
February 12, 2007 WALCOM '2007 1/22

DiskTrie: An Efficient Data Structure Using Flash 

Memory for Mobile Devices

N. M. Mosharaf Kabir Chowdhury

Md. Mostofa Akbar

M. Kaykobad



February 12, 2007 WALCOM '2007 2/22

Outline

 Problem statement

 Current status and motivation for a new 

solution

 Preliminaries

 DiskTrie Idea

 Results

 Limitations

 Future directions



February 12, 2007 WALCOM '2007 3/22

Problem Statement

 Let S be a static set of n unique finite strings with 

the following operations:

 Lookup (str) – check if the string str belong to the set S

 Prefix-Matching (P) – find all the elements in S that have 

the same prefix P

 The Problem: An efficient data structure that can 

operate in low-spec mobile devices and supports 

this definition



February 12, 2007 WALCOM '2007 4/22

Current Status

 At present, use of mobile devices and different 
sensor networks is increasing rapidly

 Mobile devices and embedded systems are 
characterized by –
 Low processing power

 Low memory (both internal and external)

 Low power consumption

 Data structures and algorithms addressing these 
devices has huge application



February 12, 2007 WALCOM '2007 5/22

Motivation for a New Solution

 Use of external memory is necessary

 Popular external memory data structures for 
computer include String B-tree, Hierarchy of indexes 
etc.

 The problem is still not very well discussed in case 
of flash memory (Gal and Toledo)

 Looking for a more space-efficient (both internal and 
external) data structure that is still competitive in 
terms of time efficiency



February 12, 2007 WALCOM '2007 6/22

Flash Memory

 Common memory that is extensively used in 
mobile/handheld devices

 Unique read/write/erase behavior than other 
programmable memories

 NOR flash memory supports random access and 
provides byte level addressing

 NAND flash memory is faster and provides block
level access



February 12, 2007 WALCOM '2007 7/22

Trie

 A trivial trie is an m-ary
tree

 Keys are stored in the 
leaf level; each unique 
path from the root to a 
leaf corresponds to a 
unique key

 Its search time can be 
considered as O(1)

Inner Nodes

Leaf Nodes

A
G T

C



February 12, 2007 WALCOM '2007 8/22

Binary Trie and Path Compression

11
011

100

10

 Binary encoding ensures every node to have a maximum degree of 
two

 Depth of the trie increases

 Path-compression is used to reduce this

Binary Trie Path-compressed Binary Trie



February 12, 2007 WALCOM '2007 9/22

Patricia Trie & LPC Trie

12

2

1

 Patricia trie is similar to path-compressed one but needs less memory

 Finally, level and path-compressed trie reduces the depth but the trie itself does 
not remain binary anymore

 Nilsson and Tikkanen has shown that an LPC trie has expected average depth 
of Θ(log*n)

Patricia Trie Level and Path-compressed Trie

2

1 1
2



February 12, 2007 WALCOM '2007 10/22

DiskTrie Idea

 Static external memory implementation of the LPC-

trie

 Pre-build the trie in a computer and then transfer it 

to flash memory

 Three distinct phases –

 Creation in computer

 Placement in flash memory

 Retrieval



February 12, 2007 WALCOM '2007 11/22

Creation and Placement

 All the strings are lexicographically sorted and 
placed contiguously in flash memory

 Nodes of the DiskTrie are placed separately from 
the strings and leaf nodes contain pointers to actual 
strings they represent

 Page boundaries are always maintained in case of 
NAND memory

 All the child nodes of a parent node are placed in 
sequence to reduce the number of pointers



February 12, 2007 WALCOM '2007 12/22

Retrieval

 Deals with two types of operations:

 Lookup

 Prefix-Matching

 Lookup starts from the root and proceeds until the 

search string is exhausted

 Each time a single node is retrieved from the disk in 

case of NOR flash memory and a whole block for 

NAND type



February 12, 2007 WALCOM '2007 13/22

Lookup Algorithm

procedure Lookup (str)

{

- currentNode ← root

- while ( str is not exhausted & currentNode is NOT a 
leaf node)

- Select childNode using str

- currentNode ← childNode

- end while

- if ( error )

- return false

- end if

- return CompareStrings (str, currentNode→str)

}



February 12, 2007 WALCOM '2007 14/22

Retrieval (Cont.)

 For Prefix-Matching operation, the searching 

takes place in two phases:

 Identification of a prospective leaf node to find the 

longest common prefix

 Identification of the sub-trie or tries that contain 

the results



February 12, 2007 WALCOM '2007 15/22

Illustration of the Prefix-Matching 

Operation

X

root

P ends here
X

root

X
0

X
7

X
6

X
5

X
4

X
3

X
2

X
1

P ends here

(a) ‘P’ ends in a node (b) ‘P’ ends in an arc



February 12, 2007 WALCOM '2007 16/22

Prefix-Matching Algorithm

procedure Prefix-Matching (P)

{

- currentNode ← root

- while ( P is not exhausted & currentNode is NOT a leaf 
node)

- Select childNode using str

- currentNode ← childNode

- end while

- if ( error )

- return NULL

- end if

- lNode ← left-most node in the probable region

- rNode ← right-most node in the probable region

- return all strings in the range

}



February 12, 2007 WALCOM '2007 17/22

Results

- Storage Requirement
 DiskTrie needs two sets of components to be stored in the external 

memory:

 Actual Strings, and

 The data structure itself

 Linear storage space to store all the key strings

 A Patricia trie holding n strings has (2n – 1) nodes

 Hence, storage requirement for the total data structure is also linear 

 While storing the nodes, block boundaries must be maintained. It 
results in some wastage



February 12, 2007 WALCOM '2007 18/22

Results (Cont.)

- Complexity of the Operations

 Lookup

 Fetch only those nodes from the disk that are on the 
path to the goal node

 The number of disk accesses is bounded by the depth
of the trie, which is in turn Θ(log*n). 

 log*n is the iterative logarithm function and defined as, 

 log*1 = 0

 log*n = 1 + log*(ceil (log n)); for n > 1

 Minimal internal memory required



February 12, 2007 WALCOM '2007 19/22

Results (Cont.)

 Prefix-Matching
 Probable range of the strings starting with the same prefix 

is identified using methods similar to Lookup. It takes 
Θ(log*n) disk accesses

 In case of a successful search, it takes O(n/B) more disk 
accesses to retrieve the resultant strings if NAND memory 
is used (B is the block read size)

 Sorted placement of the strings saves a lot of string 
comparisons

 Internal memory requirement is minimal



February 12, 2007 WALCOM '2007 20/22

Limitations

 Wastage of space in each disk block while 

storing the DiskTrie nodes

 In some cases, same disk blocks are 

accessed more than once



February 12, 2007 WALCOM '2007 21/22

Future Directions

 More efficient storage management, specially 

removing the inherent wastage to maintain 

boundary property

 Take advantage of spatial locality



February 12, 2007 WALCOM '2007 22/22


