
February 12, 2007 WALCOM '2007 1/22

DiskTrie: An Efficient Data Structure Using Flash

Memory for Mobile Devices

N. M. Mosharaf Kabir Chowdhury

Md. Mostofa Akbar

M. Kaykobad

February 12, 2007 WALCOM '2007 2/22

Outline

 Problem statement

 Current status and motivation for a new

solution

 Preliminaries

 DiskTrie Idea

 Results

 Limitations

 Future directions

February 12, 2007 WALCOM '2007 3/22

Problem Statement

 Let S be a static set of n unique finite strings with

the following operations:

 Lookup (str) – check if the string str belong to the set S

 Prefix-Matching (P) – find all the elements in S that have

the same prefix P

 The Problem: An efficient data structure that can

operate in low-spec mobile devices and supports

this definition

February 12, 2007 WALCOM '2007 4/22

Current Status

 At present, use of mobile devices and different
sensor networks is increasing rapidly

 Mobile devices and embedded systems are
characterized by –
 Low processing power

 Low memory (both internal and external)

 Low power consumption

 Data structures and algorithms addressing these
devices has huge application

February 12, 2007 WALCOM '2007 5/22

Motivation for a New Solution

 Use of external memory is necessary

 Popular external memory data structures for
computer include String B-tree, Hierarchy of indexes
etc.

 The problem is still not very well discussed in case
of flash memory (Gal and Toledo)

 Looking for a more space-efficient (both internal and
external) data structure that is still competitive in
terms of time efficiency

February 12, 2007 WALCOM '2007 6/22

Flash Memory

 Common memory that is extensively used in
mobile/handheld devices

 Unique read/write/erase behavior than other
programmable memories

 NOR flash memory supports random access and
provides byte level addressing

 NAND flash memory is faster and provides block
level access

February 12, 2007 WALCOM '2007 7/22

Trie

 A trivial trie is an m-ary
tree

 Keys are stored in the
leaf level; each unique
path from the root to a
leaf corresponds to a
unique key

 Its search time can be
considered as O(1)

Inner Nodes

Leaf Nodes

A
G T

C

February 12, 2007 WALCOM '2007 8/22

Binary Trie and Path Compression

11
011

100

10

 Binary encoding ensures every node to have a maximum degree of
two

 Depth of the trie increases

 Path-compression is used to reduce this

Binary Trie Path-compressed Binary Trie

February 12, 2007 WALCOM '2007 9/22

Patricia Trie & LPC Trie

12

2

1

 Patricia trie is similar to path-compressed one but needs less memory

 Finally, level and path-compressed trie reduces the depth but the trie itself does
not remain binary anymore

 Nilsson and Tikkanen has shown that an LPC trie has expected average depth
of Θ(log*n)

Patricia Trie Level and Path-compressed Trie

2

1 1
2

February 12, 2007 WALCOM '2007 10/22

DiskTrie Idea

 Static external memory implementation of the LPC-

trie

 Pre-build the trie in a computer and then transfer it

to flash memory

 Three distinct phases –

 Creation in computer

 Placement in flash memory

 Retrieval

February 12, 2007 WALCOM '2007 11/22

Creation and Placement

 All the strings are lexicographically sorted and
placed contiguously in flash memory

 Nodes of the DiskTrie are placed separately from
the strings and leaf nodes contain pointers to actual
strings they represent

 Page boundaries are always maintained in case of
NAND memory

 All the child nodes of a parent node are placed in
sequence to reduce the number of pointers

February 12, 2007 WALCOM '2007 12/22

Retrieval

 Deals with two types of operations:

 Lookup

 Prefix-Matching

 Lookup starts from the root and proceeds until the

search string is exhausted

 Each time a single node is retrieved from the disk in

case of NOR flash memory and a whole block for

NAND type

February 12, 2007 WALCOM '2007 13/22

Lookup Algorithm

procedure Lookup (str)

{

- currentNode ← root

- while (str is not exhausted & currentNode is NOT a
leaf node)

- Select childNode using str

- currentNode ← childNode

- end while

- if (error)

- return false

- end if

- return CompareStrings (str, currentNode→str)

}

February 12, 2007 WALCOM '2007 14/22

Retrieval (Cont.)

 For Prefix-Matching operation, the searching

takes place in two phases:

 Identification of a prospective leaf node to find the

longest common prefix

 Identification of the sub-trie or tries that contain

the results

February 12, 2007 WALCOM '2007 15/22

Illustration of the Prefix-Matching

Operation

X

root

P ends here
X

root

X
0

X
7

X
6

X
5

X
4

X
3

X
2

X
1

P ends here

(a) ‘P’ ends in a node (b) ‘P’ ends in an arc

February 12, 2007 WALCOM '2007 16/22

Prefix-Matching Algorithm

procedure Prefix-Matching (P)

{

- currentNode ← root

- while (P is not exhausted & currentNode is NOT a leaf
node)

- Select childNode using str

- currentNode ← childNode

- end while

- if (error)

- return NULL

- end if

- lNode ← left-most node in the probable region

- rNode ← right-most node in the probable region

- return all strings in the range

}

February 12, 2007 WALCOM '2007 17/22

Results

- Storage Requirement
 DiskTrie needs two sets of components to be stored in the external

memory:

 Actual Strings, and

 The data structure itself

 Linear storage space to store all the key strings

 A Patricia trie holding n strings has (2n – 1) nodes

 Hence, storage requirement for the total data structure is also linear

 While storing the nodes, block boundaries must be maintained. It
results in some wastage

February 12, 2007 WALCOM '2007 18/22

Results (Cont.)

- Complexity of the Operations

 Lookup

 Fetch only those nodes from the disk that are on the
path to the goal node

 The number of disk accesses is bounded by the depth
of the trie, which is in turn Θ(log*n).

 log*n is the iterative logarithm function and defined as,

 log*1 = 0

 log*n = 1 + log*(ceil (log n)); for n > 1

 Minimal internal memory required

February 12, 2007 WALCOM '2007 19/22

Results (Cont.)

 Prefix-Matching
 Probable range of the strings starting with the same prefix

is identified using methods similar to Lookup. It takes
Θ(log*n) disk accesses

 In case of a successful search, it takes O(n/B) more disk
accesses to retrieve the resultant strings if NAND memory
is used (B is the block read size)

 Sorted placement of the strings saves a lot of string
comparisons

 Internal memory requirement is minimal

February 12, 2007 WALCOM '2007 20/22

Limitations

 Wastage of space in each disk block while

storing the DiskTrie nodes

 In some cases, same disk blocks are

accessed more than once

February 12, 2007 WALCOM '2007 21/22

Future Directions

 More efficient storage management, specially

removing the inherent wastage to maintain

boundary property

 Take advantage of spatial locality

February 12, 2007 WALCOM '2007 22/22

