DiskTrie: An Etficient Data Structure Using Flash
Memory for Mobile Devices

N. M. Mosharaf Kabir Chowdhury
Md. Mostofa Akbar
M. Kaykobad

February 12, 2007 WALC OM '2007 1/22

Outline

Problem statement

Current status and motivation for a new
solution

Preliminaries
DiskTrie Idea
Results
_imitations
Future directions

February 12, 2007 WALC OM '2007 2/22

Problem Statement

Let S be a static set of n unique finite strings with
the following operations:

o Lookup (str) — check if the string str belong to the set S

o Prefix-Matching (P) — find all the elements in S that have
the same prefix P

The Problem: An efficient data structure that can
operate in low-spec mobile devices and supports
this definition

February 12, 2007 WALCOM '2007 3/22

Current Status

At present, use of mobile devices and different
sensor networks is increasing rapidly

Mobile devices and embedded systems are
characterized by —

o Low processing power
o Low memory (both internal and external)
o Low power consumption

Data structures and algorithms addressing these
devices has huge application

February 12, 2007 WALC OM '2007 4/22

Motivation for a New Solution

Use of external memory Is necessary

Popular external memory data structures for
computer include String B-tree, Hierarchy of indexes

etc.

The problem is still not very well discussed in case
of flash memory (Gal and Toledo)

Looking for a more space-efficient (both internal and
external) data structure that is still competitive in
terms of time efficiency

February 12, 2007 WALC OM '2007 5/22

Flash Memory

Common memory that is extensively used in
mobile/handheld devices

Unique read/write/erase behavior than other
programmable memories

NOR flash memory supports random access and
provides byte level addressing

NAND flash memory is faster and provides block
level access

February 12, 2007 WALC OM '2007 6/22

Trie

A trivial trie iIs an m-ary
tree

Keys are stored in the
eaf level;, each unique
path from the root to a
eaf corresponds to a
unique key

O Leaf Nodes

Its search time can be @ Inner Nodes
considered as O(1)

WALCOM 2007 i

February 12, 2007

Binary Trie and Path Compression

100

10 11
011

Binary Trie Path-compressed Binary Trie

Binary encoding ensures every node to have a maximum degree of
two

Depth of the trie increases

Path-compression is used to reduce this

February 12, 2007 WALCOM '2007 8/22

Patricia Trie & LPC Trie

Patricia Trie L evel and Path-compressed Trie

Patricia trie is similar to path-compressed one but needs less memory

Finally, level and path-compressed trie reduces the depth but the trie itself does
not remain binary anymore

Nilsson and Tikkanen has shown that an LPC trie has expected average depth
of O(log*n)

February 12, 2007 WALCOM '2007 9/22

DiskTrie Idea

Static external memory implementation of the LPC-
trie

Pre-build the trie in a computer and then transfer it
to flash memory

Three distinct phases —

o Creation in computer

o Placement in flash memory
o Retrieval

February 12, 2007 WALCOM '2007 10/22

Creation and Placement

All the strings are lexicographically sorted and
placed contiguously in flash memory

Nodes of the DiskTrie are placed separately from
the strings and leaf nodes contain pointers to actual
strings they represent

Page boundaries are always maintained in case of
NAND memory

All the child nodes of a parent node are placed Iin
sequence to reduce the number of pointers

February 12, 2007 WALCOM '2007 11/22

Retrieval

Deals with two types of operations:
o Lookup
o Prefix-Matching

Lookup starts from the root and proceeds until the
search string is exhausted

Each time a single node is retrieved from the disk In
case of NOR flash memory and a whole block for
NAND type

February 12, 2007 WALCOM '2007 12/22

Lookup Algorithm

procedure (str)
{
currentNode — root

while (str is not exhausted & currentNode is NOT a
leaf node)

- Select childNode using str
- currentNode ~ childNode

end while
if (error)
- false

end if

CompareStrings (str, currentNode-str)

February 12, 2007 WALCOM '2007 13/22

Retrieval (Cont.)

For Prefix-Matching operation, the searching
takes place in two phases:

o ldentification of a prospective leaf node to find the
ongest common prefix

o ldentification of the sub-trie or tries that contain
the results

February 12, 2007 WALCOM '2007 14/22

[llustration of the Pretix-Matching

Operation

. root

\‘P ends here

(a) ‘P’ ends in a node

P ends here

(b) ‘P’ ends in an arc

February 12, 2007

WALCOM 2007 15/22

Prefix-Matching Algorithm

procedure (P)
{
currentNode ~ root

while (P is not exhausted & currentNode is NOT a leaf
node)

- Select childNode using str
- currentNode childNode

end while
if (error)
- NULL

end if

1Node ~ left-most node in the probable region
rNode ~ right-most node in the probable region

all strings in the range

February 12, 2007 WALCOM '2007 16/22

Results
- Storage Requirement

DiskTrie needs two sets of components to be stored in the external
memory:

o Actual Strings, and
o The data structure itself

Linear storage space to store all the key strings
A Patricia trie holding n strings has (2n — 1) nodes
Hence, storage requirement for the total data structure is also linear

While storing the nodes, block boundaries must be maintained. It
results in some wastage

February 12, 2007 WALCOM 2007 17/22

Results (Cont.)
- Complexity of the Operations

Lookup

o Fetch only those nodes from the disk that are on the
path to the goal node

o The number of disk accesses is bounded by the depth
of the trie, which is in turn ©(log*n).

log*n is the iterative logarithm function and defined as,
0 log*1 =0
0 log*n =1 + log*(ceil (log n)); forn>1

o Minimal internal memory required

February 12, 2007 WALCOM '2007 18/22

Results (Cont.)

Prefix-Matching

o Probable range of the strings starting with the same prefix
IS identified using methods similar to Lookup. It takes
O(log*n) disk accesses

o In case of a successful search, it takes O(n/B) more disk
accesses to retrieve the resultant strings if NAND memory
IS used (B is the block read size)

o Sorted placement of the strings saves a lot of string
comparisons

o Internal memory requirement is minimal

February 12, 2007 WALCOM '2007 19/22

[imitations

Wastage of space in each disk block while
storing the DiskTrie nodes

In some cases, same disk blocks are
accessed more than once

February 12, 2007 WALC OM '2007 20/22

Future Directions

More efficient storage management, specially
removing the inherent wastage to maintain

boundary property

Take advantage of spatial locality

WALCOM 2007 21/22

February 12, 2007

Toaud (ou A1 1

February 12, 2007 WALC OM 'ZOO 7

