
Adaptive Analysis of

High-Speed Router Performance in

Packet-Switched Networks

N.M. Mosharaf Kabir Chowdhury

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1, Canada
nmmkchow@cs.uwaterloo.ca

Abstract. Routers perform expensive lookup operations in their router
tables to find appropriate output interfaces to forward packets toward
their final destinations. Over the years several works have been done
to optimize the lookup operation. We consider that it is also equally
important to decrease the number of lookup operations altogether. In this
paper we promote the idea of niceness of an incoming packet sequence
to show that some sequences are more likely to result in fewer lookup
operations than others. In addition, we propose five new measures of
difficulty to identify and measure the niceness of a sequence.

1 Introduction

The Internet is a global, publicly accessible, complex network of interconnected
computer networks that transmit data by packet switching using the standard
Internet Protocol(IP). Each message is divided into smaller parts or packets at
the source, which are then routed separately using the address in their headers
through nodes over data links shared with other traffic. Once all the packets
forming a message arrive at the destination, they are merged together to form
the original message.

Traditional IP routing is relatively simple in the sense that it uses next-

hop routing where the router only needs to consider the next destination of the
packet, and does not need to consider the subsequent path of the packet on
the remaining hops toward its actual destination. Whenever a packet arrives
at a router, that router consults its router table to determine the output in-
terface through which to forward the packet toward its ultimate destination.
Even though it is a seemingly simple lookup operation, it becomes significant
when the arrival rate of packets is larger than the speed of a lookup operation.
This is exactly the case in the Internet backbone where high-speed routers are
employed to handle such scenario. Performance of such router is largely dom-
inated by its ability to optimize the lookup operation. A lot of research have
been done over the years to speedup this process both in software and hardware
[12, 6, 7, 15, 17, 16, 13].

Apart from the speed of the lookup operation, performance of a router is
also dependent on the total number of lookup operations it performs for a given
sequence of packets. Depending on the order of the packet sequence, total num-
ber of lookup operations in a given timespan can vary significantly. For example,
let us assume that in a given timespan, n packets of two different destinations,
say destA and destB arrive at the router and the router can remember only
one entry from its router table. On the one hand, if the packets interleave per-
fectly the router must perform Ω(n) lookup operations. On the other hand, if all
the packets with destA(destB) follow the packets with destB(destA) only O(1)
operations are necessary.

This simple observation leads to the idea of an adaptive algorithm [9, 14].
Such an algorithm determines the type of an instance as it proceeds without
making any a priori assumptions. The objective of this paper is to find ways to
identify and measure the niceness of an input packet sequence to a router. We
say a sequence is nicer than another sequence if the former one results in fewer
lookup operations than the later one. It is more challenging in this particular
context because of the unavailability of the future knowledge which requires
online analysis [4].

Paper Organization. The remainder of the paper is organized as follows. In
Section 2 we define the models and notations that are used throughout the paper.
In Section 3 we propose two completely new measures of difficulty, MaxDis
and SumDis, for this problem and three other difficulty measures, Runs, Exc
and Rem, modified from the sorting problem to fit in this problem domain.
In Section Algorithms we discuss issues regarding optimal algorithms for the
proposed measures.

2 Model and Notation

In this section we formalize the model and the notation. We consider three main
buffer models: the FIFO non-preemptive model, the FIFO preemptive model and
the bounded delay model. First, we summarize the assumptions and notations
that are used throughout the paper.

We define input queue as a link through which packets arrive at a router and
buffer as a collection of internal spaces in the router where packets are stored.
We use packet type to denote packets with different destinations. All the packets
that have same destination are considered to be of same type. And cache is
defined as very high speed small-amount of memory to hold a portion of the
routing table.

We assume that time is discrete. At each time step t, there is a set of packets

Q(t) stored at the buffer of size B (initially B = 0). At time t, a set of packets
A(t) arrives through the input queues. T (t) and D(t) denote the set of packets
that are transmitted and dropped respectively, at time t. We only consider the
packets that are dropped inside the router, not those that are dropped because
input queues were full. There is a cost associated with each of the D(t) dropped

packets. The set of packets that remain in the buffer at time t + 1 is Q(t + 1) =
Q(A) ∪ A(t) \ (T (t) ∪D(t)). C(t) denotes the entries from the routing table the
cache is holding at the beginning of time t and C denotes the maximum possible
size of this cache.

To move a packet toward its destination, a router has to find the next router
in the path to forward the packet. At any moment, the router first consults the
cache, C(t) and if the mapping is found in the cache we call it a hit ; otherwise
we call the event a miss and for each miss the router has to perform a lookup

operation which is very expensive in case of a high speed router. Total number
of hits and misses at time t are denoted by H(t) and M(t) respectively. In this
notation the less the sum

∑

t M(t) is, the better the performance of a router.
There is an integer W called the link bandwidth which determines the max-

imum number of packets that can be delivered by the router at a time i.e.
|T (t)| ≤ W for all t.

The sequence of packets transmitted by an algorithm obeys specific properties
of a model it is working in. Now we specify three different buffer models that
are commonly used in this context.

FIFO Non-preemptive Model [10]. This is the basic FIFO model with two
constraints. First, the sequence of transmitted packets is a subsequence of the
arriving packets. Second, at all time |Q(t)| ≤ B. Once a packet is admitted it
cannot be dropped from the queue so the decision regarding rejection must be
taken at admission.

FIFO Preemptive Model [2, 11]. It is same as the previous model except
that this model permits algorithms to preempt (drop) already accepted packets.
To maintain the FIFO order, packets are always added at the end of the queue,
and transmitted from the beginning of the queue. In addition, a packet can be
dropped from the middle and the packets behind it shift forwards.

Bounded Delay Model [10]. In this model each packet p has an additional at-
tribute called deadline, dl(p). Any packet p ∈ A(t) must be delivered or dropped
within t + dl(p). Also, packets can be rearranged in this model [10]. When all
the packets have same deadline δ, we call this model δ-uniform bounded delay

model and when all the packets have deadline bounded by δ it is called δ-variable
bounded delay model. We will mainly concern ourselves with uniform bounded
delay model.

3 Measures of Difficulty

The convention in traditional algorithmic analysis to measure the difficulty of
a problem is to find out its worst-case complexity. But there are cases where
some problem instances can be easily solved than others. Traditional difficulty
measures cannot differentiate between such cases. This observation was first

made by Burge [5] for sorting problems in 1958 when he discovered the idea of
presortedness in a sequence. After that, many difficulty measures for the sorting
problem have been proposed and relationships between these measures have been
identified and critically examined over the years [9, 14].

In this section we examine the idea of niceness for any incoming packet
sequence and propose difficulty measures to identify as well as quantify this
property. Many of these difficulty measures are based on their counterparts in
the sorting problem domain with necessary modifications to fit in this problem
domain.

Niceness. As mentioned before, we evaluate instance easiness in this problem
by a measure of niceness. A sequence is nicer than another sequence if the first
one requires less lookup operations than the other one.

Example 3.1. Let us assume five different types of packets {A, B, C, D, E} and
at time t, Q1(t) = {A, B, E, D, C, A, E, C, C, A, A, B, A, D, D} where packets are
stored in left-to-right order in the buffer. Assuming C = 1, there will be 12 misses
in this sequence i.e. M1(t) = 12. If the sequence of arrival was a bit different,
say Q2(t) = {A, B, E, D, A, E, C, C, C, A, A, A, B, D, D} then M2(t) = 10 which
is better than the first sequence and hence nicer. And an optimal sequence is
QOPT (t) = {A, A, A, A, A, B, B, C, C, C, D, D, D, E, E} with MOPT (t) = 5.

In fact, considering only this instance at time t there are 5! = 120 possible
sequences that will result in exactly same number of misses i.e. they are equally
nice. This is also true for offline case where the future is known beforehand.
But observing a little more carefully we notice that even though they are all
optimal at t, all of them are not necessarily equal when considered over a longer
timespan if the future is unknown i.e. in online case. As the content of the cache
at the end of time t will be used at time t + 1, the last element to be in the
cache at time t is very important. So in this example, with C = 1, QOPT (t) can
now have only 4! = 24 possible optimal sequences and this number will decrease
with the increase of C, the size of the cache up to a certain limit. So the notion
of niceness is dependent upon the knowledge of the future as well as the size of
the buffer and the cache.

Measures. We propose the following difficulty measures to quantify the niceness
of a sequence of packets in a router. It should be noted that constraints imposed
by different models (Section 2) may make a measure less useful in one model
than another.

3.1 Runs

Since consecutive occurrences of same type of packets do not result in any sub-
sequent lookup operations, number of runs is a natural measure of difficulty for
this problem. Unlike its counterpart in the sorting problem, it has no condition

on the runs to be ascending or descending. We define Runs as the number of
boundaries between runs. We call this boundaries flip, at which there is a change
of packet type.

Example 3.2. If there are two sequences X1 = {E/C, C, C/A/B/A, A/B/D, D}
and X2 = {E/C, C, C/A, A, A/B, B/D, D}, then they have Runs(X1) = 6 and
Runs(X2) = 4 respectively.

In order to make the function zero for a sequence with minimum number of
flips, we redefine Runs for a sequence X as,

Runs(X) = (Number of flips − |P| + 1)

where P is the set of all different types of packets. It should be noted that
Runs suffers from the problem described earlier in this section i.e. it does not
differentiate among the |P|! possible sequences with same Runs value.

3.2 SumDis and MaxDis

The bigger weakness of Runs is its inability to take into account the presence of
cache rather than its failure to know the future.

Example 3.3. Consider packet sequences X3 = {A, A, A/B, B, B/C, C, C/D},
X4 = {A/C/B/A/B/C/B/A/C/D} and X5 = {B/A/C/B/A/D/C/B/A/C}
with Runs(X3) = 0 and Runs(X4) = Runs(X5) = 6. At the presence of a cache
of size C = 3, both X3 and X4 need same number of lookup operations whereas
X5, even with this enlarged cache, results in more lookup operations.

To capture this information we need a finer measure of difficulty. SumDis is
defined as the sum of the TypeDistance for all different types of packets, where
TypeDistance is defined as the maximum number of different types of packets in
between two consecutive packets of same type less the cache size or zero when
it is negative. If P =

{

p1, p2, . . . , p|P|

}

, li denotes the total number of packets of
type pi and (pi,k ↔ pi,l) denotes the number of packets of type pj(j 6= i) located
between two packets of type pi then,

TypeDistance(pi) = max

(

max
0≤j<li

(pi,j ↔ pi,j+1) − C + 1, 0

)

and for a sequence X ,

SumDis(X) =

|P|
∑

i=1

TypeDistance(pi)

To illustrate this, let us consider the sequences X3, X4 and X5 again. In case
of X3 and X4, TypeDistance(A) = TypeDistance(B) = TypeDistance(C) =
TypeDistance(D) = 0 and consequently SumDis(X3) = SumDis(X4) = 0.
But for X5, TypeDistance(A) = TypeDistance(B) = TypeDistance(C) = 1
and TypeDistance(D) = 0, which results in SumDis(X5) = 3.

Observation 3.1. An intuitive observation about TypeDistance(pi) is that its

favorable values lie in very low or very high range. If it is very low then infor-

mation about a packet should be kept in the cache. On the contrary, if it is very

high then this information can be purged in case of overflow. But when the value

is somewhere in the middle, neither too low to keep the record nor high enough

to remove it, then it becomes a challenging task for an algorithm to take optimal

decision.

This leads to another difficulty measure very similar to SumDis, which we
call MaxDis. For a sequence X ,

MaxDis(X) = max
1≤i≤|P|

TypeDistance(pi)

For the sequences X3, X4 and X5 from the previous example, MaxDis(X3) =
MaxDis(X4) = 0 and MaxDis(X5) = 1.

Another point to notice about SumDis and MaxDis is that their cache-
consciousness makes them very useful in extending the definitions of existing
measures of presortedness into this problem domain without much trouble. Exc

and Rem, described later, are two simple examples of such extension.

3.3 Exc

The number of operations required to rearrange a sequence of incoming packets
to decrease the number of lookup operations may be the prime concern of an
algorithm. Exchange is such a simple rearranging operation. We define Exc as
the minimum number of exchanges needed to rearrange an input packet sequence
to make its SumDis measure zero. For example, X5 needs only one exchange
operation to make SumDis(X5) = 0. If we exchange the only type-D packet
with the first type-B packet we can achieve that; hence Exc(X5) = 1.

3.4 Rem

In some models it is possible to preempt or drop accepted packets. As a result,
an algorithm can try to make a sequence nicer by dropping some packets from
specific positions. Rem is defined as the minimum number of packets that must
be dropped to reduce the SumDis measure of a sequence to zero. We must drop at
least one packet, e.g. the only type-D packet, from X5 to have SumDis(X5) = 0
and as a result Rem(X5) = 1

4 Design Issues Regarding Algorithms Based on Niceness

In this section we discuss issues regarding optimal offline and online adaptive
algorithms for the difficulty measures proposed in the last section under different
buffer models. Any online algorithm in this problem domain has to deal with
two important issues. First, it has to find a suitable cache replacement strategy

to manage the high-speed cache. Second, it has to perform buffer management
under different buffer models. For an offline optimal algorithm the problem is
just buffer management as it has the absolute knowledge of the future and hence
is capable of taking optimal caching decisions.

4.1 Cache Replacement Strategies

Total number of misses made by an online algorithm is highly dependent on the
cache replacement strategy it employs. There are many such strategies available,
e.g. Least-Recently-Used (LRU), First-In-First-Out (FIFO), Flush-When-Full
(FWF) etc., which have been heavily studied in networks and operating systems
literature over the years. It is empirically known that LRU and its variants
perform best in such cases [1]. Recently similar result is supported in theory
using cooperative analysis [3, 8].

4.2 Buffer Management

Common buffer models available for use in routers include FIFO non-preemptive
model, FIFO preemptive model and bounded delay model (see Section 2). Re-
strictions in those models make some operations invalid and hence we assume
that some measures that we have proposed are not applicable or at least not
best suited for specific models. For example, in both FIFO-based models its not
possible to change the order of the packets once they have been accepted. Hence
Exc may not be the best measure of niceness in those models. Similarly in the
FIFO non-preemptive model, preemption or dropping of packets is not possible
which contradicts the idea of Rem. Our intuition is that may be these measures
are still applicable but their accuracy in these models need critical examination.

4.3 Conflicting Goals

Every router has a packet scheduler that plays the important role of determining
the order of packets belonging to a particular flow to effectively ensure that the
QoS service requirements are met. What this scheduler tries to do is that it
ensures each of the client is enjoying a proportional bandwidth. To ensure that,
it interleaves packets from different clients and which in effect creates disorder
i.e. makes sequence less nice. If we employ an algorithm in the scheduler to fix
this, the result will be deterioration or even failure QoS guarantee. But if we let
it through into the buffer we may not be able to fix that because of restrictions
imposed by buffer models. Conflict between these two issues requires serious
attention.

4.4 Bursty Traffic and Locality of Reference

One very important property of internet traffic is the presence of bursty data.
Most of the times there is high locality of reference among packet destinations

as requests from users tend to be targeted toward closely located servers. We
believe an adaptive online algorithm should be able to take full advantage of this
property. Presence of a burst can easily be identified from the values of MaxDis
and SumDis.

5 Conclusions and Future Work

In this paper we have proposed the idea of niceness of a packet sequence and es-
tablished five novel difficulty measures to quantify this property of any sequence.
Even though we have not managed to find optimal algorithms for the measures,
we have shed light on different design issues regarding such algorithms. But per-
haps the most interesting contribution of this work is the adaptation of adaptive
analysis, largely studied in sorting problems, in network related problem domain.
We believe more research works will stem from our introductory contribution.

A short list of open problems include -

1. Creating optimal algorithms for the difficulty measures discussed in this
paper, specially for MaxDis and SumDis.

2. Finding a partial ordering among the proposed difficulty measures as present
in sorting problem due to Petersson and Moffat [14]. From the definitions
of the measures of niceness we can observe that MaxDis and SumDis are
somewhat similar to Runs with cache-consciousness. Discovering such rela-
tionships can be an interesting research topic.

3. Analyzing the problem using cooperative analysis [3, 8].
4. Critical examination of accuracy and feasibility of using particular measure

of niceness in different buffer models.

Finally, some simple questions resonate more than all these. What is the best
possible use of this knowledge of niceness? Is it just for theoretical analysis or
should it be used to take decisions whether or not to rearrange packets to make
a sequence nicer? If yes, how will that affect the nagging issues like congestion
control, flow control and QoS of the network?

Our future research seeks answers to all these questions.

References

[1] Peter B. Galvin Abraham Silberschatz and Gerg Gagne. Operating System Con-
cepts. John Wiley & Sons, 2002.

[2] N. Andelman, Y. Mansour, and A. Zhu. Competitive queueing policies for QoS
switches. In Proceedings of the 14th ACM-SIAM Symposium on Discrete Algo-
rithms(SODA’03), pages 761–770, 2003.

[3] S. Angelopoulos, R. Dorrigiv, and A. López-Ortiz. On the separation and equiva-
lence of paging strategies. In Proceedings of the 18th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’07), 2007.

[4] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

[5] W.H. Burge. Sorting, trees, and measures of order. Information and Computa-
tion/Information and Control, 1(3):181–197, 1958.

[6] Gene Cheung and Steven McCanne. Optimal routing table design for IP address
lookups under memory constraints. In INFOCOM ’99, volume 3, pages 1437–1444,
1999.

[7] T. Chiueh and P. Pradhan. High-performance IP routing table lookup using cpu
caching. In INFOCOM ’99, pages 1421–1428, 1999.

[8] R. Dorrigiv and A. López-Ortiz. Adaptive analysis of on-line algorithms. In Robot
Navigation, 2007.

[9] Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algo-
rithms. ACM Computing Surveys, 24(4):441–476, 1992.

[10] Alexander Kesselman, Zvi Lotker, Yishay Mansour, Boaz Patt-Shamir, Baruch
Schieber, and Maxim Sviridenko. Buffer overflow management in QoS switches.
In Proceedings of ACM Symposium on Theory of Computing(STOC’01), pages
520–529, 2001.

[11] Alexander Kesselman, Yishay Mansour, and Rob Van Stee. Improved competi-
tive guarantees for QoS buffering. In Proceedings of the 11th Annual Europian
Symposium on Algorihtms(ESA’03), pages 361–372, 2003.

[12] Andreas Moestedt and Peter Sjodin. IP address lookup in hardware for high-speed
routing. In Proceedings of IEEE Hot Interconnects 6 Symposium, pages 31–39,
August 1998.

[13] Xiaojun Nie, David J. Wilson, Jerome Cornet, Gerard Damm, and Yiqiang Zhao.
IP address lookup using a dynamic hash function. In Proceedings of the 18th An-
nual Canadian Conference on Electrical and Computer Engineering, pages 1642–
1647, 2005.

[14] Ola Petersson and Alistair Moffat. A framework for adaptive sorting. Discrete
Applied Mathematics, 59:153–179, 1995.

[15] M.A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous. Survey and taxonomy of
IP address lookup algorithms. IEEE Network, 15(2):8–23, 2001.

[16] Sartaj Sahni and Kun Suk Kim. An O(log n) dynamic router-table design. IEEE
Transactions on Computers, 53(3):351–363, 2004.

[17] Kari Seppnen. Novel IP address lookup algorithm for inexpensive hardware im-
plementation. In WSEAS Transactions on Communications, pages 76–84, 2002.

