performance and scalability.
The CLayer classification model is simple (as illustrated in
Figure 2): using a robust signaling protocol, helpers adver-
tise their classification and labeling capabilities (1). Based
on the first few packets, a classifier classifies the flow (2a
and 2b) and requests the originator helper about the type of
classification expected from it, i.e., what label the classifier
expects to find in subsequent packets (3). The helper main-
tains label information using soft-states, and it embeds the
requested label in later packets. The downstream classifier
simply reads and uses these labels to speed up its classifica-
tion operations (4a and 4b).

2.2 Basic CLayer Signaling Protocol
The CLayer signaling protocol involves a four-way hand-

shake – CL SYN - CL SYNACK - CL ACK1 - CL ACK2 –
appropriately named to highlight its similarity to the three-
way SYN-SYNACK-ACK handshaking protocol of TCP. CLayer
messages can carry different types of information inserted by
entities on the path between the two end points (Table 2).
When and why these information are generated and who
uses them will become clear as we explain in subsequent
sections.

Table 2: Summary of different types of information
carried in CLayer messages

Information Related to...

Capability Capability declaration by a helper.
ClassReq Classification request from

a classifier.
EchoReq Classification request echoed once by

an end point helper toward the intended
helper.

InstallReq Echoed request reechoed by the oppo-
site end point helper. This can happen
when the intended helper is not an end
point.

Result Label requested by a classifier.

We illustrate the basic functionality of CLayer using the
example in Figure 3, where end host A wishes to communi-
cate with end host B and router E on the data path clas-
sifies packets based on its QoS policy and assigns differ-
ent forwarding priorities. E is thus the classifier and uses
the CLayer signaling protocol to configure helpers A and
B. Here, CLayer provides benefits similar to DiffServ and
CSFQ [23] – router E does not have to perform expensive
packet classification on every packet, nor does it have to
maintain per-flow state.

When A initiates communication with B, it first sends a
CL SYN to B. Helpers on the A → B data-path advertise
their capabilities and classifiers place classification requests
(ClassReqs) through the CL SYN. The ClassReqs are echoed
back to A in the CL SYNACK generated by B. Helpers
are notified of the ClassReqs addressed to them through the
CL ACK1 subsequently sent by A. The helpers embed the
requested labels in the CL ACK1 and subsequent A → B
data packets. Similarly, CL SYNACK and CL ACK2 con-
figure the helpers in the B → A direction.

Figure 3 illustrates the CLayer signaling messages ex-
changed between A and B, described in detail below:
Step 1: A sends a CL SYN to B, advertising its ability to
identify packets in the same TCP flow and label them.
Step 2: E forwards the CL SYN after appending a Class-
Req of the form [classifier, helper, classification type, action].
Here, E is requesting A to label all packets in the same
TCPFlow with label q1 denoting the assigned QoS class.
Step 3: B responds to the CL SYN message with a CL SYNACK,
that advertises its own classification capabilities and echoes
the ClassReq from the CL SYN.
Step 4: E forwards the CL SYNACK after appending a
ClassReq for labeling packets with q2, the QoS class for the
B → A TCPFlow.
Step 5: A records the CL SYNACK EchoReqs addressed
to it with the current TCP flow. It then sends a CL ACK1
to B, which includes the requested classification result(i.e.,
Label:q1) and the ClassReq copied from theCL SYNACK.
Step 6: E forwards the CL ACK1 with forwarding priority
indicated by the embedded label q1.
Step 7: Like A, B records the CL ACK1 EchoReq with
the current TCP flow, and responds with a CL ACK2 that
includes the requested classification result Label:q2.
Step 8: E simply forwards CL ACK2 with forwarding pri-
ority q2, as in Step 6.

Signaling is complete once the CL ACK2 reaches A. A

Endhost A Router E

Capability: [A,TCPFlow,Label]

CL_SYN
1 2

Capability: [A,TCPFlow,Label]

CL_SYN

ClassReq: [E, A, TCPFlow,Label:q1]

3

Capability: [B,TCPFlow,Label]

CL_SYNACK

EchoReq: [E, A, TCPFlow,Label:q1]

4
Capability: [B,TCPFlow,Label]

CL_SYNACK

EchoReq: [E, A, TCPFlow,Label:q1]

ClassReq: [E, B, TCPFlow,Label:q2]

5 CL_ACK1

EchoReq: [E, B, TCPFlow,Label:q2]

Results: [E, TCPFlow,Label:q1]

6 CL_ACK1

EchoReq: [E, B, TCPFlow,Label:q2]

Results: [E, TCPFlow,Label:q1]

D
a
ta

 P
la

n
e

Endhost B

DATA

Results: [E, TCPFlow,Label:q1]

DATA

Results: [E, TCPFlow,Label:q2]

7 CL_ACK2

Results: [E, TCPFlow,Label:q2]

8 CL_ACK2

Results: [E, TCPFlow,Label:q2]

C
o
n
tr

o
l
P

la
n
e

Figure 3: Detailed CLayer signaling in a QoS appli-
cation.

and B include the classification results of their respective
ClassReqs in every subsequent data packet they exchange. It
is assumed that after reading information addressed to itself,
each entity invalidates that information from the outgoing
packet.

In this scenario, CL ACK2 is unnecessary; a three-way
handshake suffices. However, as we describe in detail in
Section 3.1, CLayer signaling includes a 4-way handshake to
handle non-end host helpers in the presence of network path
asymmetry.

The signaling illustration here is described as a standalone
protocol for simplicity of explanation. In practice, it is pig-
gybacked on top of TCP handshake and initial data packets
of a connection, thus avoiding extra round trip overheads.

2.3 Fate-Carrying Labels
A label in CLayer is an opaque bag of bits that is issued

by a classifier and can be meaningfully interpreted only by
its issuer. In its simplest form, a label can be a pointer in a
〈label→ action〉 lookup table. After receiving and verifying
a previously issued label, a classifier will lookup its corre-
sponding action to proceed. Since the number of possible
actions is generally much lower than the number of rules
that result in those actions, even in this straightforward in-
terpretation labels can improve performance with a small
state requirement for lookup tables.

In order to completely remove the state requirement, we
propose Fate-Carrying Labels (FCLs) where a Label is not
just a pointer to find out the corresponding action from a
lookup table; rather it is the action itself. For example,
packets from an already classified-to-be-dropped flow might
come to a firewall with an FCL that says “Drop Me”! Con-
sequently, there is no extra state in classifiers and no inter-
mediate per-packet lookup stage using FCLs.

2.3.1 Properties
An FCL is expected to have the following properties for

classification decision enforcement, incentives, trust, and se-
curity purposes.

• Verifiable: A classifier should be able to verify a label
it issued in a fast and efficient manner. Labels should
be unforgeable, or at least they should be very hard to
forge or to randomly guess by anyone other than the
issuing classifier. Classifiers should also be able to dif-
ferentiate between malformed and corrupt labels. We
consider a label to be ‘malformed’ or ‘wrong’ if it is un-
successfully tampered with; otherwise, it is considered
to be ‘corrupt’.

• Bound to flow: A label should only be valid for the
flow it was issued for. It also implies that labels should
be non-transferable to another flow, and they are for
single-use only – even for the same helper.

• Limited valid time-window: A Label corresponding to
an action should be periodically invalidated to make it
harder for anyone to learn them over time. Periodic in-
validation also provides a natural way to throttle/deny
misbehaving helpers.

Note that these properties are not correctness require-
ments and preserving them remain up to the discretion of an
issuing classifier. Details of the importance of these proper-
ties are further explained in later sections.

2.3.2 FCL Format
In its stripped-down form, an FCL consists of a bit string

ActionRep that represents the action the issuing classifier
must take upon receiving this FCL. In order to detect a
corrupted label and to assist in label invalidation, an FCL
should also contain a CheckSum and an issuing TimeStamp.

Leaving such information in plain-text, makes them un-
verifiable and allows malicious entities to forge them. This
is specially critical for classifiers like firewalls. To prevent
that, an FCL can also include an HMAC (e.g., MD5, SHA-
1) – on ActionRep and TimeStamp along with the 5-tuple
of the flow to bind it – keyed using a Secret known only
to the issuer. Upon receiving a packet, a classifier can now
quickly authenticate and act upon it with a high-degree of
confidence.

2.4 A Layer for CLayer
We propose a new classification layer in the network pro-

tocol stack to carry the CLayer signaling messages and the
classification results provided by helpers. In order to si-
multaneously support classification applications at different
layers and those that span multiple layers, CLayer logically
spans layers 2 to 7 (link layer to application layer).

Although CLayer logically spans multiple layers, we ad-
vocate implementing it as a new layer between the network
and transport layers to minimize violation of the layering
principle. CLayer must be at the network layer or above
in order to avoid extensive changes to current forwarding
infrastructures. However, implementing the CLayer at or
above the network layer still violates architectural layering
for layer-2 only applications.

Placing CLayer at or above the network layer ensures that
it is preserved end-to-end in the absence of layer-7 ‘proxies’
on the path. A layer-7 proxy (e.g., layer-7 load balancer)
acts as a TCP endpoint for the client connection and opens
a new TCP connection to its final destination. We assume
that such layer-7 proxies are CLayer-aware at least enough
to blindly forward along any CLayer headers they receive.

A new layer naturally calls for its own header. We will
defer header-related discussion to Section 5.

3. USAGE SCENARIOS
In this section we present two use cases in details that

illustrate how CLayer can simplify network configuration
complexities involving multiple classifiers by leveraging ap-
plication semantic and by promoting explicit coordination
between different entities. We also clarify why CLayer needs
a four-way handshaking protocol to support non-end host
helpers.

3.1 Multiple Classifiers and Leveraging
Helper Context

We illustrate how CLayer can simultaneously support dif-
ferent classification operations on the data path – IP for-
warding, QoS, and load balancing – using the following use
case. It also demonstrates how application semantic avail-
able at a helper can significantly simplify a classifier (i.e.,
load balancer) operation.

Figure 4 illustrates a web browser running on host A send-
ing HTTP requests to a web server (httpd) located in a data
center. Load balancer L spreads out HTTP requests from
end hosts across the web servers in the data center. Similar
to the HTTP cookie mechanism, L leverages the semantic
context available at A to send all its HTTP requests to the
same web server W1. Edge router E performs priority based
forwarding with help from A and W1 (see Section 2.2). Sim-
ilar to MPLS, core router C offloads IP route lookup to edge
routers E and F to reduce processing and memory require-
ments of C. In this example, E, C and L are classifiers and
A, W1, E and F are helpers.

Before sending the first HTTP request to L (whose ad-
dress is IPL), the browser at A creates a new CLayer ses-
sion. Subsequently, the browser embeds the session handle
into all TCP connections associated the HTTP session. Fig-
ure 4 shows how various classifiers and helpers participate in
the CLayer signaling protocol. This protocol is piggybacked
on the session’s first TCP connection and consists of four
messages.

Message 1: The browser at A sends a CL SYN message
to advertise its HTTPSess and TCPFlow classification ca-
pabilities (CL SYN is piggybacked on TCP’s SYN packet).
Upon receiving CL SYN, E advertises its ability to perform
destination based packet classification by appending a Class-
Req request. Next, C looks up the route for CL SYN and
appends a ClassReq request to ask E to label all packets it
sends to IPL with x. F also advertises its ability to per-
form destination based classification (like E), but does not
insert a ClassReq request as it is not QoS-aware. Finally, L
selects a web server W1 based on current load conditions.
Before forwarding the CL SYN message to W1, L appends
a ClassReq request in which it asks A to label all packets in
the same HTTP session with W1.

Message 2: Upon receiving the CL SYN message, W1

replies with a CL SYNACK message advertising its capa-
bility list and echoing the three ClassReqs from CL SYN. L
forwards the CL SYNACK message unmodified, as it does
not classify packets destined to end hosts. Next, F appends
its capability advertisement, and C appends a ClassReq mes-
sage, asking F to label all packets it sends to IPA with y.
Finally, E appends a ClassReq message asking W1 to label
all packets in the same TCP flow with q2.

Endhost A Core

Router C

Web

server W1
Edge

Router E

Load

Balancer L

Capability: [A,TCPFlow,Label], [A, HTTPSess, Label], [E, DstIP, Label], [F, DstIP, Label]

CL_SYN

ClassReq: [E, A, TCPFlow,Label:q1], [C, E, DstIP,Label:x], [L, A, HTTPSess,Label:W1]

Capability: [W1,TCPFlow,Label], [W1, HTTPSess, Label] , [F, DstIP, Label], [E, DstIP, Label]

CL_SYNACK

ClassReq: [C, F, DstIP, Label:y], [E, W1, TCPFlow, Label: q2]

EchoReq: [E, A, TCPFlow,Label:q1], [C, E, DstIP,Label:x], [L, A, HTTPSess,Label:W1]

CL_ACK1

InstallReq: [C, E, DstIP, Label:x]

EchoReq: [C, F, DstIP, Label:y],[E, W1, TCPFlow, Label: q2]

1

2

3

Edge

Router F

Results: [E, TCPFlow,Label:q1], [L, HTTPSess, Label:W1], [C, DstIP, Label: x]

CL_ACK2

InstallReq: [C, F, DstIP, Label:y]

Results: [E, TCPFlow,Label:q2], [C, DstIP, Label: y]
4

Figure 4: Using CLayer to offload QoS labeling, IP
route lookup, and HTTP session identification to
end hosts and edge routers.

Message 3: Upon receiving the CL SYNACK message,
A records all EchoReqs addressed to it and replies with a
CL ACK1 message. In this message, A copies all the other
EchoReqs as InstallReqs, as well as the classification results
(label:q1 and label:W1). Next, E records the InstallReq ad-
dressed to it and appends the specified classification result
(label:x). C uses label x to quickly identify the outgoing
interface for CL ACK1 without performing classification,
while F forwards the CL ACK1 unmodified. Finally, L uses
label W1 to select and forward the packet. Note that L does
not need to reconstruct the TCP stream or parse the HTTP
header.

Message 4: Upon receiving CL ACK1, W1 records the
EchoReqs addressed by E to itself, and replies with a CL ACK2
message. This message contains the EchoReq addressed to F
(copied in InstallReqs), and the classification result label:q2.
Next, L relays the CL ACK2 unmodified, while F records
the InstallReq addressed to it and includes the requested
classification result label:y. C uses this label to quickly for-
ward the packet, while E uses label q2 to forward the packet
to A using the appropriate QoS. This completes the CLayer
signaling protocol.

The possibility of asymmetric network paths (e.g., due to
Internet path diversity [16] or load balancing Direct Server
Return mode [20]) creates the need for the CL ACK2 mes-
sage and makes CLayer signaling four-way instead of three-
way. A non-end host helper reads the ClassReqs addressed
to it in the A → B direction from the InstallReqs in a
CL ACK1, and not from the EchoReqs field of a CL SYNACK,
as the CL SYNACK may take a different network path that
omits the helper. Thus, we need the fourth signaling message
– CL ACK2 – to inform helpers about B → A ClassReqs.

3.2 Explicit Coordination between Helpers
We revisit the scenario in Figure 1 where the extra pro-

cessing and state demanded by classification imposes a high
overhead over normal operations. This example also demon-
strates how on-path classifiers can explicitly coordinate and
signal each other to establish common state at different

helpers.
Suppose end host A wishes to communicate with FTP

server B located behind a firewall farm. Load balancers L
and M distribute traffic across the different firewalls. For
correct firewall functionality, packets in forward and reverse
flow directions, as well as in both control and data flows
of an FTP session, must be processed by the same firewall.
In current mechanisms [20], M records the link on which a
packet arrived and uses the recorded information to choose
the outgoing link for a packet in the reverse direction. In
addition, L and M must be capable of reconstructing TCP
streams and parsing FTP headers in order to identify the
control and data connections of an FTP session. Thus, cur-
rent firewall load balancing solutions are complex both in
terms of device implementation as well as in configuration.

CLayer simplifies the configuration of firewall load balanc-
ing by facilitating explicit coordination between the two load
balancers, L and M , in the load balancer pair. It reduces
load balancer implementation complexity by offloading the
complex operations required for FTP session identification
from the load balancers to the end hosts, just like web load
balancers offloaded HTTP session identification to end hosts
in Section 3.1.

L adds two ClassReqs to A’s CL SYN – (i) ClassReq c that
directs end host A to label all packets in the FTPSess with
label F , denoting firewall instance F , and (ii) ClassReq c′

that directs the final destination to label all packets in the
FTPSess with same label F . Since L and M are deployed
together as pair, L is aware of M and specifies it as the
originator of c′. M forwards the CL SYN without adding
another ClassReq, since it already contains one with source
M . The CL SYNACK sent by B includes the classification
result label : F addressed to M , as B acted on the CL SYN’s
ClassReq c′ that was addressed to the final destination. M
uses the label to forward the CL SYNACK through the same
firewall instance used in the forward direction. The FTP
application software at A and B remember the label and
include it in all data and control connections in the same
FTP session.

A CLayer-enabled firewall load balancer thus simply reads
the label in a packet’s CLayer header and forwards it to the
firewall instance denoted by that label. Such operational
simplicity makes it feasible to integrate firewall load bal-
ancing functionality into routers and switches, avoiding the
need for expensive special-purpose firewall load balancers.

4. ADDITIONAL DESIGN AND
PERFORMANCE ISSUES

The CLayer design is intended to be (among other prop-
erties) self-incentivizing, robust, efficient, scalable, secure,
incrementally deployable, and compatible with legacy appli-
cations after minimal changes. In this section we discuss
these issues and some details of the design that are relevant
to them.

4.1 Incentives for Using CLayer
While classifiers are intuitively incentivized by the new

functionality and the possibility of complexity reduction en-
abled by CLayer, it may seem that helpers will not be in-
terested in putting labels in the first place. We believe that
the following inherent and imposed incentives will be able
to convince them in doing so.

Endhost A Core

Router C

Web

server W1

Edge

Router E
Load

Balancer L
Edge

Router F

F’

C’

(a)

(b)

Figure 5: Path changes.

First of all, similar to incentives for participation in TCP
congestion control, helpers are incentivized to help classi-
fiers on their packets’ path (even those in different adminis-
trative domains) for visibly better performance (i.e., higher
throughput, lower latency).

Secondly, CLayer-enabled classifiers can adopt a policy to
prioritize labeled packets over normal ones during congestion
periods. Consequently, helpers will have to enable CLayer
support in ordered to fairly compete for congested resources.

Finally, a helper might seem to be less incentivized to par-
ticipate if it is insensitive to lower performance or when it
has a conflict of interest with a classifier (e.g., a remote fire-
wall that wishes to drop its packets). We believe that the
periodic label invalidation policy will make it harder for a
helper to learn about conflicting interesting without invest-
ing significant amount of resources. Even if it can learn
and decide not to label packets, in the worst case a CLayer-
enabled classifier will have to resort to per-packet classifica-
tion which is no worse than the best case of a non-CLayer
classifier.

4.2 Robustness
CLayer signaling is robust to path changes, lost or retrans-

mitted messages, unexpected state expirations in helpers,
and in handling malformed/corrupt/missing labels.

4.2.1 Path Changes
Changes that do not alter the sequence of classifiers and

helpers on a packet’s path have no impact on CLayer sig-
naling. For example, common local layer-2 and wide area
Internet path changes do not affect CLayer signaling if the
switches and routers involved are not classifiers or helpers.

Path changes involving classifiers and helpers are detected
by the absence of expected labels and can be fixed by re-
signaling. Figure 5 illustrates path changes in the example
topology described in Section 3.1. To summarize, C and L
are classifiers; A, W1 and F are helpers; E is simultaneously
a helper and a classifier. In Figure 5(a), the network path
between end host A and web server W1 shifts from edge
router F to F ′. In Figure 5(b), the network path shifts
from core router C to C′. In the former case, F ′ does not
insert any classification results addressed to C. In the latter
case, classification results are addressed to C, and not C′.
Thus, in both cases, the core router (C or C′) detects the
absence of classification results addressed to it and initiates
re-signaling by setting a ReSig flag in the CLayer header.

On receiving a CLayer header with ReSig flag, helpers
re-run the CLayer 4-way handshake. The session handle es-
tablished during original signaling is included in the CLayer
headers. The helpers on the original path use the handle to
retrieve the previously established states and insert labels in
the re-signaling messages. Classifiers append ClassReqs only

if they do not find the desired classification results addressed
to them.

Most classifiers operate correctly during re-signaling. If a
classifier’s helpers are unaffected by the path change, it op-
erates normally without any performance hit. For example,
load balancer L continues to choose the correct web server
based on the label:W1 embedded by helper A, irrespective
of the path changes in Figure 5. Even some classifiers with
helpers affected by the path change function unhindered dur-
ing re-signaling. For example, core router C can forward
packets to IPA using regular route lookup, although more
expensively than using the label embedded by F .

Some classifiers like load balancers may operate incor-
rectly during re-signaling. For example, if the path changes
to include a different load balancer L′, which does not un-
derstand labels intended for L, packets may be forwarded
to the wrong web server. This is inevitable even in existing
load balancer deployments.

4.2.2 Unexpected State Expiration
CLayer handles unexpected state expiry at helpers and

classifiers by re-signaling. For example, in Figure 5, E may
forget its responsibility to label all packets destined to IPL

with x due to timeout or reboot. As in the case of a path
change, C initiates re-signaling on receiving a packet with-
out classification results addressed to it. In the common
case, re-signaling is necessary only at the start of a new
TCP connection in a long-lived session. Such re-signaling
incurs little overhead as it is piggybacked on the transport
protocol’s handshake messages.

Classification inaccuracies arise if the new state estab-
lished as part of re-signaling differs from the original state.
For example, if Firefox at end host A forgets the HTTP ses-
sion label assigned by the load balancer L, a new web server
instance may be chosen by L based on the load conditions
during re-signaling. Such session stickiness violation is no
different from current scenarios where the HTTP cookie at
a web browser expires or is cleared.

Classification soft state established at different helpers is
often independent of each other (for example, in Sections 2.2
and 3.1). However, in some scenarios, they are related. For
example in Section 3.2, end hosts A and B use the same
label, so that the firewall load balancer pair can select the
same firewall instance in both flow directions. If the state at
B expired before A and A sends a packet to B, B will not
be able to include the correct classification results in its re-
sponse packet to A. The CLayer at B detects the absence of
state identified by the session handle in the packet, and runs
an out-of-band CLayer signaling to re-establish the missing
state before replying to A. Out-of-band signaling can be
avoided if A preemptively includes the shared ClassReqs in
the data packet if it suspects that B may have forgotten the
state – e.g., when sending a new packet after a long gap or
when starting a new TCP connection.

We assume that the session handle (see Section 5) is wide
enough to avoid collisions on network paths that share com-
mon nodes. For example, suppose the handle for an HTTPSess
is hA.hB . If B’s state is lost, we assume that another end
host C will not propose hA and B will not reselect hB before
the hA.hB state at A has expired.

4.2.3 Retransmitted Messages

CLayer signaling is naturally resilient to lost packets when
piggybacked on reliable transport protocols like TCP. How-
ever, special care must be taken to handle retransmissions.
Revisiting the example in Section 3.1, load balancer L se-
lected the web server instance W1 on processing the CL SYN
from A. Suppose A retransmits CL SYN (as part of the
TCP SYN retransmit) because the CL SYNACK got de-
layed. If L does not maintain per-flow state, it may as-
sign a different web server instance, say W2, to the second
CL SYN. To prevent confusion, A accepts only the latest
CL SYNACK. A’s TCP stack must also be slightly modified
to ensure that any TCP ACK containing a CL SYNACK dif-
ferent from the first one is rejected, as it originated from a
different web server instance. To quickly release TCP state
at the unused web server instance, A can send a TCP RST
with the appropriate classification label embedded in the
CLayer header.

4.2.4 Malformed or Corrupt Labels
and Missing Labels or Headers

A CLayer-enabled classifier can differentiate between mal-
formed and corrupt labels using per-label checksums and la-
bel verification mechanisms. If a classifier finds a malformed
label, it just drops the packet. Otherwise, if the label is cor-
rupt, the classifier considers this to be an exception; instead
of dropping the packet, a per-packet classification is per-
formed in this case. Packets with missing labels can trigger
re-signaling, and packets without CLayer headers are given
lower priority in times of congestion.

Note that per-packet classification is not always an op-
tion. Depending on specific application/service scenario,
there can be different repercussions. For example, since
there are no flow-specific states in classifiers, lost labels can
result in connection drops in a load-balancer. For a firewall,
on the other hand, a missing label might just require one
more classification. But in both cases, CLayer performs no
worse than the existing solutions.

4.3 Scalability
CLayer is scalable both with respect to signaling overhead

and memory/state requirements in helpers. CLayer signal-
ing is performed only at session start and when explicitly
initiated after significant path change or state loss. More-
over, it does not introduce additional round-trips as it is
piggybacked on packets of existing connection oriented pro-
tocols.

CLayer requires per session states only in helpers. Such
state requirements do not restrict CLayer scalability as helpers
like end hosts and less-loaded edge routers are typically not
bottlenecked by memory. Moreover, CLayer memory re-
quirements are small. For instance, at an end host less than
ten bytes are needed per CLayer session, each consisting of
one or more TCP connections.

Classifiers simply use classification results embedded by
helpers. The decision of directly using actions – instead of
introducing another level of 〈label→ action〉 indirection –
obviates any additional state requirements in classifiers. In
some cases, CLayer even reduces the state at classifiers. For
example, a CLayer-enabled load balancer need not maintain
〈flow → server〉 instance mappings.

4.4 Trust

CLayer does not require helpers or classifiers to trust each
other. Helpers can ignore any classification requests from
any classifier. But that can result in lower performance,
because packets without labels are subject to regular rule
matching and will be the first ones to be dropped when the
classifier is overloaded.

Classifiers can avoid trusting helpers by using verifiable
FCLs. As described in Section 2.3, for critical services a
classifier can resort to authentication mechanisms to make
sure that the helper has indeed put the same FCL that it is
supposed to.

Unlike active networking [24], neither helpers nor classi-
fiers execute code supplied by non-trusted entities. This
further lowers overall trust requirements.

4.5 Security
We emphasize that our main goal here is not to design a

bulletproof system. Instead, we aim to design simple and
efficient solutions that make CLayer not worse and in many
cases better than todayŠs Internet. The solutions outlined
here hence should only be viewed as a starting point toward
more sophisticated and better security solutions.

4.5.1 Eavesdropping and Label Spoofing
A malicious attacker can try reusing labels assigned to an-

other helper. If security-enabled FCLs are used, this attack
is meaningful only in a pathological scenario: the malicious
entity can bypass a classifier like firewall by spoofing the
label and the 5-tuple of the corresponding flow, if it is in the
same LAN and trying to communicate to the same end point
as the helper (because FCLs are bound to the helper and the
other end and if the attacker is not in the same LAN it will
not be able to make use of it). Otherwise, classifiers can
use the verifiability of FCLs to detect any tampering only
to drop such packets.

4.5.2 DoS Attacks
We consider two types of DoS attacks: (a) attacks on

classifiers, and (b) attacks on helpers. The fact that CLayer
does not introduce any additional states in classifiers makes
them resilient to DoS or DDoS attacks. The best an ad-
versary can do is to send packets without any labels, which
might make a classifier to fall back to per-packet classifi-
cation. However, this is no worse than existing solutions,
and if there are packets with labels a CLayer-enabled classi-
fier will prioritize them over non-labeled ones anyway - thus
foiling DoS attempts.

As for helpers, CLayer has small state requirements. How-
ever, as already described, helpers can always refuse to honor
any classification request. A helper can set a threshold for
the maximum allowable CLayer-related resources, and if it
detects a ClassReq flooding, the helper can always deny them
after the threshold is crossed.

4.5.3 Malicious Label Modification
An attacker can try to maliciously change a label to ad-

versely affect the outcome. Since FCLs are verifiable, classi-
fiers will be able to detect such modifications and just drop
such packets. One can imagine one more pathological case
where an attacker corrupts a label to get it dropped by clas-
sifiers. However, if the sole intention is to drop a packet
and the attacker has access to packets to corrupt them in
the first place, it can just drop them by itself instead of going

through all the trouble.

4.6 Privacy
Classification can most effectively be offloaded if the clas-

sification algorithms and rules are not secret and can easily
be disseminated to the helpers. However, CLayer allows ap-
plication and network service developers to trade-off secrecy
and portability of classification rules for performance.

Our CLayer-based firewall design overcomes rule secrecy
restrictions by relying on first packet classification locally at
the firewall itself. End hosts simply reflect the FCL supplied
by the firewall, unaware of the filtering rules that derived
the label. Moreover, periodic invalidation makes it almost
impossible to learn which action a label represents. An ad-
ditional benefit of our design is that it maintains no per-flow
state at the firewall, unlike traditional designs which locally
cache rule lookup results for fast application on subsequent
packets.

Irrespective of secrecy, classification rules must also be
easily disseminated to helpers for maximum effectiveness.
Keeping a large set of firewall or QoS rules up-to-date at
a large number of end hosts, especially over large network
distances, is a hard problem. On the other hand, session
identification methods in load balancing are mostly stan-
dardized and can be implemented in end hosts by default.

4.7 Deployment Issues

4.7.1 In the Internet
An Internet-wide CLayer deployment does not require a

fork-lift upgrade of the entire network. CLayer traffic can co-
exist with non-CLayer traffic. Only entities wishing to ben-
efit from CLayer need to be upgraded. However, a CLayer-
enabled connection between two end hosts requires all layer
4 and above classifiers and forwarding elements on the path
between them to be CLayer-aware or at least to ignore CLayer
headers and forward packets unmodified. A non-CLayer-
aware layer-4 router or firewall may consider CLayer packets
as malformed/suspicious and thereby drop them, irrespec-
tive of whether the CLayer header is implemented as a sepa-
rate layer or is tucked into a new IP Option. Hence, an end
host must fall back to a non-CLayer-enabled connection if
CLayer signaling to a new destination does not successfully
complete even after multiple attempts.

4.7.2 Split Proxy-based Solution
CLayer requires both end points of a connection to be

CLayer-aware for proper functioning, which can be a major
hindrance toward its wider acceptance. One way to address
this problem is to introduce CLayer-enabled split proxies
in edge networks instead of changing the network protocol
stacks in all the end hosts. In this case, the proxy will take
care of CLayer-headers by adding and removing them on
outgoing and incoming paths respectively. Such a proxy can
be inserted into a network as any other middlebox. However,
state requirements in helpers will move to the split proxy,
and its failure will result in connection disruptions in all the
concerned helpers.

4.7.3 In Data Center and Enterprise Networks
A data center or an enterprise network is an easier can-

didate for CLayer deployment than the wide area Internet.
The single administrative domain can enable easier modifi-

cation to end hosts as advocated by other new network archi-
tectures. Moreover, multiple new data centers being built
today offer hope for a clean-slate CLayer implementation.
A proxy at the ingress can cleanly separate the data cen-
ter network from the Internet and add appropriate CLayer
headers. Implementing such a proxy that can scale to data
center workloads is an open challenge. This approach how-
ever confines CLayer functionality and benefits to within the
data center.

4.8 Legacy Applications
CLayer deployability also depends on its ease of implemen-

tation and integration into existing networks. Even though
CLayer requires modifications to helpers and classifiers, its
close similarity to BSD socket libraries and the small num-
ber of lines to port existing applications demonstrate that
CLayer can be easily integrated into existing applications
(see Section 5). CLayer daemon functionality can be embed-
ded in future OS versions or can be installed as a standalone
system service.

4.9 Inter-domain Concerns
CLayer does not introduce any additional concerns in terms

of security, privacy, and trust between different administra-
tive domains. Classifiers in one domain need not give away
any information to classifiers in another.

As already discussed, an FCL is a collection of random
meaningless bits to everyone else other than the issuing clas-
sifier. Moreover, they can be periodically changed, and a
classifier can introduce additional obfuscation methods.

If a classifier in one domain selfishly overwrite or remove
labels provided by classifiers in other domains, some or all of
CLayer-enabled classifiers might fail to observe the expected
performance gains. Even in such pathological cases, CLayer
can fall back to per-packet classification, which is as good
as the existing solutions.

4.10 Supporting Connectionless Protocols
Even though we have described and evaluated CLayer by

piggybacking its handshaking messages on TCP, it can also
be implemented on top of UDP-like connectionless proto-
cols by introducing some modifications to its semantics. In
this case, CL SYN - CL SYNACK - CL ACK1 - CL ACK2
– the whole four-way handshaking protocol becomes super-
fluous. Instead of piggybacking, classifiers just need to gen-
erate additional packets to propagate ClassReqs back to the
corresponding helpers whenever they see CL SYN messages
with helper capabilities. EchoReqs and InstallReqs will also
become unnecessary.

However, additional packet generation requires CPU and
memory resources. Thus it can attract DoS or DDoS attacks
on classifiers similar to TCP/IP SYN flooding.

5. IMPLEMENTATION DETAILS
CLayer adds special packet headers, and CLayer- enabled

applications and services require CLayer-specific API to uti-
lize it. This section describes both parts and gives an overview
of our prototype implementation.

5.1 CLayer Header
Ideally, CLayer header has a free-form, flexible length,

key-value format. But any format that provides required
performance at relevant network entities can be used.

Application Layer

Transport Layer

CLayer

Link Layer

4 Bits 32 Bits

HANDLE

INFO 0

…

INFO (N – 1)

N MSG

8 Bits
RESIG

ACTIONLEN

4 Bits 32 Bits

ID

HMAC (5-tuple, ACTION, SECRET)

CHECKSUM

16 Bits

TYPE

(a)

(b)

Figure 6: (a) A rigid CLayer header format and
CLayer location in the network protocol stack; (b)
An example Fate-Carrying Label.

Figure 6(a) shows a rigid header format optimized for
forwarding performance of entities like routers which work
faster on simple header formats. The 4-bit field N specifies
the number of information pieces (0 to 15) that follow. Re-
call that there can be 5 types of information (Table 2), 4 are
exclusively for handshake and the last for carrying actual
labels. The 3-bit MSG field refers to one of the 4 handshak-
ing messages or DATA otherwise. The 1-bit RESIG field
is set only during the resignaling phase (see Section 4.2).
The 24-bit HANDLE uniquely identifies the CLayer session
associated with the results.

The HANDLE is a concatenation of bits randomly pro-
posed by the two end hosts in the CL SYN and CL SYNACK
messages. All CLayer-related state at helpers and classifiers
is keyed by this handle. In Section 4.2, we described how this
handle plays an important role in making CLayer signaling
robust.

Each INFO consists of (i) a 4-bit TYPE field denoting
what type of information is this; (ii) a 4-byte ID field denot-
ing the entity to which this information piece is addressed;
(iii) a 4-bit LEN field specifying the length of the total INFO
in multiples of 4 bytes; (iv) a 12-bit CHECKSUM field con-
taining the checksum of the complete INFO ; The rest are
dependent on the helper or classifier that issued this INFO.
Figure 6(b) represents an FCL which consists of an 16-bit
ACTION field followed by a HMAC of all the information
that must verifiable at the classifier.

Since there are often multiple classifiers and helpers on
a packet’s path, each INFO must be explicitly addressed.
These ids need not be globally routable. They just need
to be unique on the path of a particular data flow. We
use existing identifiers (in this case part of IP addresses) to
identify helpers and classifiers.

5.2 CLayer API
Applications at end hosts interact with CLayer using the

CLayer network library. We suggest a socket library very
similar to the standard BSD socket library so that existing
network applications can be easily ported. However, CLayer
is not restricted to this particular API.

Our library consists of functions like cl_connect and cl_bind

Table 3: SLOC of our prototype implementation
Component SLOC
lighttpd web server 19
httperf HTTP benchmark tool 7
wget command line HTTP client 10
Layer-4 firewall 308
Layer-4 load balancer 190
CLayer socket library & daemon 4025

that have direct semantic correspondence with the stan-
dard BSD socket library and CLayer-specific functions like
cl_session_create and cl_add_capability. A CLayer-
aware application has a structure very similar to that of any
common application using the BSD library. cl_add_capability
enables an application to advertise its semantic classifica-
tion capabilities (e.g., label all packets in an HTTP ses-
sion). cl_session_create creates new session state of the
specified type (e.g., TCP FLOW, FTP SESS, WEB SESS)
and returns a handle to the application. The application
associates a TCP connection with a session by passing the
session handle to cl_connect.

The application sends and receives data using standard
send and recv socket calls. CLayer processing module in
the OS performs the classification tasks configured during
CLayer signaling on the packets generated by send before
emitting them out. This module also strips out CLayer
headers from received packets and updates session state be-
fore handing them to the OS network stack.

5.3 Prototype Implementation
We prototyped CLayer using Click [19] software modular

router and CLayer-enabled a variety of helper and classifier
applications and network services for evaluation purposes.

CLayer implementation in a helper node consists of two
parts – a daemon and a network socket library. The dae-
mon implements the core CLayer functionality, i.e., control
plane signaling and data plane classification. Helper appli-
cations interact with the daemon through CLayer socket li-
brary calls, as described in Section 5.2. In an ideal clean
slate implementation, the functionality implemented by the
daemon will be part of the OS network stack and the socket
library will be direct system calls. However, in our proto-
type, the daemon is a userlevel Click router, with which the
socket library interacts over a local TCP connection. The
daemon uses the tun device to intercept outgoing packets
and to transfer incoming packets to regular network pro-
cessing after stripping out CLayer headers.

CLayer-enabling an existing helper application often sim-
ply involves replacing BSD socket calls with their CLayer
equivalents. For example, porting wget required changes in
just 10 lines. Table 3 lists the source line count for the core
CLayer implementation (C++) and extra lines (C/C++)
required to port existing applications.

We used open-source Google Protocol Buffers (protobuf) [2]
to encode/decode CLayer headers, instead of designing a
customized header format. Although the dynamic nature of
protobuf slightly increases header size and encode/decode
complexity over a fixed width format, it greatly increased
the pace and ease of prototyping. Note that the performance
results obtained using this prototype implementation should
be taken with a grain of salt as a lower bound of the per-

Clients Web servers

Classifier

Layer-2

switch

Figure 7: Topology used for firewall and load bal-
ancer performance evaluations.

formance of a deployment-ready implementation with opti-
mizations.

6. EVALUATION
In this section we quantitatively evaluate how CLayer im-

proves the scalability of classification dependent services us-
ing two examples: filtering using firewall and load balancing.
The firewall example further illustrates how CLayer spurs
classification offload in traditionally centralized applications
and consequently improves performance.

6.1 Filtering using Firewall
The throughput of a regular firewall decreases with in-

creasing rule set size [29]. Our CLayer-enabled firewall scal-
ably maintains constant throughput that is two to three
times that of a regular firewall at large rule sizes. We used
the Click [19] IPFilter module as the base of our regular
and CLayer-enabled firewalls. Firewall throughput was the
sum of throughputs of simultaneous large file transfers be-
tween wget clients and lighttpd servers. Figure 7 shows
our experimental topology created on the DETERlab [25]
testbed.

We used two different rule sets in the firewalls under eval-
uation:

(i) Snort: Port number matches were sampled from the
over 600 unique rule headers (i.e., involving just packet
5-tuples) in the Snort IDS rule set [8, 30]. Due to lack
of IP diversity in the Snort rule set, source and desti-
nation IP matches were randomly drawn from a pool
of 250 prefixes.

(ii) RandomIP: Source and destination IP matches were drawn
from a random pool of 100 prefixes. Rules ignored port
numbers.

For each rule set, we ensured that the rule matching our
file transfer traffic was the last. This enabled us to measure
worst case performance, independent of the traffic mix.

Figure 8 and Figure 9 show the throughput drops of the
regular firewall as rule set size increases from 100 to 4000 (er-
ror bars represent minimum and maximum values). For the
Snort set, throughput drops more than 80% – ≈14.6MB/s
→ ≈2.5MB/s. For the RandomIP set, it drops around 60%
– ≈13.6MB/s to ≈5.3MB/s. CLayerenabled firewalls main-
tain constant throughputs of ≈10MB/s and ≈12.5MB/s for
the Snort set and the RandomIP set, respectively.

A CLayer-enabled firewall thus outperforms a regular fire-
wall when the rule set size is above an attractiveness thresh-
old. More importantly, it sustains a constant throughput
even as the rule set size increases, thus demonstrating good

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Rules

Throughput Vs Number of Snort IDS Rules

Regular-Snort
CLayer-Snort

Figure 8: Firewall throughput versus number of
rules using the Snort rule set.

 0

 5

 10

 15

 20

 25

 0 500 1000 1500 2000 2500 3000 3500 4000

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Rules

Throughput Vs Number of RandomIP Firewall Rules

Regular-RandomIP
CLayer-RandomIP

Figure 9: Firewall throughput versus number of
rules using the RandomIP rule set.

scalability. In our experiments, the attractiveness threshold
is around 500 and 375 for Snort and RandomIP rule sets re-
spectively. Many firewall deployments already have rule sets
that are larger than our thresholds. A 2004 study [26] found
that firewalls have upto 2671 rules. The biggest classifier in
[15] had 1733 rules, while the biggest edge router ACL set
in [22] had 4740 rules. We expect rule set size to continue
to grow as size and complexity of networks increase. Thus,
attractiveness of a CLayer-enabled firewall is most likely to
increase over time.

6.2 Load Balancing
Performance improvement in a CLayer-enabled load bal-

ancer from a regular load balancer is not as prominent as in
case of firewalls. This stems from the fact that packet clas-
sification in firewalls is inherently more complex, and thus
CLayer gets more opportunity for improvement. For prelim-
inary evaluation, we developed a simple round-robin LB mod-
ule in Click as the base of our regular and CLayer-enabled
load balancers. Load balancer performance was measured
in terms of average connection acceptance ratio and aver-
age connection handling time by using httperf benchmark-
ing tool in clients and lighttpd servers. We use the same
topology as in Figure 7 for these experiments and vary con-
nection initiation rates from 100 connections/second to 1000
connections/second.

As evident from Figure 10 and Figure 11, under increas-
ing load the CLayer-enabled layer-4 load balancer prototype
attains higher acceptance ratio and lower handling time per
connection than its regular counterpart. At the highest load

 0

 200

 400

 600

 800

 1000

 100 200 300 400 500 600 700 800 900 1000

N
o.

 o
f C

on
ne

ct
io

ns
 G

ra
nt

ed
 /

S
ec

on
d

No. of Connections Initiated / Second

Number of Connections Initiated Vs Granted

Regular
CLayer

Figure 10: Load balancer average connection accep-
tance ratio.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 100 200 300 400 500 600 700 800 900 1000H
an

dl
in

g
T

im
e

pe
r

C
on

ne
ct

io
n

(in
 m

ili
se

co
nd

s)

No. of Connections Initiated / Second

Number of Connections Initiated Vs Handling Time per Connection

Regular
CLayer

Figure 11: Load balancer average connection han-
dling time.

in these experiments (i.e., 1000 connections/second) the reg-
ular load balancer can handle around 20% less connection
while taking around 20% more time per connection. Based
on the divergent nature of these graphs, we expect to observe
even more difference in performance as we keep increasing
the load in our ongoing experiments.

7. LIMITATIONS
We present the limitations of CLayer in the following:

1. Space Overhead
CLayer incurs per-packet space overhead which limits
the number of labels a packet can carry and conse-
quently the number of classifier a helper can support.
This can give rise to complex situations, specially in an
inter-domain scenario where classifiers in one domain
can selfishly overwrite labels provided by classifiers in
another domain when a packet reaches its maximum
label-carrying capacity. Providing proper incentives to
prevent such selfish behavior is an open challenge.

2. Performance Overhead
Even with FCLs, CLayer introduce small performance
overhead in reading labels because there is no fixed
location for labels from different classifiers. We be-
lieve settling for hardware-optimized label lengths (i.e.,
multiple of 4 bytes) can be a solution to this problem.
Making labels fixed-length might help even more. How-
ever, this is a minor concern since performance benefits
due to complexity reduction enabled by CLayer can
easily mask and offset such overheads.

3. Applicability
In its current state, CLayer offers only limited benefits
to: (i) applications where classification result accuracy
is critical but very expensive to check (e.g., NIDS),
(ii) applications which perform complex operations for
some other purpose (e.g., URL based filtering) anyway
and may be overloaded for classification, and (iii) ap-
plications where no helpers exist or are all disincen-
tivized to participate.However, the overall reduction in
configuration complexity enabled by CLayer still ben-
efits the network.

8. RELATED WORK
Many prior work advocated distributing packet classifica-

tion load across network entities. Unlike our generic multi-
layer, multi-application approach, these mechanisms offer
point, and often ad-hoc, solutions focusing on a particular
type of classification and application.

In MPLS [6], Label Switch Routers in the network core
offload expensive route lookup operations to Label Edge
Routers. Ipsilon [3] flow-switching is more general than its
successor MPLS and supports packet classification at the
network and transport layers. CLayer supports classification
across layers 2 to 7 and uses an in-band signaling protocol
not restricted to adjacent nodes.

In Diffserv [1], end hosts or first hop routers classify pack-
ets and record the desired QoS in the IP header’s DS field. In
CSFQ [23], edge routers label packets of a flow based on its
flow rate. The 20-bit flow-id IPv6 header field [4] provides a
mechanism for end-hosts to uniquely identify a flow with any
desired semantics. Core routers can provide differential QoS
to packets based on their DS fields, labels, or flow-ids with-
out performing expensive reclassification. However, unlike
CLayer, it supports only one application at a time and does
not provide any signaling mechanism to inform/configure
the entities that use the flow-id field.

Although originally designed for offloading web-server states
to end hosts, HTTP cookies are widely overloaded as a
means to identify multiple TCP flows in an HTTP session.
Unlike HTTP cookies and the OSI session layer, CLayer is
not restricted to the application layer – it works across layers
2 to 7. In addition, CLayer makes the session id available
to a load balancer in an easily readable packet header lo-
cation, as opposed to performing deep packet inspection or
application header parsing to read an HTTP cookie.

Some prior work (e.g., distributed firewalls [11], network
exception handlers [17]) adopted an extreme approach of
moving the entire application requiring packet classification
to end hosts. Our work targets the more conventional and
widely deployed scenario where an in-network entity (e.g., a
router or a middlebox) is involved (often in a critical role)
in implementing the functionality that requires packet clas-
sification. CLayer can be used to communicate the results
of network exception handlers to on-path entities.

In the OpenFlow [7] architecture, packet classification is
offloaded to a logically centralized controller. Based on the
initial packets of a flow, the controller classifies packets and
installs flow table entries at switches on the flow’s network
path. CLayer’s distributed approach avoids a classification
choke point and a centralized point of failure. CLayer trades
off per-packet overhead in middleboxes for the overhead of
state establishment in end hosts at flow startup.

COPS [18] proposes iBoxes that classify a packet using

deep packet inspection and then summarize the results in
an annotation layer within the packet. CLayer simultane-
ously supports a variety of classification applications, in ad-
dition to security. CLayer headers are similar to X-trace [14]
annotations in that their semantics and can span multiple
protocol layers.

Unlike active networking [24], CLayer carries non-executable
opaque bags of bits whose semantics depend on the classi-
fication application to which they are directed. This more
restrictive nature of the CLayer avoids the security risks of
executing untrusted code, while still enabling end hosts to
influence the fate of their packets within the network.

SIFF [27] and Visa protocols [13] use CLayer-like mecha-
nisms to mitigate DDoS flooding attacks and to enable se-
cure inter-organizational communications respectively. SIFF
requires capability establishment in all the routers on a path
for privileged traffic using a handshake protocol. In CLayer,
only the interested network elements need to add labels.
Visa protocols use Access Control Servers in each domain
to establish “visa” for each flow that are stamped on each
packet using strong cryptographic methods. CLayer does
not require any external server, and it aims for performance
and can provide strong security with very high probability.

CLayer signaling borrows ideas from protocols used in dif-
ferent applications, including ECN [9], MIDCOM [5], RSVP [10],
TVA [28], and HTTP Cookies. Stateful Distributed Interpo-
sition (SDI) [21] and Causeway [12] provide mechanisms to
automatically propagate and share contextual information
and metadata across tiers of a multi-tier system or within
different layers in an OS. OS-level support for SDI or Cause-
way obviates the need to modify end hosts to maintain ses-
sion information and embed CLayer headers. This simplifies
CLayer implementation and deployability.

9. CONCLUSIONS
Packet classification plays a fundamental role in enabling

a diverse range of protocols and network services including
switching, forwarding, filtering, and load balancing. In this
report, we have demonstrated how treating packet classifi-
cation as a fundamental network primitive by using CLayer
can reduce its implementation and configuration complex-
ity. Moreover, CLayer improves flexibility, performance, and
scalability of packet classification without sacrificing security
and privacy of concerned entities.

To demonstrate the feasibility of this approach, we have
prototyped CLayer using Click software modular router, and
we have enabled a variety of applications and network ser-
vices with CLayer functionalities. Based on our preliminary
experience of using CLayer, we believe that it has enough
potential to support future classification applications with-
out introducing additional point solutions.

10. REFERENCES
[1] An Architecture for Differentiated Services. RFC 2475.

[2] Google Protocol Buffers.
http://code.google.com/p/protobuf/.

[3] Ipsilon Flow Management Protocol Specification for
IP. RFC 1953.

[4] IPv6 Flow Label Specification. RFC 3697.

[5] Middlebox Communication Architecture and
Framework. RFC 3303.

[6] Multiprotocol Label Switching Architecture. RFC
3031.

[7] OpenFlow. http://www.openflowswitch.org.

[8] Snort. http://www.snort.org.

[9] The Addition of Explicit Congestion Notification
(ECN) to IP. RFC 3168.

[10] The Use of RSVP with IETF Integrated Services.
RFC 2210.

[11] S. M. Bellovin. Distributed firewalls. ;login:,
24(Security), November 1999.

[12] A. Chanda et al. Causeway: operating system support
for controlling and analyzing the execution of
distributed programs. In HOTOS, 2005.

[13] D. Estrin et al. Visa Protocols for Controlling
Inter-Organizational Datagram Flow: Extended
Description. Technical Report WRL 88/5, Western
Research Laboratory, Dec 1988.

[14] R. Fonseca et al. X-Trace: A Pervasive Network
Tracing Framework. In USENIX NSDI, 2007.

[15] P. Gupta and N. McKeown. Packet Classification on
Multiple Fields. In SIGCOMM, 1999.

[16] Y. He et al. On routing asymmetry in the Internet. In
GLOBECOM 2005.

[17] T. Karagiannis, R. Mortier, and A. Rowstron.
Network Exception Handlers: Host-network Control in
Enterprise Networks. In ACM SIGCOMM, 2005.

[18] R. H. Katz et al. COPS: Quality of Service vs. Any
Service at All. In IWQoS, 2005.

[19] E. Kohler et al. The Click modular router. ACM
TOCS, 18(3):263–297, Aug 2000.

[20] C. Kopparapu. Load Balancing Servers, Firewalls, and
Caches. Wiley, 2002.

[21] J. Reumann and K. G. Shin. Stateful distributed
interposition. ACM Trans. Comput. Syst., 22(1), 2004.

[22] S. Singh et al. Packet Classification Using
Multidimensional Cutting. In SIGCOMM 2003.

[23] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair
queueing: a scalable architecture to approximate fair
bandwidth allocations in high-speed networks.
IEEE/ACM Trans. Netw., 11(1), 2003.

[24] D. Tennenhouse et al. A Survey of Active Network
Research. IEEE Comm. Magazine, Jan 1997.

[25] B. White et al. An Integrated Experimental
Environment for Distributed Systems and Networks.
In OSDI 2002.

[26] A. Wool. A Quantitative Study of Firewall
Configuration Errors. Computer, 37(6), 2004.

[27] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless
Internet flow filter to mitigate DDoS flooding attacks.
In In IEEE Symposium on Security and Privacy,
pages 130–143, 2004.

[28] X. Yang, D. Wetherall, and T. Anderson. A
DoS-limiting network architecture. In ACM
SIGCOMM, 2005.

[29] M. K. Yoon, S. Chen, and Z. Zhang. Reducing the size
of rule set in a firewall. In Intnl. Conference on
Communications, 2007.

[30] F. Yu et al. SSA: a power and memory efficient scheme
to multi-match packet classification. In ANCS, 2005.

