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Abstract

Due to the existence of multiple stakeholders with conflicting goals and policies, alterations to

the existing Internet architecture are now limited to simple incremental updates; deployment

of any new, radically different technology is next to impossible. To fend off this ossification,

network virtualization has been propounded as a diversifying attribute of the future inter-

networking paradigm. However, many technical issues stand in the way toward its successful

realization. In this thesis, we address two basic problems in the network virtualization

environment.

The identity management problem is primarily concerned with ensuring interoperability

across heterogeneous identifier spaces for locating and identifying end hosts in different

virtual networks. We propose a novel identity management framework (iMark) that enables

end-to-end connectivity across heterogeneous virtual networks without revoking their auton-

omy. We describe the architectural and the functional components of iMark accompanied

by the procedures that manipulate these components and validate it through numerical

evaluation.

The virtual network embedding problem deals with the mapping of virtual nodes and

links onto physical network resources. We argue that the separation of the node mapping

and the link mapping phases in the existing algorithms considerably reduces the solution

space and degrades embedding quality. We propose coordinated node and link mapping,

based on a mathematical programming formulation, to devise two algorithms (D-ViNE
and R-ViNE) for the online version of the problem under realistic assumptions. Extensive

simulation experiments show that the proposed algorithms significantly outperform the

existing heuristics by increasing the acceptance ratio and the revenue while decreasing the

cost incurred by the substrate network.
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Chapter 1

Prologue

The Internet has been stunningly successful in modeling the way we access and exchange

information in the modern world. Over the course of past three decades, the Internet

architecture has proven its worth by supporting multitude of distributed applications and a

wide variety of network technologies over which it currently runs. However, its popularity

has become the biggest impediment to its further growth. Due to its multi-provider nature,

adopting a new architecture or modification of the existing one requires consensus among

competing stakeholders. As a result, alterations to the Internet architecture have become

restricted to simple incremental updates and deployment of new network technologies have

become increasingly difficult [13, 107].

1.1 Network Virtualization

To fend off this ossification once and for all, network virtualization has been propounded as

a diversifying attribute of the future inter-networking paradigm. Even though architectural

purists view network virtualization as a means for evaluating new architectures, the pluralist

approach considers virtualization as a fundamental attribute of the architecture itself [13].

By allowing multiple heterogeneous network architectures to cohabit on a shared physical

substrate, network virtualization provides flexibility, promotes diversity, and promises security

and increased manageability. They believe that network virtualization can eradicate the

so-called ossifying forces of the current Internet that have restricted changes to incremental

updates, and consequently stimulate innovation [13, 107].

To introduce flexibility, decoupling of the functionalities is a well-known principle in

the computing literature. Similar approach has been propounded for virtualizing networks

[107, 22, 46]. In this case, the role of the traditional ISPs has been divided into two

independent entities: infrastructure providers, who manage the physical infrastructure,

1
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Infrastructure
Provider 1 Infrastructure

Provider 2

Service Provider / Virtual Network 1

Service Provider / Virtual Network 3
Service Provider / Virtual Network 2

End User A

End User B

End User C

Figure 1.1: Network Virtualization Architecture

and service providers, who create virtual networks by aggregating resources from multiple

infrastructure providers and offer end-to-end services.

Figure 1.1 depicts three possibly heterogeneous virtual networks that span over two

different infrastructure provider domains. The owner of a virtual network, i.e., a service

provider, is free to implement end-to-end services by selecting custom packet formats, routing

protocols, forwarding mechanisms, and other control and management protocols. End users

can opt-in to any virtual network, or even multiple ones at the same time. For example, end

user A in Figure 1.1 is connected to two different virtual networks.

1.2 Challenges and Opportunities

While network virtualization promises extended flexibility and increased heterogeneity,

several technical challenges in terms of the instantiation, operation, and management of this

environment must be handled first to realize those pledges. Examples of instantiation related

problems include interfacing, signaling, bootstrapping, and embedding of virtual networks

on the shared physical infrastructure. On the other hand, implementation of virtual routers

and virtual links as well as resource scheduling among coexisting virtual resources are a few

of many operation related challenges. Finally, failure handling, mobility management, virtual

network configuration and monitoring are some examples of the management problems in

the network virtualization environment.
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However, most of the existing research works related to network virtualization can at best

be described as attempts to fix some existing problems, rather than a conscious and focused

push to build a complete network virtualization environment. As a result, several aspects

of network virtualization remain unexplored till today; many others, although touched,

can use further improvement. This presents a broad range of open problems and unique

opportunities, both theoretical and practical, to the researchers working in this area.

1.3 Contributions

The contributions of this thesis are threefold. First and foremost, we present a comprehensive

survey of network virtualization and related research. We put network virtualization in

a historical perspective, present a categorical overview of previous and on-going projects

related to network virtualization, and most importantly, we present an elaborate enumeration

of open challenges and opportunities in this research area with an aim to stoke wide interests

among networking researchers.

From the open problems, we select two particular problems of the network virtualization

environment as the main focus of this thesis. In order to manage identities in the heteroge-

neous network virtualization environment, we propose an identity management framework

(iMark) that ensures end-to-end connectivity through interoperability between heteroge-

neous identifier spaces, allows flexibility of the choice of identifier spaces by different virtual

networks, and enables mobility and Überhoming of the end hosts.

Finally, we present one deterministic (D-ViNE) and one randomized (R-ViNE) virtual

network embedding algorithms based on a mathematical formulation of the embedding

problem. Both the proposed algorithms outperform the existing embedding algorithms

in terms of virtual network request acceptance ratio, utilization of resources, and cost as

well as revenue of the infrastructure providers. We also present D-ViNE-LB, an improved

and load-balanced version of the deterministic algorithm, that significantly increases the

acceptance ratio, utilization, and revenue with relatively low increase of the provisioning

cost.

1.4 Thesis Organization

The remainder of this thesis can be outlined as follows. Chapter 2 presents a review of the

concepts similar to network virtualization and summarizes related past and ongoing projects.

Chapter 3 provides a conceptual overview of network virtualization and enumerates open

research challenges in this area. Chapter 4 motivates and defines the identity management

problem and presents a framework to address related issues in this context. Chapter 5
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addresses the most prevalent resource allocation problem in the network virtualization

environment: virtual network embedding, and presents two algorithms that outperform

the existing heuristics using improved correlation between the node mapping and the link

mapping phases during the embedding process. Finally, Chapter 6 concludes this thesis with

a summary of our contributions and possible future work.



Chapter 2

Literature Review

2.1 Introduction

The concept of multiple co-existing logical networks appeared in the networking literature

several times in the past in different capacities. They can broadly be categorized into four

main classes: Virtual Local Area Networks (VLAN), Virtual Private Networks (VPN), active and
programmable networks, and overlay networks. A VLAN is a group of logically networked hosts

with a single broadcast domain that provides the semblance of a physical LAN regardless

of physical connectivity. A VPN, on the other hand, is a trunked VLAN that is a specialized

virtual network connecting multiple distributed sites through tunnels over shared or public

networks. An overlay network is yet another form of network virtualization which is typically

implemented in the application layer, though various implementations at lower layers of

the network stack do exist. It has been extensively used as a weak but effective tool to

deploy new features and fixes in the Internet. Finally, active and programmable networks is

a concept that enables customization of network elements through programmability based

on service providers’ requirements.

Capitalizing on these ideas, many projects had been established in the last decade that

championed the core concept of coexisting, possibly heterogeneous, logical networks on a

shared physical infrastructure. The goal of this chapter is to provide an overview as well as a

historical perspective of network virtualization for a better understanding of this thesis.

2.2 Chapter Organization

The remainder of this chapter is organized as follows. Section 2.3 provides an overview of

the four incarnations of network virtualization: VLANs, VPNs, active and programmable

networks, and overlay networks. Following that, Section 2.4 discusses the past and the

5
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ongoing projects directly and indirectly linked to network virtualization related concepts.

Finally, Section 2.5 summarizes the discussion in tabular forms (Table 2.1 and Table 2.2).

2.3 Historical Perspective

2.3.1 Virtual Local Area Network

A virtual local area network (VLAN) [35] is a group of logically networked hosts with a

single broadcast domain regardless of their physical connectivity. All frames in a VLAN bear

a VLAN ID in the MAC header, and VLAN-enabled switches use both the destination MAC

address and the VLAN ID to forward frames. Since VLANs are based on logical instead of

physical connections, network administration, management, and reconfiguration of VLANs

are simpler than that of their physical counterparts. In addition, VLANs provide elevated

levels of trust, security, and isolation.

2.3.2 Virtual Private Network

A virtual private network (VPN) [48, 88, 89] is a dedicated network connecting multiple sites

using private and secured tunnels over shared or public communication networks like the

Internet. In most cases, VPNs connect geographically distributed sites of a single corporate

enterprise.

Each VPN site contains one or more customer edge (CE) devices that are attached to one

or more provider edge (PE) routers. Typically a VPN is managed and provisioned by a VPN

service provider (SP), and it is known as provider-provisioned VPN (PPVPN) [14]. Based on

the protocol used in the VPN data plane, PPVPN technologies can be classified into three

broad categories:

Layer 3 PPVPN

Layer 3 VPN (L3VPN) [32, 29] is characterized by its use of Layer 3 protocols in the VPN

backbone to carry data between the distributed CEs. There are two types of L3VPNs:

In CE-based VPN approach, the SP network is completely unaware of the existence of a

VPN. CE devices create, manage, and tear up the tunnels between themselves. Tunneling

requires three different protocols:

1. Carrier protocol (e.g. IP), used by the SP network to carry the VPN packets.

2. Encapsulating protocol, used to wrap the original data. It can range from very simple

wrapper protocols (e.g. GRE [45], PPTP [56], L2TP [105]) to secure protocols (e.g.

IPSec [67]).
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3. Passenger Protocol, which is the original data in customer networks.

Sender CE devices encapsulate the passenger packets and route them into carrier networks;

when these encapsulated packets reach the end of the tunnel, i.e., receiver CE devices, they

are extracted and actual packets are injected into receiver networks.

On the other hand, all the states in PE-based L3VPNs are maintained in the PE devices,

and a connected CE device may behave as if it were connected to a private network.

Layer 2 VPN

Layer 2 VPNs (L2VPNs) [15, 16] transport Layer 2 (typically Ethernet) frames between

participating sites. The advantage is that it is agnostic about the higher-level protocols

and consequently, more flexible than L3VPN. On the downside, there is no control plane to

manage reachability across the VPN.

There are two fundamentally different kinds of Layer 2 VPN services that a service

provider could offer to a customer: Virtual Private Wire Service (VPWS) and Virtual Private

LAN Service (VPLS). A VPWS is a VPN service that supplies an L2 point-to-point service. A

VPLS is a point-to-multipoint L2 service that emulates LAN service across a WAN. There is

also the possibility of an IP-only LAN-like Service (IPLS), which is similar to VPLS except that

CE devices are hosts or routers instead of switches and only IP packets are carried (either

IPv4 or IPv6).

Layer 1 VPN

Layer 1 VPN (L1VPN) [19, 100] framework emerged in recent years from the need to extend

L2/L3 packet-switching VPN concepts to advanced circuit-switching domains. It provides a

multi-service backbone where customers can offer their own services, whose payloads can

be of any layer (e.g., ATM, IP, and TDM). This ensures that each of the service networks

has independent address space, independent Layer 1 resource view, separate policies, and

complete isolation from other VPNs.

L1VPN can be of two types: Virtual Private Wire Services (VPWS) and Virtual Private Line

Services (VPLS). VPWS services are point-to-point, while VPLS can be point-to-multipoint.

2.3.3 Active and Programmable Networks

Active and programmable networks research was motivated by the need to create, deploy,

and manage novel services on the fly in response to user demands. But the ideas never mate-

rialized to real implementations due to concerns about technical feasibility and economical

viability as well as lack of willingness from network operators.
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Two separate schools of thought emerged on how to actually implement such concepts:

one from telecommunications community and the other from IP networks community.

Open Signaling Approach

Open signaling [3] takes a telecommunication approach with a clear distinction between

transport, control, and management planes that constitute programmable networks and

emphasizes on QoS guarantees. An abstraction layer is proposed for physical network

devices to act as distributed computing environments with well-defined open programming

interfaces allowing service providers to manipulate network states.

Active Networks Approach

Active networks [102, 101, 116, 82] promote dynamic deployment of new services at runtime

within the confinement of existing IP networks. Routers or switches in these networks can

perform customized computations based on the contents of the active packets and can

also modify them. Active networks allow the customization of network services at packet

transport granularity and offer more flexibility than the open signaling approach at the

expense of a more complex programming model.

Different levels of programmability have been suggested over the years. At one end,

ANTS [112] offers a Turing-complete machine model at the active router enabling each user

to execute any new code. At the other end of the spectrum, DAN [40] only allows the user to

call functions already installed at a particular node. Calvert et al. [30] classify the proposed

architectures based on the granularity of control, statefullness, and language expressive

power.

2.3.4 Overlay Networks

An overlay network is a logical network built on top of one or more existing physical

networks. The Internet itself started off as an overlay on top of the telecommunication

network. Overlays in the existing Internet are typically implemented in the application layer;

however, various implementations at lower layers of the network stack do exist.

Overlays do not require, nor do they cause any changes to the underlying network. As

a consequence, overlays have long been used as relatively easy and inexpensive means

to deploy new features and fixes in the Internet. A multitude of application layer overlay

designs have been proposed in recent years to address diverse issues, which include: ensuring

performance [91] and availability [10] of Internet routing, enabling multicasting [41, 62, 33],

providing QoS guarantees [97], protecting from denial of service attacks [68, 11], and for
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content distribution [72], file sharing [75] and even in storage systems [39]. Overlays have

also been used as testbeds (e.g., PlanetLab [5]) to design and evaluate new architectures.

However, Anderson et al. [13] point out that standard overlays falter as a deployment

path for radical architectural innovation in at least two ways. First, overlays have largely

been seen as a way to deploy narrow fixes to specific problems without any holistic view of

the interactions between different overlays. Second, most overlays have been designed in

application layer on top of IP and hence are not capable of supporting radically different

concepts.

2.4 Network Virtualization Projects

Over the years, the term “virtual network” has been used to describe different projects on

virtual private networks, overlay networks, and active or programmable networks. But very

few of them actually followed the pluralist view of network virtualization. We present an

overview of a number of virtual network architectures and related projects (e.g. overlay,

programmable network or VPN inspired designs) that have emerged in the literature in this

section.

2.4.1 Characteristics

We summarize the most significant past and ongoing projects directly or indirectly related to

network virtualization based on the following set of characteristics:

• Networking technology: A handful of network virtualization prototypes have been

developed for specific networking technologies with an aim to exploit unique charac-

teristics of those networks to enable virtualization. Such projects include, X-Bone for

IP networks, Tempest targeting ATM networks, and the very recent GENI initiative that

will be agnostic to any specific technology.

• Layer of virtualization: Influenced by the presence of the existing Internet, re-

searchers have naturally approached network virtualization in a layered manner.

As a result, many projects have attempted to virtualize different layers of the network

stack, starting from the physical layer (UCLP) and continuing up to the application

layer (VIOLIN).

• Architectural domain: Most projects have focused on particular architectural do-

mains, which dictates the design choices taken in the construction of architectures and

services that can be offered on those platforms. Examples include, network manage-

ment (VNRMS), virtual active networks (NetScript), and spawning networks (Genesis).
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• Level of virtualization: To enable network virtualization, one must virtualize the

nodes, the links, and every other resource in the network. The level of virtualization

refers to the granularity at which each virtual network can administer itself. At one

end of this spectrum, node virtualization creates VNs by connecting virtual machines

on different nodes (e.g., PlanetLab). At the other end, CABO proposes the concept of

true plurality where each VN has a semblance of the native network.

2.4.2 Networking Technology

IP Networks: X-Bone

X-Bone [103] was first proposed as a system for rapid and automated deployment and

management of overlay networks using encapsulation to enable virtual infrastructure. Later

this idea was extended to the concept of Virtual Internet (VI) [104], which is an IP network

composed of tunneled links among a set of virtual routers and hosts, with dynamic resource

discovery, deployment, and monitoring support.

A VI virtualizes all the components of the Internet: hosts, routers and links between

them. A single network node may participate as a virtual host (VH), a virtual router (VR), or

multiple of them simultaneously in a VI. All components participating in the VI must support

multihoming, since even a base host with a single VH is necessarily a member of at least two

networks: the Internet and the VI overlay. Addresses within each VI is unique and can be

reused in another overlay, unless there is no shared common node in the underlying network

between the two VIs.

VIs completely decouple the underlying physical network from the overlays and multiple

VI can coexist together. VIs also support control recursion to allow divide-and-conquer

network management and network recursion to stack one VI on another.

ATM Networks: Tempest

Tempest [109] is a network control architecture that allows multiple heterogeneous control

architectures to run simultaneously over single physical ATM network. It is defined as a set

of policies, algorithms, mechanisms, and protocols to control and manage various devices on

the network.

Tempest is based on the concept of switchlets [108], which allows a single ATM switch

to be controlled by multiple controllers by strictly partitioning the resources of that switch

between those controllers. The set of switchlets that a controller or group of controllers

possess forms its virtual network. Third parties can lease such virtual networks from the

Tempest network operator to use them for any purpose as they see fit.
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Programmability in Tempest is supported at two levels of granularity: first, switchlets

support the introduction of alternative control architectures in the network; and second,

services can be refined by dynamically loading programs into the network that customize

existing control architectures. This allows the users to have application-specific control.

2.4.3 Layer of Virtualization

Physical Layer: UCLP

UCLP [6] is a distributed network control and management system for CA*NET 4 network

that allows end users to treat network resources as software objects, and lets them provision

as well as dynamically reconfigure optical networks (at Layer 1). Users are able to join

or divide lightpaths within a single domain, or across multiple independent management

domains to create customized logical IP networks.

UCLP takes a modular approach to resource management by introducing three distinct

service layers [24, 25, 114]. Customers and administrators configure and use end-to-end

UCLP resources through the user access layer. The service provisioning layer is managed with a

grid application. Finally, the resource management layer deals with actual physical resources.

UCLPv1.4 [86] introduced dynamic topology discovery process and enabled auto-routing

through intelligent algorithms alongside already available manual lightpath configuration

capabilities. Later, UCLPv2 [79] extended UCLP with the use of Service Oriented Architecture

(SOA) and workflow technologies with an aim to form the underpinning architectural

framework for extending UCLP to allow the interconnection of instruments, time slices, and

sensors; and for incorporating virtual routers and switches.

Link Layer: VNET

VNET [9, 98] is a Layer 2 overlay network for virtual machines (VMs) that implements a

virtual LAN (VLAN) spread over a wide area using Layer 2 tunneling protocol (L2TP). Each

physical machine hosting a virtual machine (VM) runs a VNET process that intercepts VM

traffic and tunnels it to the appropriate destination. The destination is either another VM

that can be contacted directly through VNET or an address external to the overlay. Traffic

destined for an external address is routed through the overlay to a VNET proxy node, which

is responsible for injecting the packets onto the appropriate network. The overlay thus

consists of a set of TCP connections or UDP peers (VNET links) and a set of rules (VNET

routes) to control routing on the overlay.

Since VNET operates at Layer 2, it is agnostic to Layer 3. As a result, protocols other than

IP can be used. In addition, VNET also supports migration of a VM from one machine to
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another without any participation from the VM’s OS and all connections remain open after

migration.

Network Layer: AGAVE

The main objective of the AGAVE [22, 23, 110] project is to provide end-to-end QoS-aware

service provisioning over IP networks following the theme of QoS forwarding mechanisms

such as IntServ [26] and DiffServ [21]. To achieve this, AGAVE proposes a new inter-domain

architecture based on the novel concept of Network Planes (NPs), which allows multiple IP

Network Providers (INPs) to build and provide Parallel Internets (PIs) tailored to end-to-end

service requirements.

NPs are internal to INPs and are created based on the service requirements described by

the SPs. An NP can be engineered for routing, forwarding, or resource management. To

enable end-to-end services over multi-provider environment, NPs from different INPs are

connected together to form PIs based on inter-INP agreements. One of the interesting feature

of AGAVE is that it does not require all the NPs participating in a PI to be homogeneous

resulting in greater flexibility.

Application Layer: VIOLIN

VIOLIN [64, 90] is an application-level virtual network architecture, where isolated virtual

networks are created in software on top of an overlay infrastructure(e.g., PlanetLab). Capi-

talizing on the advances in VM technologies, VIOLIN extends the idea of single node isolation

in VMs to provide completely isolated virtual networks.

A VIOLIN consists of virtual routers (vRouters), LANs (vLANs) and end hosts (vHosts),

all being software entities hosted by overlay hosts. Both vHosts and vRouters are virtual

machines running in physical overlay hosts. A vLAN is created by connecting multiple vHosts

using virtual switches (vSwitches), while vRouters connect multiple vLANs to form the total

network.

VIOLIN provides network isolation with respect to: 1) administration, 2) address space

and protocol, 3) attack and fault impact, and 4) resources. The combined effect is a confined,

secured, and dedicated environment that can be used to deploy untrusted distributed

applications and perform risky network experiments.
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2.4.4 Architectural Domain

Network Management: VNRMS

VNRMS [65, 66, 80] is a flexible and customizable virtual network (VN) management

architecture, which provides a programmable networking environment to generate multiple

levels of virtual networks through nesting from a single physical network (PN). A virtual

network is composed of several virtual network resources (VNRs), where each VNR is a

subset of a physical network resource (PNR) in the underlying network. VNRMS lets the

customers to customize the VNRs through active resource agents using a customer-based

management system (CNRMS). While the provider VNRMS has access to all the resource

agents, a customer can access only those that belong to its VN.

In order to allow a CNRMS to manage only a subset of resources in a PNR, the manage-

ment information base (MIB) of that PNR is logically partitioned into multiple disjoint MIBs,

known as MIBlets [81]. MIBlets provide abstract and selective views of the resources that

are allocated to a particular VN. An abstract view hides the details of the resource interface

that are not relevant to the CNRMS. A selective view restricts the CNRMS to access only the

resources allocated to it.

Virtual Active Networks: NetScript

NetScript [38] is a language system for dynamically programming and deploying protocol

software in an active network. It is a strongly typed language that creates universal language

abstractions to capture network programmability. Unlike other active network architectures,

where packets contain active programs, NetScript packets are passive. These packets are

processed by protocol software or hardware when they flow through the network. In

this architecture, active packet processing applications and standardized protocols can be

composed together, interoperate, and utilize each other’s services. Consequently, NetScript

can be used to systematically compose, provision, and manage virtual active network

abstractions [37].

NetScript supports creation of arbitrary packet formats, dynamic composition of standard

and active protocol, and can operate on any type of packet stream. NetScript communication

abstractions consider network nodes as collections of Virtual Network Engines (VNEs)

interconnected by Virtual Links (VLs) that constitute NetScript Virtual Networks (NVNs)

[115].
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Spawning Networks: Genesis

The Genesis Kernel [71] is a spawning network [73, 31], a variant of open programmable

networks, that automates the life cycle process for the creation, deployment, management,

and designing of network architectures. It allows multiple heterogeneous child virtual

networks to operate on top of subsets of their parent’s resources, and provides isolation

among them. The Genesis Kernel also supports nesting of virtual networks and inheritance

of architectural components from parent to child networks.

A virtual network in the Genesis Kernel is characterized by a set of routelets intercon-

nected by a set of virtual links. Routelets represent the lowest level of operating system

support dedicated to a virtual network, and are designed to operate over a wide variety of

networking technologies including IP and ATM technology. They process packets along a

programmable data path at the internetworking layer, while virtual network kernel makes

control algorithms support programmability.

2.4.5 Level of Virtualization

Node Virtualization: PlanetLab

PlanetLab [5, 83, 95] is an overlay-based testbed that was developed to design, evaluate,

and deploy geographically distributed network services with support for researchers and

users. Its goal is to create a service-oriented network architecture combining the best of both

the distributed systems community and the networks community.

PlanetLab is built upon four design principles. First, it supports sliceability. That is,

each application acquires and runs in a slice of the overlay. Virtual machine monitors

(VMMs) running on each node allocate and schedule slices of the nodes’ resources to create

a distributed virtualized environment. Second, it supports a highly decentralized control

structure, enabling nodes to act according to local policies. Third, overlay management is

divided into sub-services that run on their own slices, instead of a centralized one. Finally,

overlay supports an existing and widely adopted programming interface, with internal

changes over time keeping the API intact, to promote actual long-term service development

instead of just being a temporary testbed.

GENI

Based on the experience accumulated from using PlanetLab and other similar testbeds, the

Global Environment for Network Innovations (GENI) [1, 54] is a major planned initiative of

the US National Science Foundation (NSF) to build an open, large-scale, realistic experimen-

tal facility for evaluating new network architectures, carrying real traffic on behalf of end
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users, and connecting to the existing Internet to reach external sites. The purpose of GENI is

to give researchers the opportunity to create customized virtual network and experiment

unfettered by assumptions or requirements of the existing Internet.

Main design goals of GENI [54] include: sliceability to share resources, generality to

give an initial flexible platform for the researchers, fidelity, diversity and extensibility, wide

deployment and user access for testing and evaluation purposes as well as actual use of

deployed services and prototypes, controlled isolation and monitoring facilities.

GENI proposes virtualization in the form of slices of resources in space and time. If

resources are partitioned in time, a given resource might not sustain real user workload,

thereby limiting its feasibility for deployment studies. On the other hand, if resources are

partitioned in space, only a limited number of researchers might be able to include a given

resource in their slices. In order to maintain balance, GENI proposes to use both types of

virtualization based on resource type. If sufficient capacity is available to support deployment

studies, GENI uses time-based slicing; otherwise, it partitions resources in space to support a

handful of high priority projects instead of making those resources available to everyone.

VINI

VINI [8, 18] is a virtual network infrastructure allowing network researchers to evaluate

their protocols and services in a realistic environment with high degree of control. It can be

viewed as an extension to PlanetLab toward GENI, that will be able to provide infrastructure

like PlanetLab along with the support for virtual networks as in X-Bone or VIOLIN.

VINI offers more latitude to researchers than PlanetLab at routing level. It provides

the ability to create real complex networks and to inject exogenous events to create more

realistic alternative to simulation and emulation of proposed network architectures.

Initial prototype of VINI (PL-VINI) was implemented on PlanetLab by synthesizing a

collection of available software components. It can be considered as a specific instantiation

of an overlay network that runs software routers and allows multiple such overlays to exist

in parallel. In particular, it used XORP for routing [57], Click for packet forwarding and

network address translation [69], and OpenVPN servers to connect with end users [4].

Recently a software platform for hosting multiple virtual networks on shared physical

network infrastructure, Trellis [20], has been developed. Trellis synthesizes container-based

virtualization technologies together with a tunneling mechanism into a coherent platform

to achieve the following design goals: performance, scalability, flexibility, and isolation. It

allows each virtual network to define its custom topology, routing protocols, and forwarding

tables.
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Full Virtualization: CABO

At present, Internet service providers (ISPs) manage their network infrastructure as well as

provide network service to end users. Adopting a new architecture not only requires change

in hardware and host software, but also it requires that ISPs jointly agree on any architectural

change [13]. CABO [46] is one of the very recent proposals toward network virtualization

that promotes separation between infrastructure providers and service providers to end this

deadlock. CABO exploits virtualization to allow service providers to simultaneously run

multiple end-to-end services over equipment owned by different infrastructure providers.

To allow multiple virtual networks to share the same physical equipments, CABO vir-

tualizes the nodes and the links. Virtual nodes are connected using virtual links to form

a virtual network. These virtual nodes are created by the service providers and hosted by

infrastructure providers’ equipments using a subset of available resources. Similarly, virtual

links are formed from a path in the underlying physical network and include portion of the

resources along the path.

CABO has introduced and achieved some significant developments in terms of virtual

routers and routing in virtualized networks in general. It supports automatic migration of

virtual routers from one physical node to another [111] using migration technologies in

the underlying virtual machines. It also proposes a new multi-layer routing scheme that is

scalable as well as quick to react to any changes in network conditions [120]. In supporting

programmable routers, CABO resembles the theme introduced in active networks research,

except that it does not enable users to program the network; rather service providers can

customize their networks to provide end-to-end service to the end users.

2.5 Summary

Amid current trends of virtualizing practically every aspect of computing, ranging from

operating systems, storage systems to servers, and even large data centers (e.g., cloud

computing), network virtualization stands at a unique point in the virtualization design

space. In one hand, it is necessary to have a virtualized network to interconnect all other

virtualized appliances to give each of the virtual entities a complete semblance of their native

counterparts.

On the other hand, after enjoying years of rapid growth, the progress of the Internet and

networking in general has come to a standstill. Most researchers now agree that a redesign

is a bare necessity, not luxury [47]. Network virtualization can take the leading role in this

scenario to promote innovation, to provide flexibility, and to introduce heterogeneity. From

Table 2.1 it is evident that over time research regarding network virtualization has shifted

focus toward this same direction of creating a holistic and generalized network virtualiza-
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Table 2.2: Recent Network Virtualization Related Projects

Project Originated In Link

4WARD Europe http://www.4ward-project.eu/

AKARI Japan http://akari-project.nict.go.jp/

CABO USA http://www.cs.princeton.edu/~jrex/virtual.html

Clean Slate USA http://cleanslate.stanford.edu/

GENI USA http://www.geni.net/

NouVeau Canada http://netlab.cs.uwaterloo.ca/virtual/

PlanetLab USA http://www.planet-lab.org/

Trilogy Europe http://www.trilogy-project.org/

UCLP Canada http://www.uclp.ca/

VINI USA http://www.vini-veritas.net/

tion environment that features a completely virtualized (virtualization of all the network

elements), highly customizable (virtualization at lower layers), and technology-agnostic

(creation of virtual networks over heterogeneous combination of underlying networks) net-

working facility for the future Internet. And all these research works have finally culminated

into projects all over the world that are directly or indirectly related to network virtualization

(Table 2.2).

http://www.4ward-project.eu/
http://akari-project.nict.go.jp/
http://www.cs.princeton.edu/~jrex/virtual.html
http://cleanslate.stanford.edu/
http://www.geni.net/
http://netlab.cs.uwaterloo.ca/virtual/
http://www.planet-lab.org/
http://www.trilogy-project.org/
http://www.uclp.ca/
http://www.vini-veritas.net/


Chapter 3

Network Virtualization:

Concepts and Challenges

3.1 Introduction

Unlike the existing all-IP Internet, a virtualized networking environment is a collection

of multiple heterogeneous network architectures from different network service providers.

Each service provider leases resources from one or more infrastructure providers to create

virtual networks and deploys customized protocols to deliver end-to-end services to the end

users. By decoupling service providers from infrastructure providers, network virtualization

introduces much sought flexibility for the researchers. From a commercial point of view, this

decoupling amortizes high fixed cost of maintaining a physical presence by sharing capital

and operational expenditure across multiple infrastructure providers.

However, several technical challenges in terms of instantiation, operation, management,

and interactions must be resolved to realize such an environment. Most of the existing

research works related to network virtualization can at best be described as attempts to

fix some existing problems, rather than a conscious and focused push to build a complete

network virtualization environment. This presents a broad range of open problems and

unique opportunities, both theoretical and practical, to the researchers working in this area.

3.2 Chapter Organization

This chapter is divided into two major parts: one about the present and the other about the

future. Section 3.3 presents a conceptual overview of the network virtualization environment

along with its architectural principles and design goals that we follow throughout this work.

After that, Section 3.4 delivers an enumeration of the future research challenges in the
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Figure 3.1: Network Virtualization Business Model: Relationship between Players

network virtualization landscape by broadly classifying the problems into several categories,

and it acts as a reference point for our choice of addressed problems in this thesis.

3.3 Network Virtualization Environment (NVE)

3.3.1 Reference Business Model

The main distinction between the participants in the network virtualization model (Fig-

ure 3.1) and the traditional model is the presence of two different roles: infrastructure

providers and service providers, as opposed to the single role of the ISPs [107, 23, 46]. It

should be noted that business roles do not necessarily map one-to-one to distinct business

entities (i.e., any business entity can assume multiple roles).

1. Infrastructure Provider (InP): Infrastructure providers deploy and actually manage

the underlying physical network resources in the network virtualization environment.

They are in charge of the operations and maintenance of the physical infrastruc-

ture and offer their resources through programmable interfaces to different service

providers. Infrastructure providers distinguish themselves through the quality of

resources they provide, the freedom they delegate to their customers (i.e. service

providers), and the tools they provide to exploit that freedom.

Multiple InPs communicate and collaborate, based on InP interconnection agreements

(IIAs), to create end-to-end physical infrastructure. Those who offer connectivity
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Figure 3.2: Hierarchy of Roles

to service providers through different networking technologies, e.g., optical fiber,

satellite etc., are known as facilities providers. On the other hand, infrastructure

providers connecting customer premise equipments (CPEs) to the core network are

the access providers [22].

2. Service Provider (SP): Service providers lease resources from multiple facilities

providers to create virtual networks and deploy customized protocols, if required,

by programming the allocated network resources to offer end-to-end services to

end users. Relationship between service providers and infrastructure providers are

regulated by network provisioning agreements (NPAs).

SPs can have peering relationship between themselves on the basis of SP interconnec-
tion agreements (SIAs). An SP can also create child virtual networks by partitioning

its resources. It can then lease those child networks to other SPs, virtually taking the

role of an infrastructure provider creating a hierarchy of roles (Figure 3.2).

3. End User: End users in the network virtualization environment are similar to the end

users in the existing Internet, except that the existence of multiple virtual networks

from competing service providers enables them to choose from a wide range of
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Figure 3.3: Network Virtualization Architecture Overview

services. Any end user may simultaneously connect to multiple service providers for

different services. Services are offered on the basis of terms and conditions defined in

service level agreements (SLAs) between the service providers and the customers. End

users connect to the physical infrastructure through end user connectivity agreements
(ECAs) with the access providers.

4. Broker: Brokers play a pivotal role in the network virtualization economy. They act

as mediators between InPs, SPs, and end users in the network virtualization market-

place. SPs buy (lease) resources from InPs to create VNs and sell services deployed

on those VNs to interested end users through brokers. Their presence simplifies the

process of matching SPs’ requirements to available resources by aggregating offers

from multiple InPs. Similarly, they also allow end users to select desirable services

from a wide range of SPs. It should be noted that a marketplace can also be formed

without any broker or mediator through peering relationship between concerned

parties.

3.3.2 Architectural Overview

In the network virtualization environment (NVE), the basic entity is a virtual network (VN).

A VN is a collection of virtual nodes connected together by a set of virtual links to form
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a virtual topology, which is essentially a subset of the underlying physical topology. Each

virtual node is hosted on a particular physical node, whereas a virtual link spans over a path

in the physical network and includes a portion of the network resources along the path.

Each VN is composed and managed by a single SP, even though the underlying physical

resources might be aggregated from multiple InPs. Figure 3.3 depicts two virtual networks,

VN1 and VN2 created by the service providers SP1 and SP2, respectively. SP1 composed VN1

on top of the physical resources managed by two different infrastructure providers (InP1

and InP2) and provides end-to-end services to the end users U2 and U3. SP2, on the other

hand, deployed VN2 by combining resources from infrastructure provider InP1 with a child

VN from service provider SP1. End users U1 and U3 are connected through VN2.

The owner of a VN is free to implement end-to-end services by selecting custom packet

formats, routing protocols, forwarding mechanisms, as well as control and management

planes. As mentioned earlier, end users have the choice to opt-in to any VN. For example,

end user U3 is subscribed to two virtual networks VN1 and VN2 managed by SP1 and SP2,

respectively.

3.3.3 Architectural Principles

Network virtualization propounds the following principles for the next-generation networking

paradigm: coexistence of multiple heterogeneous VNs to introduce diversity; recursion of

virtual resources to enable reselling; inheritance of architectural attributes to promote

value-addition; and finally, revisitation to simplify network operations and management.

1. Coexistence: Coexistence of multiple VNs is the defining characteristic of the NVE

[13, 107, 46]. It refers to the fact that multiple VNs from different service providers

can coexist together, spanning over part or full of the underlying physical networks

provided by one or more infrastructure providers. VN1 and VN2 in Figure 3.3 are

examples of two coexisting VNs.

2. Recursion: When one or more VNs are spawned from another VN creating a virtual

network hierarchy with parent-child relationships, it is known as recursion as well as

nesting of virtual networks [71]. In Figure 3.2, ‘Service Provider 0’ has created a VN

on top of an actual physical network provided by ‘Infrastructure Provider 0’, and has

leased away a portion of the allocated resources to ‘Service Provider 1’, to whom it

appears as ‘Infrastructure Provider 1’. This hierarchical construct can continue until

cumulative overhead of creating child VNs makes further subdivision impossible.

3. Inheritance: Child VNs in the NVE can inherit architectural attributes from their

parents, which also means that the constraints on the parent VN automatically

translate to similar constraints on its children [71]. For example, in Figure 3.3,
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constraints imposed by InP2 will automatically be transferred to VN2 from VN1

through inheritance. Inheritance allows a SP to add value to the spawned child VNs

before reselling them to other SPs [46].

4. Revisitation: Revisitation [104] allows a physical node to host multiple virtual nodes

of a single VN. Use of multiple logical routers to handle diverse functionalities in a

large complex network allows a SP to logically rearrange its network structure and to

simplify the management of a VN. Revisitation can also be useful for creating testbed

networks. Figure 3.3 provides an example of revisitation in the virtual network VN2.

3.3.4 Design Goals

The overall goal of enabling multiple heterogeneous virtual networks to coexist together on

a shared physical infrastructure can be subdivided into several smaller objectives. In order

to materialize a viable network virtualization environment, each of these design goals must

be fulfilled. These goals also provide guidelines for designing protocols and algorithms for

virtual networks.

• Flexibility: Network virtualization must provide flexibility at every aspect of network-

ing. Each SP should be able to use arbitrary network topology, routing or forwarding

functions as well as customized control protocols independent of the underlying

physical network and other coexisting VNs.

For example, deploying source routing in today’s Internet is immensely difficult because

of the lack of consensus among the ISPs; in a virtualized environment, the owner of a

VN should be able to offer source routing without having to coordinate with any other

parties.

• Manageability: By separating SPs from InPs, network virtualization will modularize

network management tasks and introduce accountability at every layer of networking

[46, 23, 119, 107]. InPs will be in total control of the management and operations of

physical entities in the network and provide access to resources. SPs, on the other hand,

will lease subsets of resources from different infrastructure providers, create virtual

networks on top of the allocated resources following specific policies, and provide

actual services to end users. This separation of accountability will provide complete,

end-to-end control of the VNs to the SPs obviating the requirement of coordination

across administrative boundaries as seen in the existing Internet.

• Scalability: Coexistence of multiple networks is one of the fundamental motivations

behind network virtualization. Scalability comes as an indispensable part of this

equation. InPs should try to maximize the number of coexisting VNs without affecting
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their performance. This will increase utilization of resources and amortize capital

expenditure (CAPEX) and operational expenditure (OPEX) of individual VNs.

• Isolation: Network virtualization must ensure complete logical and physical isolation

between co-existing VNs to improve fault-tolerance, security, and privacy. Network

protocols are often misconfigured and subject to implementation errors. Virtualization

must ensure that misconfigurations in one VN are contained within itself and do not

affect other co-existing VNs.

• Stability and Convergence: Isolation ensures that faults in one VN do not affect

other coexisting VNs, but errors and misconfigurations in the underlying physical

network can also destabilize the NVE. Moreover, instability in the InPs (e.g., routing

oscillation) can lead to instability of all the hosted VNs. Virtualization must ensure

the stability of the NVE, and in case of any instability the affected VNs must be able to

successfully converge to their stable states.

• Programmability: To ensure flexibility and manageability, programmability of the

network elements is an indispensable requirement. Only through programmability,

SPs can implement customized protocols and deploy diverse services. Hence, two

pressing questions: “how much programmability should be allowed”, and “how it should
be exposed” must have satisfactory answers. A win-win situation must be found where

programmability is easy, effective, as well as secure at the same time.

• Heterogeneity: Heterogeneity in the context of network virtualization comes mainly

from two fronts: first, heterogeneity of the underlying networking technologies (e.g.,

optical, wireless, sensor etc); second, each end-to-end VN, created on top of that

heterogeneous combination of underlying networks, can also be heterogeneous. SPs

must be allowed to compose and run cross-domain end-to-end VNs without the need

for any technology specific solutions. Underlying infrastructures must also be capable

of supporting heterogeneous protocols and algorithms implemented by different SPs.

In addition, heterogeneity of end user devices must also be taken into account.

• Experimental and Deployment Facility: Before deployment, any geographically

distributed network service is typically designed and evaluated in test labs under

controlled environment. Since it is very expensive to mimic a production network,

tests are limited to simple topologies and traffic patterns that do not necessarily

represent the real-world environment. Moreover, migration of a network to a different

condition can also be extremely painstaking. By developing the service in a separate

virtual network from the very beginning can effectively alleviate these problems. In

addition, deploying new end-to-end services could not be more easier than deploying

it on a separate virtual network of its own [5, 8].



26 CHAPTER 3. NETWORK VIRTUALIZATION: CONCEPTS AND CHALLENGES

• Legacy Support: Legacy support or backward compatibility has always been a matter

of deep concern while deploying any new technology. Conceptually, network virtu-

alization can easily integrate legacy support by considering the existing Internet as

just another VN into its collection of networks. This will ensure that the existing dis-

tributed applications, services, and technologies need not be changed and redeveloped

overnight; instead, we can keep using them until their counterparts are available or

they are ported to the newer networks.

For example, use of IPv6 would have been much faster if it could be implemented in

another virtual network without having to deal with the preeminent IPv4.

3.4 Key Research Directions

Most of the existing research works related to network virtualization can at best be described

as attempts to fix existing problems, rather than a conscious and focused push to build a

complete NVE. As a result, several aspects of network virtualization remain unexplored

till today, and many others require modification and improvement. In this section, we

summarize the key issues to be resolved for the successful realization of the NVE by broadly

categorizing them into four different classes: instantiation, operation, management, and

interactions.

3.4.1 Instantiation

Interfacing

Every InP must provide an interface, following some standard, so that SPs can communicate

with them and express their requirements. In addition, standard interfaces are also required

to make programmability of the network elements available to the SPs. On a similar note,

appropriate interfaces between end users and SPs, as well as among multiple InPs, and

among SPs must also be identified and standardized.

Signaling and Bootstrapping

Before creating a VN, an SP must already have network connectivity to the InPs in order to

issue its requests. This introduces circularity where network connectivity is a prerequisite

to itself [46]. As long as the NVE is not mature enough to support itself, signaling must

be handled by other means of communication, e.g. the current Internet. There must also

be bootstrapping capabilities to allow SPs to customize the virtual nodes and virtual links

allocated to them through appropriate interfaces. Both requirements call for at least another
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network that will always be present to provide connectivity to handle these issues, or an

out-of-band mechanism to perform signaling and bootstrapping.

Admission Control and Usage Policing

In order to uphold QoS guarantees, InPs must ensure that resources are not overbooked

to SPs. Consequently, they have to perform accurate accounting and implement admission

control algorithms to ensure that resources allocated to the VNs do not exceed the physical

capacity of the underlying network. Instead of performing admission control for individual

nodes or links as in the current Internet, admission control in this context must be performed

on virtual networks.

In order to avoid constraint violations by globally distributed VNs, distributed policing

mechanisms must be employed to make sure that SPs cannot overflow the amount of

resources allocated to them by direct or indirect means. Raghavan et al. [85] present such a

global rate limiting algorithm coordinated across multiple sites in the context of cloud-based

services in the existing Internet. Similar concepts need to be developed in the context of

network virtualization too.

Virtual Network Embedding or Mapping

Since a virtual link may span over multiple physical links, there may be many possible

mappings for any given VN. In order to maximize the number of co-existing VNs, it is very

important to determine how to embed a SP’s request onto the physical network. But the

embedding problem, with constraints on nodes and links, can be reduced to the NP-hard

multi-way separator problem [12] even when all the requests are known in advance.

Existing heuristic-based solutions can broadly be categorized into two major categories

based on the offline and online versions of the problem they deal with. In the offline problem,

all the SPs’ requests are known in advance. Zhu and Ammar [119] aim at achieving load

balancing in the underlying physical infrastructure assuming unlimited resources. Lu and

Turner [74] provide a solution for mapping only one VN with an aim to minimize cost. Other

solutions for the offline problem based on multi-commodity flow exist in the VPN context

[99, 55].

For the online problem, Fan and Ammar [43] present a solution for determining dy-

namic topology reconfiguration for service overlay networks with dynamic communication

requirement. Zhu and Ammar [119] handle the problem by calculating the whole mapping

periodically. In both solutions, it is assumed that infrastructure resource is unlimited. Yu

et al. [117] take a different approach by assuming that path splitting is supported by the

underlying network, and employ path migration periodically to re-optimize the utilization of
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the InPs’ resources. Some of the mentioned algorithms also consider admission control as an

integral part of the solution.

Even though various constraints and objectives make this problem computationally

intractable, presence of multifarious topologies and possible opportunities to exploit them

still leave enough room for research on customized solutions and better approximation

algorithms.

3.4.2 Operation

Virtual Nodes

Virtual nodes allow multiple SPs to share the same set of physical resources and implement

separate customized control protocols on them. Up until now, router vendors have promoted

virtual nodes as a tool for simplifying core network design, decreasing capital expenditure

(CAPEX), and for VPN purposes [42]. Similar concept can be extended with programmability

to create substrate routers that will allow each service provider to customize their virtual

nodes. A conceptual construct of such substrate routers can be found in [107].

Scalability of the NVE is closely tied to the scalability of the physical elements used by the

InPs. Commercial router vendors have already implemented routers that can hold multiple

logical routers [70]. Fu and Rexford [51] present a mechanism that improves scalability by

capitalizing on the commonality of address prefixes in multiple FIBs from different virtual

routers to decrease memory requirements and lookup times. Research in this direction

should focus on increasing the number of virtual nodes any single physical router can hold.

Performance of virtual routers on existing virtual machine systems should also be explored.

Specifically, how different system virtualization techniques, e.g. full virtualization, or

paravirtualization, affect the performance requires serious attention. Design and performance

of virtual routers implemented on top of Xen virtual machine systems as well as the impact

of current multi-core processors on their performance has been studied in [76].

To increase network manageability, and to handle network failures to some extent,

migration of virtual routers can be an effective solution [111]. But probable destinations of

a migrating virtual router are restricted by some physical constraints, like change of latency,

link capacity, platform compatibility issues, and even capabilities of destination physical

routers. The obvious question: “how to cope with these issues”, remains open to be answered.

Virtual Links

To realize network virtualization, links between virtual nodes must also be virtualized. The

ability to create tunnels over multiple physical links already exists in the context of VPNs.

Similar tunneling mechanisms can also be used in case of VNs.
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The speed of transporting packets across a virtual link should be comparable to that of a

native link, which translates into minimum encapsulation and multiplexing cost. In addition,

link scheduling algorithms must also be considered to better utilize the idle periods in virtual

links. Finally, virtual links must also be flexible enough to carry packets of any protocol.

Naming and Addressing

While network virtualization provides immense flexibility in terms of creation and deploy-

ment of radical technologies, such flexibility does not come without cost. Due to the potential

heterogeneity of the coexisting networks, end-to-end communication and universal connec-

tivity in the NVE becomes a major challenge. In the NVE, it will be very hard to keep a system

like DNS working due of scalability concerns and administrative issues. Same is true for

addressing. Mapping between different address contexts is a well-known problem in current

literature. But in the presence of different, often incompatible, addressing requirements in

heterogeneous virtual networks the problem gets more complicated.

In the NVE, any end user can simultaneously connect to multiple virtual networks

through multiple infrastructure providers using heterogeneous technologies to access differ-

ent services. We refer to this phenomena by über-homing. Any naming framework for the

network virtualization environment must provide additional level of indirection to support

über-homing.

Network virtualization introduces a dynamic environment at all strata of networking. On

the one hand, at macro level, VNs providing basic services or VNs with shared interests can

be dynamically aggregated together to create compound VNs, and even hierarchy of VNs.

On the other hand, dynamic join, leave, and mobility of the end users within and in between

VNs add a micro level component to the dynamic characteristic of the NVE.

Resource Scheduling

When establishing a VN, a SP requires specific guarantees for the virtual routers’ attributes,

as well as the virtual links’ bandwidth allocated to its network. For virtual routers, a SP

might request guarantees for a minimum packet processing rate of the CPU, specific disk

requirements, and a lower bound on the size of the memory. On the other hand, virtual link

requests may range from best-effort service to fixed loss and delay characteristics found in

dedicated physical links. To provide such guarantees, and to create an illusion of an isolated

and dedicated network to each SP, InPs must employ appropriate scheduling algorithms in

all of the network elements.

Efficient and effective resource scheduling mechanisms become more important when

resources are not statically allocated to multiple VNs; instead, they are dynamically dis-
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tributed to increase utilization of the resources as well as the revenue of the infrastructure

providers. DaVinci [60] presents such a dynamic allocation framework where each substrate

link periodically reassigns bandwidth shares between the virtual links. However, dynamic

allocation gives a hint of best-effort mechanisms found in the existing Internet, and a careful

investigation is required to validate such measure.

Topology Discovery

In order to allocate resources for requests from different SPs, InPs must be able to determine

the topology of the networks they manage as well as the status of the corresponding

network elements (i.e., physical nodes and interconnections between them). Furthermore,

two adjacent InPs must also be able to establish links between their networks to enable

cross-domain VN instantiation.

UCLP promotes a combination of Event-based and Periodic topology discovery, with an

additional topology database; whereas, CABO argues for the use of a separate discovery

plane run by the InPs as proposed in the 4D network management architecture [52].

3.4.3 Management

VN Configuration and Monitoring

To enable individual SPs configure, monitor, and control their VNs irrespective of others,

considerable changes are required from the level of NOCs to intelligent agents at lower level

network elements. The concept of MIBlets, i.e., partitioned MIBs, used in VNRMS to gather

and process performance statistics for each of the coexisting VNs instead of using a common

MIB can be a good starting point. But a full-fledged, robust monitoring framework needs

more attention and efforts.

VN Management Frameworks

Since a VN can span over multiple underlying physical networks, management frameworks

must also be developed to aggregate information from diverse management paradigms

followed by participating InPs. Introducing a common abstraction layer, which will be

followed by all the management softwares, can be an effective solution [49]. Clearly

identifying and drawing a line between the scope of management for InPs and SPs is also a

very important task.
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Mobility Management

In an NVE, mobility of the devices must be supported congenitally, not using makeshift

solutions as in the existing Internet. Mobility in this context does not just refer to its simplest

form, i.e., geographic mobility of the end user devices, but routers in the core network can

also move around using migration techniques. As a result, finding the exact location of any

device at a particular moment and routing packets accordingly is a complex issue that needs

simple solutions. In addition, end users can also move logically from one VN to another in

order to access different services, which further complicates the problem.

Failure Handling

Failures in the underlying physical network components can give rise to complicated prob-

lems, such as a cascading series of failures in all the VNs directly hosted on those components

and others that are recursively spawned from the affected ones. Detection, propagation,

and isolation of such failures, as well as protection and restoration from them are all open

research challenges.

3.4.4 Interaction between Players

Networking Technology Agnostic Virtualization

Network virtualization on different technologies face challenges that require specific so-

lutions for provisioning, operation, and maintenance. For instance, with the advent of

next-generation SONET/SDH and optical switching along with GMPLS, Layer 1 VPN is now

a reality [19]. UCLP virtualizes optical networks capitalizing on the property of lightpaths

that can be physically sub-divided into smaller lightpaths.

Virtual Sensor Networks (VSN) [63], on the other hand, deal with providing protocol

support for the formation, usage, adaptation, and maintenance of subsets of sensors col-

laborating on specific tasks. Dynamic leave/join behavior of sensors and unique power

constraints pose different challenges for VSN that will never occur in an optical network.

Similarly, virtualization of wireless networks using different multiplexing techniques creates

different complications, e.g. node synchronization and managing device states [94].

End-to-end VNs can span across multiple domains, each with possibly heterogeneous

networking technologies. Interactions between such contrasting underlying infrastructures,

while providing a generic and transparent interface for SPs to easily compose and manage

VNs remains a daunting task.
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Inter-VN Communication

Even though one of the main inspirations behind network virtualization is complete isolation

between co-existing VNs, there are cases when two VNs need to share resources or informa-

tion. For example, a large multinational corporation might deploy a VN across the globe,

with child VNs for each of the continents, to manage its operations. It is very likely that those

child VNs will need to communicate with the global one, as well as among themselves. In

some cases, communicating VNs might not even be under the same administrative domain.

Hence, the necessity, scope, and required interface for such interconnections among SPs and

corresponding VNs deserve close scrutiny.

Network Virtualization Economics

Unlike the traditional networks where bandwidth is the chief commodity, virtual nodes are

equally important as virtual links in an NVE. SPs are the buyers in this economy, whereas

InPs are the sellers. There can also be brokers who act as mediators between the buyers and

the sellers. End users also participate as buyers of services from different SPs.

Traditionally, there are two general types of marketplaces: centralized and decentralized.

Centralized marketplaces are efficient; but vulnerable and not scalable. On the other hand,

fully decentralized marketplaces are extensible and fault-tolerant; but prone to malicious

behavior and inefficiency. To find a trade-off between these two options, existing works

(e.g., PeerMart [58, 59]) on p2p marketplaces can be extended to the domain of network

virtualization.

3.5 Summary

In this chapter, we have presented a conceptual model of the NVE that we refer to throughout

this thesis. The architectural principles of the NVE guide us in designing and developing the

framework and the algorithms in the later chapters, while the design goals of the NVE act as

major motivations and drive us through the process.

We have also enumerated the most significant challenges to be resolved for successfully

realizing the NVE. We have selected two problems to address in this thesis from the presented

collection. In Chapter 4, we address the identity management problem that is concerned

with naming and addressing in the NVE in presence of dynamism and mobility of the end

hosts. Later, in Chapter 5, we propose one deterministic and one randomized VN embedding

algorithms using better coordination between the node mapping and the link mapping

phases based on a mathematical formulation of the problem.



Chapter 4

iMark: An Identity Management Framework

for Network Virtualization Environment

4.1 Introduction

Each virtual network in the network virtualization environment is free to implement its own

naming, addressing, routing, and transport mechanisms. While such flexibility allows fast

and easy deployment of diversified applications and services, it does not come without cost.

Due to the potential heterogeneity of the concerned physical and virtual networks, ensuring

end-to-end communication and universal connectivity poses a daunting challenge in the

network virtualization environment.

We believe that the first logical step toward universal connectivity is to make heteroge-

neous namespaces1 (or identifier spaces) in different physical and virtual networks interop-

erable. Once it becomes possible to uniquely identify and locate the end hosts irrespective

of their physical and logical locations, enabling end-to-end communication boils down to

creating connections with necessary address/protocol translators in place.

This chapter presents iMark, an identity management framework for the network virtual-

ization environment, which focuses on interoperability of heterogeneous identifier spaces. It

does not put any restriction on an individual network’s choice of local naming mechanism;

instead, iMark defines a globally agreed upon identifier space for the end hosts and provides

mechanisms to translate back and forth between local and global identifiers through a set

of mappings placed in iMark controllers. Such explicit separation of the identity of an end

host from its physical and logical locations allows heterogeneous networks to interoperate

without sacrificing their autonomy.

1The words ‘name’ and ‘identifier’ are used interchangeably to refer to the identity of an entity.
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4.2 Chapter Organization

The remainder of the chapter is organized as follows. We present the motivation behind the

design of iMark in Section 4.3. In Section 4.4 we describe the design choices and a high-level

overview of iMark, followed by a detailed specification of the basic iMark operations in

Section 4.5. Section 4.6 presents experimental results from initial simulations. Section 4.7

summarizes related works, and we conclude in Section 4.8.

4.3 Motivation

To understand the intricacies of the naming problem in the network virtualization environ-

ment, consider the following scenario:

Alice is the North American continental manager of a corporate giant G with her head-

quarters located in Toronto. G maintains separate VNs for every continent and a parent

VN connecting all of its continental head-quarters. As a continental manager, Alice holds

frequent video conferences with the regional managers of her continent and has to visit

different offices occasionally. In addition, she has to participate in monthly meetings with

her counterparts in other continents regarding the global objectives and progress of the

company. As a result, she must be able to connect to appropriate VNs from her home, local

office, or even when she is in transit or in foreign offices. She can try to access a VN using

different devices, including personal phone or laptop, or her office desktop and through

different access networks. In each case, the corresponding VN must be able to identify her

with a single identity irrespective of her physical location, device, or the access network.

Now consider Bob, who is the continental manager of S, the biggest supplier of G. His

job requires him to reach Alice from his own VN to wherever she is at a particular moment;

not to mention that he himself can connect from different places and with different devices.

Since Alice’s VN and Bob’s VN might not use compatible naming and addressing systems,

finding one another in different VNs is not as simple as it is in the existing Internet.

In addition, the InPs that are hosting Alice’s and Bob’s VNs can also move the virtual

nodes of those VNs around, to handle failures, or to upgrade equipment, or for regular

maintenance. Even though the physical locations of the virtual nodes are changing, they

must maintain their identity to keep themselves reachable from other nodes in the same VN

or from other VNs.

Therefore, the naming requirements for the NVE boils down to something that will be

able to handle the following phenomena:



4.3. MOTIVATION 35

4.3.1 Dynamism in the Network Virtualization Environment

Network virtualization introduces a dynamic environment at all strata of networking, which

starts from individual end users or network elements and continues up to the level of

complete VNs. We can broadly categorize such dynamism into two classes:

1. Macro Level: VNs providing basic services or VNs with shared interests can be

dynamically aggregated together to create compound VNs. This is known as federation
of VNs. Multiple federations and VNs can also come together to create hierarchy of

VNs. Even though the level of dynamism is expected to be very low at this level, the

complexity of adding a VN to a collection, or removing one, can be quite high.

2. Micro Level: This is the more influential of the two classes discussed here and, hence,

requires more attention. Micro level dynamic behavior can basically be attributed to

two broad sets of activities:

• Dynamic join, leave, and mobility of the end users within and in between

multiple VNs.

• Dynamism incurred by the migration of virtual routers for different purposes

[113, 111].

Mobility of the end users or virtual resources can again be of two types:

• Geographical mobility from one physical access network to another (e.g., Alice con-

necting to her office VN using her laptop from her home, in transit, or from her

office)

• Logical mobility from one VN to another (e.g., Alice moving from her office VN to an

online gaming VN in her spare time)

A naming framework for the NVE must, therefore, be flexible enough to handle such

high level of mobility of end users while preserving their identities. Moreover, it should also

provide support for federation and hierarchy of VNs to deploy complex end-to-end services.

4.3.2 Scale

Every day the number of users is increasing rapidly, and it is expected to continue along

this line in the near future. Any new naming infrastructure, whether for the NVE or for

something else, must be scalable enough to accommodate huge influx of end users.

4.3.3 Interactions Between Multiple Heterogeneous Parties

One of the most important issues in an NVE is the way multiple players interact among

themselves. Such an interaction can be between two SPs (i.e. VNs), or two InPs, or an SP

and an InP, and, in the most trivial form, between an end user and an SP. Moreover, each
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party can have heterogeneous naming, addressing and routing mechanisms. To identify a

particular node (physical or virtual) or an end user in this complex web, a naming framework

must be expressive.

4.3.4 Über-homing

In the NVE, any end user can simultaneously connect to multiple VNs through multiple InPs

using heterogeneous technologies to access different services. We refer to this phenomenon

by über-homing. Über-homing has significant impact in cross VN routing. In that case,

multiple routes might exist to reach a particular node through different VNs and InPs. The

decision to prefer one over another can be taken based on the agreements between concerned

SPs and InPs. Any naming framework for an NVE must provide additional level of indirection

to support über-homing.

4.4 Architectural Overview

In this section, we discuss the decisions we have made in designing the iMark framework,

followed by an architectural overview of its components. A detailed description of how

iMark works can be found in the next section (Section 4.5).

4.4.1 Design Principles

The design choices made for iMark are inspired by the three key tenets of a next-generation

architecture described in [34] and aim toward separation of identity and location, isolation

of conflicting interests, and minimizing global functionalities.

1. Separation of Identity and Location: In the existing Internet, IP addresses denote

both the identity of a node and its topological location. But mixing identity with

location limits host mobility and restricts multihoming among many other problems

[34]. Several proposals exist in the literature that separates a host’s identity from its

location. iMark takes a similar stance with a focus on supporting logical and physical

mobility, federation and hierarchy of VNs, and überhoming.

2. Local Autonomy: iMark does not impose any requirements or restrictions on indi-

vidual physical or virtual networks; rather it provides a set of defined interfaces and

mechanisms to enable end-to-end connectivity across heterogeneous physical and

virtual networks.

3. Global Identifier Space: Since each VN can implement its own naming mechanism,

local identifiers have little end-to-end significance. Hence, in order to provide end-to-

end communication between nodes in different VNs, there must be a globally agreed
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Figure 4.1: Overview of the iMark Framework

upon identification mechanism. Moreover, in order to ensure trust and security,

end hosts must have unique identities that always remain the same, irrespective of

whichever VN they are in or however they are connected. This requirement calls for

the only globally agreed state in iMark. iMark does not impose any structure on these

identifiers though; it only requires them to be unique.

4.4.2 iMark Components and Concepts

In order to identify nodes in corresponding VNs and to locate them in the underlying

physical networks, iMark defines several entities and corresponding identifier spaces. To

enable connectivity between heterogeneous identifier spaces, iMark stores mappings between

different identifiers and keeps those mappings updated for address/protocol translation. This

allows all the networks to be completely autonomous in their internal choices of naming,

addressing, and routing.

Figure 4.1 depicts the essential components of iMark, which are discussed in the follow-

ing:
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Controllers

Controllers are logical entities in each VN that provide traditional control functionalities,

e.g., address allocation, name resolution etc., along with other network specific additional

services. A controller can be centralized (e.g., DNS) or distributed (e.g., DHT) based on the

design of its VN.

Adapters

Adapters are special entities that act as gateways between two adjoining VNs. When adjoining

VNs use different addressing schemes and/or protocol suites, adapters perform required

address and protocol translations to relay traffic between them. If both networks use the

same mechanism, adapters just forward data without modifying them.

Entities and Identifier Spaces

Given the NVE concepts presented previously, we identify the major entities that constitute

iMark as follows:

1. Service Provider: Service providers create and manage one or more VNs by aggre-

gating virtual resources from multiple InPs and provide deployed services to end

users based on specific agreements.

2. Virtual Network: Any VN is instantiated and managed by a single SP. A VN has a

finite timespan associated with it and is dissolved after that period.

3. Virtual Resource: Virtual resources belong to a single VN at a given time. Any

end user device connected to a particular VN is logically considered to be a virtual

resource of that VN.

4. Infrastructure Provider/Physical Network: Infrastructure providers are in charge

of the underlying networks and all the physical resources contained within them.

InPs have one-to-one relationships with the physical networks they manage; hence,

they can be considered a single entity.

5. Physical Resource: Physical resources are actual network elements, e.g., routers and

switches, that host the virtual resources.

6. End User: End users connect to VNs provided by different SPs through access networks
managed by the InPs.

Figure 4.2 depicts the relationships between these entities using standard notations.

Based on the proposed entities, we define multiple identifier spaces (IDSes) to provide

identifiers for those entities. Each IDS provides different types of identifiers to uniquely

identify an entity in particular contexts. We summarize the IDSes below:
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Figure 4.2: iMark Entities and Relationships between them. Shaded Rectangles Denote the
Identifier Spaces.

1. IDS_ISP identifies all the SPs and InPs using unique g_isp_id for each one of them.

A common IDS for both SPs and InPs enables them to participate in a common

environment, e.g., a resource trading marketplace. An isp_type is used to differentiate

SPs from InPs.

2. IDS_VN provides identifiers (g_vn_id) for all the virtual networks. Each VN also has

a set of characterizing attributes that can be used to search for VNs with particular

properties.

3. IDS_VR identifies all the virtual resources connected to and contained within a VN

using l_vr_id. These identifiers are unique within a virtual network. Each virtual

resource has an associated vr_type that defines whether it is an end user or an actual

virtual resource inside the VN.

If any end user is simultaneously connected to multiple VNs at a particular time, it

will have multiple local l_vr_ids. Each VN is free to use its own control and data

plane protocols with its own set of l_vr_ids irrespective of other VNs.

4. IDS_PR specifies l_pr_id to locally identify physical network elements and connected

end user devices. Each physical resource also has a pr_type to distinguish between

end user devices and internal network elements.

If any end user is simultaneously connected to multiple physical networks, i.e.,

multi-homed, it will have multiple l_pr_ids.

5. IDS_EH provides globally unique location-independent identifiers, g_eh_id, for every
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Table 4.1: Mappings between Different Identifiers
�


f rom_id↔ to_id
��

Purpose




g_eh_id↔ l_vr_id
�

Identifies any resource within a virtual network
and vice versa.




g_eh_id↔ l_pr_id
�

Identifies any resource within a physical network
and vice versa.




g_eh_id → g_vn_id
�

Stores the virtual network an end host is con-
nected to.




l_vr_id → l_pr_id
�

Finds the local identifier of the physical host of a
virtual resource within a physical network.




g_vn_id →
�

l_pr_id
	�

Gets the local identifiers of the access nodes of a
virtual network inside a physical network.




g_vn_id → g_isp_id
�

Finds the owner SP of a virtual network.



g_vn_id →
�

g_isp_id
	�

Obtains the set of InPs that host the virtual net-
work in the underlying network.

end user and nodes that a particular network wants to expose to the outside world.

Mappings

In order to locate all the entities in an NVE and to route to their current locations based on

their global identifiers, a set of mappings between different IDSes are required. Mappings

are stored at controllers and updated based on micro-level events (e.g., node join, leave, and

mobility) as well as macro-level ones (e.g., VN creation, expiration etc.). Table 4.1 presents

a list of mappings required by iMark.

Federation and Hierarchy of iMark Controllers

Federation allows multiple autonomous VNs in the NVE to connect and logically merge

together to provide end-to-end services. An example of federation is the peering relationship

between Alice’s VN and Bob’s VN described in Section 4.3. iMark creates a common control

space, known as controller network, connecting controllers of each of the participant VNs to

support federations. The controller network can itself be a VN. Adapters ensure interopera-

tion between possibly heterogeneous controllers by performing necessary translations. It

should be noted that federation is just a mechanism to share control information between

VNs, and it does not disrupt their local autonomy.

Multiple federations and VNs can also create a logical hierarchy of VNs for different
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Figure 4.3: Federation and Hierarchy of iMark Controllers

reasons. For example, Alice’s corporation G in Section 4.3 has created a hierarchy of VNs

for administrative purposes. iMark proposes the concept of representative controllers of

federations to support such controller hierarchy. A representative controller can either

be an elected member of the federation, or it can be a separate entity altogether. Each

representative controller has knowledge of all the end hosts that belong to any of the VNs in

its subtree.

4.5 iMark Operations

Due to the autonomy and potential heterogeneity of the VNs in an NVE, ensuring end-to-end

connectivity across VN boundaries is a nontrivial task. Since local identifiers (l_vr_id)

are not meaningful outside a VN’s domain, connectivity is provided based on the global

identifiers (g_eh_id) of the end hosts using different iMark mappings mentioned earlier.

In order to create these mappings, a joining procedure is required that binds end hosts

to physical access networks as well as to VNs of their choice. To communicate across VN

boundaries, an explicit connection setup procedure is followed that looks up the destination

host and sets up relaying states. This section describes these basic procedures along with the

compound ones like überhoming and mobility handling.
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End Host Access 
Node

Access 
NodeController Controller

Access Network Virtual Network, g_vns_id

joinInP(g_eh_id)
get_pr_id(g_eh_id)

allocate_pr_id(g_eh_id)

l_pr_id

joinVN(g_vns_id) getVNAccessNode_pr_id
(g_vns_id)

l_pr_id

createVirtualLink(g_eh_id)
get_vr_id(g_eh_id)

allocate_vr_id(g_eh_id)

l_vr_id

alt [found]

[not found]
failed

Figure 4.4: Sequence Diagram: Join Operation

4.5.1 Macro Level Operations

In order to let end hosts join different VNs and communicate between themselves, VNs

must be instantiated first. Here we briefly describe how SP, InP, and VN specific mappings

accommodate VN instantiation as well as formation of federation and hierarchy in an NVE.

How VNs are provisioned before being instantiated is addressed in the later chapter.

It is well understood that in order to create VNs, SPs and InPs must have a common

marketplace to trade resources [58] which itself can be a VN. iMark provides globally unique

identifiers (g_isp_id) for the SPs and the InPs to participate in such an environment. We

refer to this VN as the administrative VN and its controller as the administrative controller.

When an SP wants to create a VN, it contacts one or more InPs and provides its re-

quirements. Once a VN is provisioned and instantiated, it is assigned a unique identifier

(g_vn_id) which is used for later identification, e.g., during the join operation. Two map-

pings,



g_vn_id → g_isp_id
�

and



g_vn_id →
�

g_isp_id
	�

are stored in the administrative

controller at this point; the first one identifies the owner of the VN and is required to form

federations; the later identifies the InPs that host the VN’s resources and is used by the
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InPs to setup cross-InP virtual links for the VN. Physical networks store



l_vr_id → l_pr_id
�

mappings to route in the underlay to create virtual links for the VN request.

Each VN has several access nodes that are located in different physical access networks

and are used as gateways to that VN. Access networks store information about these ac-

cess nodes using



g_vn_id →
�

l_pr_id
	�

mapping and use this mapping during the join

procedure.

4.5.2 Join

In order to connect to a VN, an end host must join a physical access network first. The

controller of the access network assigns and stores an l_pr_id corresponding to the g_eh_id

of the end host based on its naming and addressing mechanism. This l_pr_id will be used in

the underlay to create virtual links between the end host and VN access nodes.

Next, the end host provides a globally unique identifier of the VN (g_vn_id) it wants to

connect to. The access network finds out the l_pr_id of the access node of that particular

VN and forwards the request. The controller of the VN then assigns the end host an l_vr_id,

stores a



g_eh_id↔ l_vr_id
�

mapping, and assimilates the end host.

Figure 4.4 provides further details of the joining procedure through a sequence diagram.

4.5.3 Lookup and Connection Setup

When an end host es wants to initiate communication with another end host ed , it gives

the global identifier of ed (g_eh_id) to its local iMark controller with a request to setup a

connection. The controller first looks up its tables to see whether ed belongs to its own

network. In that case, it sets up a connection and returns the l_vr_id of ed to es

If ed does not belong to the same VN and the VN belongs to a VN federation or hierarchy,

the controller communicates with other controllers in the controller network (first horizon-

tally, then vertically toward the topmost level of VN hierarchy). If any controller can resolve

g_eh_id, it returns a positive response to the originating controller. Consequently, a cross

VN connection is setup by creating necessary states in the inter-VN adapters.

Since lookup is expensive, after every lookup operation, the originating VN’s controller

caches the



g_eh_id → g_vn_id
�

mapping for a certain time period as a performance opti-

mization measure.

In case ed is simultaneously connected to multiple VNs, one is chosen as the destination

VN based on inter-VN agreements and VN-specific policies.

Figure 4.5 depicts the lookup and connection setup procedure using a sequence diagram.

Note that, searching in the VN hierarchy as well as the destination host is omitted from the

diagram for brevity.



44 CHAPTER 4. IMARK

End Host

connect(g_eh_id)

[not found]

translate()

[found]

Controller

Local 
VN

Adapter i Controller

Federated
VN i

lookup(g_eh_id, i)

lookup(g_eh_id)

translate()

response ()

response ()

lookup(g_eh_id)

setupAdapterStates ()

[for each VN i
in federation]

connected

[found]

setupAdapterStates ()

setupConnection ()

connected
connected

setupConnection ()

failed

alt

alt

par

[not found]

Figure 4.5: Sequence Diagram: Connecting to an End Host

4.5.4 Leave

Whenever an end host wants to leave a VN, it notifies the concerned controller, and all

the corresponding mappings stored during the join procedure are removed. In addition,

controllers can implement heart beat protocols to periodically check the availability of the

connected virtual resources. It also allows controllers to handle failures as a normal leave

events.

4.5.5 Über-homing

When an end host is über-homed, it can have multiple l_vr_ids in each of the connected VNs

along with multiple l_pr_ids, if necessary, in each of the access networks it used to connect
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to those VNs. Unlike the multihoming scenario in the existing Internet where different IP

addresses might be assigned to the same node by different ISPs, in an NVE each end user

has a unique identifier g_eh_id which is free from its logical and physical location.

Once an end-to-end connection to an end host is setup through a particular pair of

physical and virtual networks, l_vr_id and l_pr_id corresponding to that g_eh_id in those

physical and virtual networks are used to locate the end host and to perform routing.

4.5.6 Mobility

As mentioned earlier, mobility in an NVE can be of two types: geographical mobility of the

end host physical devices from one access network to another, and logical mobility of the

end hosts from one VN to another. iMark supports both types of mobility through necessary

manipulations of the related mappings, with some assistance from the überhoming capability

of the NVE.

In case of geographical mobility, an end host moves from one access network to another

by soft handoff. First, it joins the new access network without leaving the old one and gets a

new l_pr_id. Then it requests the new access network to create a connection to the same VN

that it is already connected to through the old access network. When the controller of the

VN gets the new request, it updates its



g_eh_id↔ l_vr_id
�

mapping with a new l_vr_id

based on the l_pr_id of the new access network. The end host finally leaves the old access

network to complete a seamless transition.

Logical mobility can be handled by a simpler two step process: leave from the old VN,

and then join a new one.

4.6 Simulation Results

iMark can face performance challenges from two main sources: size of the mappings stored

at different controllers, and lookup frequency at different levels of the controller hierarchy.

In this section, we evaluate iMark’s performance in both cases through simulation.

4.6.1 Experimental Setup

We developed an in-house simulator and performed the simulations on a quad CPU Sun

V440 Server with 8GB of memory. In order to explore the problem space, we ran a large

set of experiments by varying the total number of VNs from 1000 to 15000, the size of

federations from 30 to 300, and the total number of end hosts from 10 thousand to 10

million. To explore the impact of controller hierarchies, we experimented with two different

types of hierarchies: in a balanced hierarchy, we allowed VNs to form federations only among
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Figure 4.6: Mean Mapping Size per Controller at Different Levels of Balanced and Unbalanced
Controller Hierarchies

themselves; whereas, in an unbalanced hierarchy, we let VNs join randomly at any level of

the hierarchy. Of the two, balanced ones resulted in shorter hierarchies.

Our main goal was to show iMark’s correctness and to provide an indication of its

performance trends in heterogeneous NVE. Hence, we did not put any restrictions on the use

of any particular protocol or algorithm in individual VNs. For simplicity, we did not employ

any optimization, e.g., caching, and did not consider mobility and überhoming of end hosts.

After running a large set of experiments by varying different parameters, we observed

definite trends in the size of the mappings stored and the lookup frequency. We picked one

representative result of each case to discuss our findings.

4.6.2 Mapping Size

When considering the total amount of mapping information stored in a representative

controller, the contribution of



g_eh_id → g_vn_id
�

easily dominates the rest, since each

representative controller aggregates this mapping from all of its child controllers. We,

therefore, focused on finding out how the size of this mapping increases as we move upward

in the controller hierarchy.

Figure 4.6 depicts the simulation results showing the mean mapping size per controller

at different levels of the controller hierarchy, level 0 being the lowest level consisting only of

individual VNs. For this particular experiment, we considered 3000 VNs with an average of

80 VNs per federation, and 3 million end hosts with an average of 1000 end hosts per VN.

As expected, the size of the mapping increases gradually from lower to higher levels of
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Figure 4.7: Mean Lookups Resolved at Different Levels of Balanced and Unbalanced Con-
troller Hierarchies

the hierarchy with the topmost level controllers having the maximum. Since the unbalanced

hierarchy has more levels than its balanced counterpart, each level has fewer participating

VNs and federations; this results in a greater number of controllers, each with smaller loads.

4.6.3 Lookup

Whenever there is a lookup request, a controller first tries to resolve it using its own mapping

information. In case of a failure, it forwards the request to its peers in the federation before

resorting to the upper level controllers. The more requests a controller forwards to the

upper level, the higher the number of messages generated. This also results in higher lookup

resolution time. So we examined the percentage of lookup requests that are resolved at

different levels of the controller hierarchy to gain an insight into the performance of iMark.

Figure 4.7 presents the simulation results showing the mean percentage of lookups

resolved at different levels of the controller hierarchy after 1 million lookup operations. For

this experiment, we considered 3000 VNs with an average of 80 VNs per federation, and

50000 end hosts.

Since the upper level controllers store more information, a large percentage of the lookup

requests find their way to the top two layers of the hierarchy. The smaller height of the

balanced variant gives it a competitive advantage over its unbalanced counterpart, because

in this case requests can reach the topmost levels faster.

A sudden decrease in the lookup resolution percentage is observed in level 5 of the

unbalanced hierarchy. Due to the randomness in the formation phase, we believe that in this
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particular instance, more individual VNs than federations ended up forming the federations

of level 5, which resulted in less information being stored at this level on the average.

4.7 Related Work

To the best of our knowledge, there is no existing work in the literature that addresses

the exact problems posed by the unique naming and addressing requirements of an NVE.

But there are several proposals that share some common aspects with our one and have

influenced as well as motivated us.

Similar to our proposal, TRIAD [53] uses location independent identifiers instead of

addresses for node identification. But TRIAD relies on the presence of IPv4 in all network

domains, which is completely in contrast with the basic requirement of heterogeneity. In

addition, TRIAD’s dependence on semantics and hierarchy of domain names is completely

opposite to our choice of flat global identifier space.

Plutarch [36], on the other hand, provides explicit support for heterogeneity through

the concept of contexts and uses interstitial functions to translate communication between

them, which is similar to our proposal. But Plutarch does not consider mobility of end hosts

between multiple contexts and überhoming.

IPNL [50] and 4+4 [106] try to isolate independent IP-based networks through loose

integration. IPNL provides three stage communication path consisting of originating and

terminating private realms and a global middle realm. 4+4 generalizes it by supporting

multiple middle realms. But both schemes primarily focus on the address depletion problem

faced by the existing Internet and are not concerned about the requirements of the NVE.

Host Identity Protocol (HIP) [78] is also related to iMark in its concept of separating

the end-point identifier and locator roles even though HIP targets a uniform IP networks

without any notion of virtualization. It introduces a new Host Identity (HI) namespace based

on public keys, which are normally self-generated. While in this work we do not explicitly

address how the unique global identifier space can be formed, the concept of public key

based namespace can be a good choice for future exploration in this direction.

TurfNet [92, 84] is the most closely related proposal to our work in the existing literature.

Conceptually, it supports heterogeneous autonomous network domains; separation of identi-

fiers from locators; encapsulation of internal naming, addressing and routing mechanism

and policies of an autonomous domain; and dynamic network composition (vertical and

horizontal). But since TurfNet does not consider network virtualization, it is free from the

issues arising from InP-SP interactions. Also it does not consider mobility of end hosts and

virtual resources.

In addition, our work is motivated by the recent works on flat identifiers and location
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independent (or identity-based) naming and routing mechanisms [96, 17, 27, 28]. Last but

not the least, our mapping mechanism and identifier space selection was highly influenced

by the P2P-based naming architecture proposed in [44] for autonomic networks.

4.8 Summary

In this chapter, we have presented iMark, a novel identity management framework for

the network virtualization environment. iMark manages identifiers for entities at different

levels: at macro level, it assists creation of independent VNs and formation of VN federations

and hierarchy of VNs by ensuring cooperation between SPs and InPs; whereas, at micro

level, iMark enables end-to-end communication between end hosts in different VNs. iMark

separates identity of the end hosts from their physical and logical locations, and, with the help

of a global identifier space, it provides universal connectivity without revoking the autonomy

of the concerned physical and virtual networks. To demonstrate iMark’s correctness and

to provide an indication of its performance, we have done a simulation-based study of the

framework. Current experience with iMark suggests that it can indeed enable end-to-end

connectivity in a highly heterogeneous NVE.





Chapter 5

ViNE-Yard: Virtual Network Embedding with

Coordinated Node and Link Mapping

5.1 Introduction

One of the basic challenges in network virtualization is the embedding 1 of virtual network

requests from different service providers onto the underlying physical network resources. In

order to provision a virtual network, constraints on both the virtual nodes and the virtual

links must be satisfied. But each virtual node can be mapped to multiple physical nodes and

each virtual link onto multiple physical paths. As a result, many possible mappings exist

for any given virtual network request. Moreover, multiple virtual networks share the same

underlying physical resources. Hence, efficient and effective embedding of each of the online
virtual network requests is of utmost importance in order to increase the utilization of the

substrate network resources and consequently the revenue of the infrastructure provider.

However, the virtual network embedding problem, with constraints on virtual nodes and

virtual links, can be reduced to the NP-hard multi-way separator problem [12], even if all

the requests are known in advance. Even when all the virtual nodes are already mapped,

embedding the virtual links with bandwidth constraints onto substrate paths is still NP-hard

in the unsplittable flow scenario. As a result, a number of heuristic-based algorithms have

appeared in the relevant literature [43, 74, 119, 117]. Most of these proposals focused

primarily on edge mapping (using, for example, shortest path, k-shortest paths, and multi-

commodity flow algorithms) after employing greedy methods to preselect the node mappings.

However, preselection in the node mapping stage without considering its relation to the link

mapping stage restricts the solution space, and may result in poor performance.

1The words ‘embedding’, ‘mapping’, and ‘assignment’ are used interchangeably.

51
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In this chapter, we introduce better correlation between the node mapping and the link

mapping phases by proposing two new VN embedding algorithms D-ViNE (Deterministic

Virtual Network Embedding) and R-ViNE (Randomized Virtual Network Embedding). In

these algorithms, we map the virtual nodes to substrate nodes in a way that facilitates the

mapping of the virtual links to physical paths in the subsequent phase. To this end, we extend

the physical network graph by introducing meta-nodes for each virtual node and connect

the meta-nodes to a selected subset of physical nodes (Section 5.4.1). We then treat each

virtual link with bandwidth constraints as a commodity consisting of a pair of meta-nodes.

As a result, finding an optimal flow for the commodity is equivalent to the mapping of the

corresponding virtual link in an optimal way. We introduce additional binary constraints that

force only one meta-edge to be selected for each meta-node, effectively selecting exactly one

substrate node for each meta-node corresponding to a particular virtual node.

We use mixed integer programming (MIP) formulation [93] to solve the embedding

problem with binary constraints on the meta-edges and linear constraints on the actual

substrate network edges. Since solving an MIP is known to be NP-hard [93], finding an

optimal VN embedding using MIP becomes NP-hard as well. As a result, we relax the integer

program to obtain a linear programming formulation which can be solved in polynomial

time. We then use deterministic and randomized rounding techniques on the solution of the

linear program to approximate the values of the binary variables in the original MIP. Once

all the virtual nodes have been mapped, we use the multi-commodity flow algorithm to map

the virtual links onto the substrate network between the mapped virtual nodes [99, 117].

This can also be solved in polynomial-time since we assume that path splitting is supported

by the substrate network [117].

5.2 Chapter Organization

The rest of this chapter is organized as follows. In Section 5.3, we formalize the network

model and the virtual network embedding problem itself. Section 5.4 provides the opti-

mal MIP formulation for the virtual network embedding problem using substrate network

augmentation, and Section 5.5 relaxes the MIP formulation to obtain a linear program

and presents D-ViNE and R-ViNE using deterministic and randomized rounding techniques.

Section 5.6 presents simulation results that evaluate the proposed algorithms and quantify

the benefits of correlated node and link mapping. In Section 5.7, we compare our algorithm

with the related work, and we conclude in Section 5.8.
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Figure 5.1: Mapping of VN Requests onto a Shared Substrate Network

5.3 Network Model and Problem Description

5.3.1 Substrate Network

We model the substrate network as a weighted undirected graph and denote it by GS =
�

NS , ES
�

, where NS is the set of substrate nodes and ES is the set of substrate links. Each

substrate node nS ∈ NS is associated with the CPU capacity weight value c
�

nS
�

and geo-

graphic location loc
�

nS
�

. Each substrate link eS �i, j
�

∈ ES between two substrate nodes

i and j is associated with the bandwidth capacity weight value b
�

eS
�

denoting the total

amount of bandwidth.

We denote the set of all substrate paths by PS, and the set of substrate paths from the

source node s to the destination node t by PS (s, t).

Figure 5.1 shows a substrate network, where the numbers over the links represent

available bandwidths and the numbers in rectangles represent available CPU resources 2.

5.3.2 Virtual Network Request

Similar to the substrate network, we model VN requests as weighted undirected graphs

and denote a VN request by GV =
�

N V , EV
�

. We express the requirements on virtual nodes

and virtual links in terms of the attributes of the nodes and links of the substrate network.

Each VN request has an associated non-negative value DV expressing how far a virtual node

nV ∈ N V can be placed from the location specified by loc
�

nV
�

. DV can be expressed in terms

2We use notations similar to [117] to denote capacities and requirements.
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of physical distance or in terms of permissible delay from loc
�

nV
�

. Figure 5.1 shows two

VN requests with node and link constraints.

5.3.3 Stress and Residual Capacity of Substrate Resources

In order to quantify the resource usage of the substrate network, we use the notion of stress.
The substrate node stress, SN

�

nS
�

is defined as the total amount of CPU capacity allocated

to different virtual nodes hosted on the substrate node nS ∈ NS.

SN

�

nS
�

=
∑

∀nV ↑nS

c(nV ) (5.1)

where x ↑ y denotes that the virtual node x is hosted on the substrate node y.

Similarly, the substrate link stress, SE

�

eS
�

is defined as the total amount of bandwidth

reserved for the virtual links whose substrate paths passes through the substrate link eS ∈ ES.

SE

�

eS
�

=
∑

∀eV ↑eS

b(eV ) (5.2)

where x ↑ y denotes that the substrate path of the virtual link x passes through the substrate

link y.

The definitions of node stress and link stress are similar to that in [119] with the difference

that the number of virtual links and nodes are used to measure the resources, not the actual

amount of CPU and bandwidth resources.

The residual or the available capacity of a substrate node, RN

�

nS
�

is defined as the

available CPU capacity of the substrate node nS ∈ NS.

RN

�

nS
�

= c
�

nS
�

− SN

�

nS
�

Similarly, the residual capacity of a substrate link, RE

�

eS
�

is defined as the total amount

of bandwidth available on the substrate link eS ∈ ES.

RE

�

eS
�

= b
�

eS
�

− SE

�

eS
�

The available bandwidth capacity of a substrate path P ∈ PS is given by

RE (P) =min
eS∈P

RE

�

eS
�
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5.3.4 Virtual Network Assignment

When a VN request arrives, the substrate network has to determine whether to accept the

request or not. If the request is accepted, the substrate network then determines a suitable

assignment for the VN and allocates network resources on the substrate nodes and paths

selected by that assignment. The allocated resources are released once the VN expires.

The assignment of the VN request V to the substrate network can be decomposed into

two major components:

Node assignment

Each virtual node is assigned to a different substrate node by a mappingMN : N V → NS from

virtual nodes to substrate nodes such that for all nV , mV ∈ N V ,

MN

�

nV
�

∈ NS

MN

�

mV
�

=MN

�

nV
�

, iff mV = nV

subject to

c
�

nV
�

≤ RN

�

MN

�

nV
��

(5.3a)

dis
�

loc
�

nV
�

, loc
�

MN

�

nV
��

�

≤ DV (5.3b)

where dis(i, j) measures the distance between the location of two substrate nodes i and j.

We consider end-to-end delay as the measure of distance in this work.

In Figure 5.1, the first VN request has the node mapping {a→ C , b→ H, c→ B} and the

second VN request has
�

d → A, e→ D, f → H
	

. Note that two virtual nodes b and f from

different VN requests are mapped onto the same substrate node H.

Link assignment

Each virtual link is mapped to a substrate path (unsplittable flow) or a set of substrate paths

(splittable flow) between the corresponding substrate nodes that host the end virtual nodes

of that virtual link. It is defined by a mappingME : EV → PS from virtual links to substrate

paths such that for all eV =
�

mV , nV
�

∈ EV ,

ME

�

mV , nV
�

⊆ PS
�

MN

�

mV
�

,MN

�

nV
�

�

subject to

RE (P)≥ b
�

eV
�

,∀P ∈ME

�

eV
�

(5.4)
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The first VN request in Figure 5.1 has been assigned the link mapping
n

(a, b) →

{(C , D), (D, G), (G, H)} , (a, c)→ {(C , A), (A, B)} , (b, c)→ {(H, F), (F, E), (E, B)}
o

, and the sec-

ond one has the mapping
n

(d, e)→ {(A, C), (C , D)} , (e, f )→ {(D, G), (G, H)}
o

.

Objectives

Our main interest in this chapter is to propose online VN embedding algorithms that map

multiple VN requests with node and link constraints. We also want to increase revenue

and decrease cost of the InP in the long run, in addition to balancing load of the substrate

network resources.

Similar to the previous works in [119, 117], we define the revenue of a VN request as:

R(GV ) =
∑

eV∈EV

b
�

eV
�

+
∑

nV∈N V

c
�

nV
�

(5.5)

While revenue gives an insight into how much an InP will gain by accepting a VN request,

it is not very useful without knowing the cost the InP will incur for embedding that request.

We define the cost of embedding a VN request as the sum of total substrate resources

allocated to that VN:

C(GV ) =
∑

eV∈EV

∑

eS∈ES

f eV

eS +
∑

nV∈N V

c(nV ) (5.6)

where f eV

eS denotes the total amount of bandwidth allocated on the substrate link eS for

virtual link eV . We use a modified version of (5.6) as the objective function of our MIP

formulation.

5.4 Mixed Integer Programming Formulation for Optimal VN Embedding

5.4.1 Augmented Substrate Graph Construction

In order to coordinate the node mapping phase with its link mapping counterpart, the

base substrate network must be extended to create an augmented substrate graph using the

location requirement of the virtual nodes as the basis for the extension. Since each nV ∈ N V

has an associated constraint loc
�

nV
�

on its possible placement, we can create as many

clusters in the substrate network with radius DV . We denote such a cluster by Ω(nV ) and call

it the Ω-Set of the virtual node nV :
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Figure 5.2: Construction of an Augmented Substrate Graph with Meta-nodes and Meta-edges
for a VN Request

Ω(nV ) =
n

nS ∈ NS|dis
�

loc
�

nV
�

, loc
�

nS
��

≤ DV
o

In Figure 5.2, substrate nodes B, E, and F are within DV distance of the virtual node c,

hence Ω(c) = {B, E, F}.
For each nV ∈ N V we create a corresponding meta-node µ(nV ), and we connect µ(nV )

with all the substrate nodes belonging to Ω(nV ) using meta-edges with infinite bandwidth.

Throughout the rest of this chapter, we sometimes write the Ω-Set as Ω(m) instead of Ω(nV ),

where m= µ(nV ). We combine all the meta-nodes and meta-edges with the substrate graph

to create the augmented substrate graph GS′ = (NS′ , ES′), where

NS′ = NS ∪
n

µ(nV ) | nV ∈ N V
o

ES′ = ES ∪ {(µ(nV ), nS) | nV ∈ N V , nS ∈ Ω(nV )}

An example of the augmented graph construction has been shown in Figure 5.2.

5.4.2 MIP Formulation

The virtual network embedding problem can now be formulated as a mixed integer |EV |-
commodity flow problem. We consider each virtual edge eV

i

�

1≤ i ≤ |EV |
�

as a commodity

with source and destination nodes si and t i, respectively
�

∀i, si , t i ∈ NS′ \ NS
�

. Each flow,

in this setting, starts from a meta-node and ends in another meta-node. By introducing

restrictions on the meta-edges, each meta-node µ(nV ) can be forced to choose only one
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meta-edge to connect itself to an actual substrate node in Ω(nV ). This effectively selects

a substrate node for each meta-node, i.e., maps the virtual node corresponding to that

meta-node to a substrate node. At the same time, all the virtual edges (i.e., flows) are also

mapped efficiently inside the substrate network with the help of path splitting. We present

the MIP formulation in the following manner.

Program 5.1 (Mixed Integer Program for Virtual Network Embedding)

Variables:

• f i
uv: A flow variable denoting the total amount of flow in the u→ v direction on

the substrate edge (u, v) for the i’th virtual edge.

• xuv: A binary variable, which has the value ’1’ if
∑

i

�

f i
uv + f i

vu

�

> 0; otherwise, it

is set to ’0’.

Objective:

minimize
∑

uv∈ES

αuv

RE(u, v) +δ

∑

i

f i
uv

+
∑

w∈NS

βw

RN (w) +δ

∑

m∈NS′\NS

xmw c(m) (5.7)

Constraints:

- Capacity Constraints:

∑

i

( f i
uv + f i

vu)≤ RE(u, v) xu,v ,∀u, v ∈ NS′ (5.8)

RN (w)≥ xmw c (m) ,∀m ∈ NS′ \ NS ,∀w ∈ NS (5.9)

- Flow Related Constraints:

∑

w∈NS′

f i
uw −

∑

w∈NS′

f i
wu = 0,∀i,∀u ∈ NS′ \ {si , t i} (5.10)

∑

w∈NS′

f i
si w
−
∑

w∈NS′

f i
wsi
= b(eV

i ),∀i (5.11)

∑

w∈NS′

f i
t i w
−
∑

w∈NS′

f i
wt i
=−b(eV

i ),∀i (5.12)

- Meta and Binary Constraints:

∑

w∈Ω(m)

xmw = 1,∀m ∈ NS′ \ NS (5.13)
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∑

m∈NS′\NS

xmw ≤ 1,∀w ∈ NS (5.14)

xuv ≤ RE(u, v),∀u, v ∈ NS′ (5.15)

xuv = xvu,∀u, v ∈ NS′ (5.16)

- Domain Constraints:

f i
uv ≥ 0,∀u, v ∈ NS′ (5.17)

xuv ∈ {0, 1} ,∀u, v ∈ NS′ (5.18)

Remarks:

• The objective function (5.7) of the MIP tries to minimize the cost of embedding

the VN request as well as balance the load. By dividing the cost with the resid-

ual capacity, it is ensured that the resources with more residual capacities are

preferred over the resources with less residual capacities. 1≤ αuv ≤ RE(u, v) and

1≤ βw ≤ RN (w) are parameters to control the importance of load balancing while

embedding a request. δ→ 0 is a small positive constant to avoid dividing by zero

in computing the objective function.

• Constraint set (5.8) and (5.9) contains the node and edge capacity bounds.

Summing up f i
uv and f i

vu in (5.8) ensures that the summation of flows on both

directions of the undirected edge (u, v) remains within its available bandwidth.

• Constraint sets (5.13) and (5.14) are related to the augmented portion of the

substrate graph. Constraint set (5.13) makes sure that only one substrate node is

selected for each meta-node, whereas constraint set (5.14) ensures that no more

than one meta-node is placed on a substrate node.

• Constraint sets (5.15) and (5.16) together with (5.4) ensure that xuv is set

whenever there is any flow in either direction of the substrate edge (u, v).

5.5 LP Relaxation and Rounding-Based Algorithms

Since solving an MIP is known to be computationally intractable [93], simultaneous node

and link embedding using Program 5.1 is practically infeasible. Hence we relax the integer

constraints (5.18) of the MIP, and obtain the following linear program (Program 5.2). Once

we have the LP solution, we use deterministic and randomized rounding techniques to obtain
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integer values for the variable x and embed VN requests.

Program 5.2 (Relaxed Linear Program for Virtual Network Embedding)

Objective:

minimize
∑

uv∈ES

αuv

RE(u, v) +δ

∑

i

f i
uv

+
∑

w∈NS

βw

RN (w) +δ

∑

m∈NS′\NS

xmw c(m) (5.19)

Constraints:

- Capacity Constraints:

∑

i

( f i
uv + f i

vu)≤ RE(u, v) xu,v ,∀u, v ∈ NS′

RN (w)≥ xmw c (m) ,∀m ∈ NS′ \ NS ,∀w ∈ NS

- Flow Related Constraints:

∑

w∈NS′

f i
uw −

∑

w∈NS′

f i
wu = 0,∀i,∀u ∈ NS′ \ {si , t i}

∑

w∈NS′

f i
si w
−
∑

w∈NS′

f i
wsi
= b(eV

i ),∀i

∑

w∈NS′

f i
t i w
−
∑

w∈NS′

f i
wt i
=−b(eV

i ),∀i

- Meta and Relaxed Binary Constraints:

∑

w∈Ω(m)

xmw = 1,∀m ∈ NS′ \ NS

∑

m∈NS′\NS

xmw ≤ 1,∀w ∈ NS xuv ≤ RE(u, v),∀u, v ∈ NS′

xuv = xvu,∀u, v ∈ NS′

- Domain Constraints:

f i
uv ≥ 0,∀u, v ∈ NS′

xuv ≥ 0,∀u, v ∈ NS′ (5.20)
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Remarks:

• The domain constraint set (5.20) on the xuv variables has been relaxed.

5.5.1 Deterministic Rounding-based VN Embedding Algorithm (D-ViNE)

D-ViNE (Algorithm 5.3) takes online VN requests as inputs and maps them onto the substrate

network one at a time. It takes decisions based only on the past VN requests that it has

already seen, i.e., D-ViNE uses no look-ahead. Since the integer domain constraints (5.18)

on the x variables have already been relaxed, we no longer get integer values for the x

variables. Instead, we employ deterministic rounding technique to get integer values for x .

We introduce ϕ : NS → {0,1}, which is initially set to zero for all nS ∈ NS signifying that all

the substrate nodes are initially unused. Whenever a virtual node is mapped to a particular

physical node nS, we set ϕ(nS) to 1 to ensure that no substrate node is used twice for the

same VN request.

Algorithm 5.3 D-ViNE: Deterministic Rounding-based Virtual Network Embedding Algorithm
1: procedure D-VINE(GV = (N V , EV ))
2: Create augmented substrate graph GS′ =

�

NS′ , ES′
�

3: Solve Program 5.2
4: for all nS ∈ NS do
5: ϕ(nS)← 0
6: end for
7: for all n ∈ N V do
8: if Ω(n)∩ {nS ∈ NS|ϕ(nS) = 1}= ; then
9: VN request cannot be satisfied

10: return
11: end if
12: for all z ∈ Ω(n) do
13: pz ← (

∑

i f i
µ(n)z + f i

zµ(n))xµ(n)z
14: end for
15: Let zmax = arg maxz∈Ω(n){pz|ϕ(z) = 0} . break ties arbitrarily
16: setMN (n)← zmax . Map n to zmax
17: ϕ(zmax)← 1
18: end for
19: Solve MCF to map virtual edges.
20: Update residual capacities of the network resources.
21: end procedure
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Description and Discussion

The procedure begins by creating an augmented substrate graph, GS′ =
�

NS′ , ES′
�

for the VN

request GV =
�

N V , EV
�

using the augmentation method described in Section 5.4.1. Next it

solves Program 5.2 to get a fractional solution which is at least as good as the integer solution

of Program 5.1. For each virtual node, D-ViNE first checks whether there are any unmapped

substrate nodes within its feasible region (the substrate nodes in the virtual nodes Ω-Set).

If the corresponding Ω-Set is empty, D-ViNE stops the embedding process immediately and

rejects the VN request. Otherwise the deterministic rounding procedure is initiated in line 12.

For each virtual node n, D-ViNE calculates a value pz for each substrate node z ∈ Ω(n) in its

cluster. pz is calculated as the product of the value xµ(n)z and the total flow passing through

the meta-edge (µ(n), z) in both directions. The reason behind using this multiplication

instead of just xµ(n)z is as follows:

In the MIP solution xuv is set to binary values based on the presence of flows in either

direction in the edge (u, v). When the binary constraint x is relaxed, one might expect that

the fractional values of xuv would also be proportional to the total flow in the edge (u, v). But

during the LP relaxation process, the correlation between the flow variable f and the binary

variable x is lost. It is because a linear program tries to optimize the objective function

without violating the constraints; it does not care about the values as long as they are within

their permitted domains. As a result, in the relaxed linear program, it is possible that the f

values are very high and the corresponding x values are very low or vice versa. Multiplying

the f and x values thwarts the possibility of selecting a substrate node based on high x

value but very low f value on its corresponding meta-edge and vice versa. The ones that

have better values for both the variables f and x are more likely to be in the solution of the

MIP than others. D-ViNE maps the virtual node n onto the unmapped substrate node z (i.e.,

ϕ(z) = 0) with the highest pz value, breaking ties arbitrarily.

Once all the virtual nodes have been mapped to different substrate nodes, D-ViNE applies

the multi-commodity flow algorithm to map the virtual edges in EV onto the substrate

paths. One can also use shortest path algorithms when path splitting is not supported by the

substrate network. Finally, D-ViNE updates the residual capacities of the substrate nodes and

links to prepare for the next request.

Time Complexity

An important aspect of D-ViNE is that the multi-commodity flow algorithm is executed

twice; first, during the node mapping phase (since Program 5.2 is a linear programming

relaxation of the original mixed integer multi-commodity flow problem), and second, during

the edge mapping phase. It can easily be seen that D-ViNE runs in polynomial-time, since the
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multi-commodity flow algorithm can be solved in polynomial-time using either the ellipsoid

algorithm or Karmarkar’s interior point algorithm for linear programming [93].

Algorithm 5.4 R-ViNE: Randomized Rounding-based Virtual Network Embedding Algorithm
1: procedure R-VINE(GV = (N V , EV ))
2: Create augmented substrate graph GS′ =

�

NS′ , ES′
�

3: Solve Program 5.2
4: for all nS ∈ NS do
5: ϕ(nS)← 0
6: end for
7: for all n ∈ N V do
8: if Ω(n)∩ {nS ∈ NS|ϕ(nS) = 1}= ; then
9: VN request cannot be satisfied

10: return
11: end if
12: for all z ∈ Ω(n) do
13: pz ← (

∑

i f i
µ(n)z + f i

zµ(n))xµ(n)z
14: end for
15: psum←

∑

z∈Ω(n) pz
16: for all z ∈ Ω(n) do
17: pz ← pz/psum
18: end for
19: setMN (n)← z with probability pz .

∑

z∈Ω(n) pz = 1
20: ϕ(z)← 1 with probability pz
21: end for
22: solve MCF to map virtual edges.
23: Update residual capacities of the network resources.
24: end procedure

5.5.2 Randomized Rounding-based VN Embedding Algorithm (R-ViNE)

R-ViNE is quite similar to D-ViNE except that it uses randomized rounding instead of

deterministic rounding. Once the pz values are calculated as in D-ViNE, R-ViNE normalizes

those values within 0 to 1 range. The normalized values for each z ∈ Ω(n) correspond to

the probabilities of n being mapped to z by the optimal MIP. R-ViNE selects a substrate

node z ∈ Ω(n) to map a virtual node n with probability pz. The remainder of this algorithm

is similar to its deterministic counterpart, and it is clear that this algorithm also runs in

polynomial-time.
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5.6 Performance Evaluation

In this section, we first describe the evaluation environment, and then present our main

evaluation results. Our evaluation focuses primarily on quantifying the advantage of coordi-

nating node mapping and link mapping phases in terms of acceptance ratio, revenue and

cost. We also compare D-ViNE and R-ViNE with existing algorithms modified to fit into our

model. We also present a study of the affect of arrival rate changes on the performance of

different algorithms.

5.6.1 Simulation Settings

We have implemented a discrete event simulator to evaluate the performance of our algo-

rithms which is freely available at [7]. Unless otherwise specified, we use the following

settings in our simulation experiments:

The substrate network topologies in our experiments are randomly generated with 50

nodes using the GT-ITM tool [118] in (25× 25) grids. Each pair of substrate nodes are

randomly connected with probability 0.5. The cpu and bandwidth resources of the substrate

nodes and links are real numbers uniformly distributed between 50 and 100. We assume

that VN requests arrive in a Poisson process with an average rate of 4 VNs per 100 time

units, and each one has exponentially distributed lifetime with an average of µ= 1000 time

units. In each VN request, the number of virtual nodes is randomly determined by a uniform

distribution between 2 and 10 following similar setups to previous works [119, 117]. The

average VN connectivity is fixed at 50%. The cpu requirements of the virtual nodes are

real numbers uniformly distributed between 0 to 20 and the bandwidth requirements of the

virtual links are uniformly distributed between 0 to 50. We have used the open source mixed

integer programming library glpk [2] to solve Program 5.2.

5.6.2 Performance Metrics

We have used the following five metrics in our evaluations to measure the performance of

our algorithms against the existing ones:

1. Acceptance Ratio: Acceptance ratio of an algorithm measures the percentage of total

VN requests accepted by that algorithm over a given period. While it gives a sense of

how well an algorithm is performing, it cannot completely capture the performance

when the ultimate goal of an InP is to increase its revenue. An algorithm can accept

many smaller or less profitable VN requests to increase this ratio without actually

maximizing the overall revenue and leaving the resources under-utilized.
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Table 5.1: Summary of Compared VN Embedding Algorithms

Notation Algorithm Description

D-ViNE Deterministic Node Mapping with Splittable Link Mapping
using MCF

R-ViNE Randomized Node Mapping with Splittable Link Mapping
using MCF

G-SP [119] Greedy Node Mapping with Shortest Path Based Link
Mapping

G-MCF [117] Greedy Node Mapping with Splittable Link Mapping using
MCF

D-ViNE-SP Deterministic Node Mapping with Shortest Path Based Link
Mapping

D-ViNE-LB Deterministic Node Mapping with Splittable Link Mapping
using MCF, where αuv = βw = 1,∀u, v, w ∈ NS

2. Generated Revenue (R): We also measure the generated revenue (defined in (5.5))

of an embedding algorithm over time. An algorithm can be considered to be per-

forming better than its counterparts, when it generates more revenue in addition to a

higher acceptance ratio.

3. Provisioning Cost (C): We measure the cost (defined in (5.6)) that an algorithm

incurs to embed a particular VN request, which is particularly useful to calculate the

cost-revenue ratio of an embedding. This ratio can later be used for admission control

purposes.

4. Average Node Utilization: Average node utilization of the substrate network is

measured by averaging the stress (defined in (5.1)) of all the substrate nodes.

5. Average Link Utilization: Similarly, average link utilization is the average of the link

stresses (defined in (5.2)) of all the substrate edges.

5.6.3 Compared Algorithms

In our evaluation, we have compared six algorithms that combine different node mapping

and link mapping strategies including our contributions and algorithms from previous

research [119, 117] modified to fit into our model (i.e., no reassignment). The notations

that we use to refer to different algorithms are enumerated in Table 5.1.
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Figure 5.3: VN Request Acceptance Ratio Over Time

5.6.4 Time-based Evaluation

We plot the performance metrics defined in Section 5.6.2 against time to show how each of

the compared algorithms (Table 5.1) actually perform in the long run. We summarize our

key observations in the following:

(1) Coordinated Node and Link Mapping Leads to Higher Acceptance Ratio and

Larger Revenue: Figure 5.3 and Figure 5.4 depict that the proposed algorithms, D-ViNE and

R-ViNE, lead to better acceptance ratio as well as higher revenue than the existing algorithms

(G-SP and G-MCF) through coordinated node and link mapping. Having higher revenue

along with better acceptance ratio implies that our proposed algorithms actually embed VN

requests that generate more revenue, instead of only embedding smaller VN requests just to

increase the acceptance ratio.

(2) Load Balancing Further Increases the Acceptance Ratio and the Revenue: From

Figure 5.3 and Figure 5.4, it is also evident that D-ViNE-LB generates more revenue and

accepts more VN requests than the basic D-ViNE algorithm. In D-ViNE-LB, the value of the

objective function (5.19) of Program 5.2 depends on the residual capacity of the network

resources in addition to the provisioning cost (α and β values are set to 1 here). The lower

the residual capacity of a particular node or link, the higher the value of the objective

function. As a result, D-ViNE-LB tries to avoid highly utilized nodes and links as long as it
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Figure 5.4: Time Average of Generated Revenue

can, leaving those critical resources available for the VN requests that absolutely need them.

(3) Randomization Leads to Better Performance: It is well established in the algorithm

design literature that randomization allows efficient solutions to many intractable problems

in polynomial time with low probability of error. Our experiments show that the randomized

version of our VN embedding algorithm (R-ViNE) performs better than its deterministic

counterpart (D-ViNE) in terms of acceptance ratio and revenue generation (Figure 5.3 and

Figure 5.4).

In addition to that, for networks with large number of nodes randomization has been

shown to be effective for load balancing [77]. This phenomena is also visible in our

experiments, since R-ViNE performs similar to D-ViNE-LB in most scenarios.

(4) Load Balancing Slightly Increases the Average Provisioning Cost: While load

balancing increases revenue and acceptance ratio by avoiding highly utilized resources, it

runs the risk of increasing the average provisioning cost as shown in Figure 5.5. Since

D-ViNE-LB tries to avoid highly utilized resources, sometimes it ends up suggesting a longer

path to map a particular virtual edge which eventually sums up to slightly higher average

provisioning cost in the long run.

(5) Coordination Increases Resource Utilization: Figure 5.6 and Figure 5.7 depict

the average utilization of substrate nodes and substrate links for different VN embedding
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Figure 5.7: Average Link Utilization

algorithms. Since D-ViNE-LB has the highest acceptance ratio, naturally it also has the

highest node and link utilization.

However, D-ViNE-LB achieves a relatively higher gain in link utilization over its coun-

terparts than in node utilization. We believe that the reason behind this is the distributive

nature of D-ViNE-LB algorithm. In order to avoid links with lower residual capacities, i.e., in

order to minimize (5.7), D-ViNE-LB uses longer paths containing more substrate links with

higher residual capacities to embed virtual links.

5.6.5 Effect of Increasing Load on VN Embedding Algorithms

In order to evaluate the scalability of the proposed algorithms with increasing load, we

change the VN arrival rate from 4 requests per 100 time units to 8 requests per 100 time units

while keeping the average VN lifetime fixed. For each arrival rate, we run the simulations

for sufficiently long time until they reach a stable state and plot each of the performance

metric’s stable value against arrival rate (Figure 5.8). Our findings are:

(1) Dominance of the Proposed Algorithms is Not Diminished by Load: As evident

from Figure 5.8, all the proposed algorithms (D-ViNE, R-ViNE, and D-ViNE-LB) maintain their

relative superior performance in terms of the total number of accepted VN requests, revenue,

cost, and average node and link utilization with increasing load. As we have noticed before,
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D-ViNE and R-ViNE maintain a close resemblance while D-ViNE-LB brings in more revenue

without any significant changes with load.

(2) Increasing Load Leads to Slightly Better Cost-Revenue Ratio: With increasing

load all the algorithms under consideration tend to achieve better cost-revenue ratios

(Figure 5.8(b) and Figure 5.8(c)). However, the proposed algorithms have steeper decreases

in their average costs with more or less similar increases in their revenues, resulting in higher

cost-revenue improvement than the existing algorithms.

(3) Relative Link Utilization of D-ViNE-LB Worsens with Load: As the arrival rate is

increased from 4 to 8 VN requests per 100 time units, average link utilization of D-ViNE-LB

increases much quickly than the total number of VN requests accepted by it in comparison

with D-ViNE and R-ViNE.

For example, in terms of the total number of accepted VN requests D-ViNE-LB’s advantage

over D-ViNE diminishes by 3% when the arrival rate is increased from 4 to 8 requests in

100 time units (Figure 5.8(a)), while the extra link resource usage increases by almost 2%

(Figure 5.8(e)). At this rate, D-ViNE-LB will run out of resources faster than D-ViNE when

the load (i.e., the arrival rate) is too high.

5.7 Related Work

The VN assignment problem is similar to the previous works on embedding VPNs in a shared

provider topology and the network testbed mapping problem [55, 87]. However, a typical

VPN request consists only of bandwidth requirements, specified in terms of a traffic matrix,

without any constraint on its nodes. As a result, most VPN designing algorithms come

down to finding paths for source/destination pairs. On the other hand, the Assign algorithm

[87] used in the Emulab testbed considers bandwidth constraints alongside constraints on

exclusive use of nodes, i.e., different VNs cannot share a substrate node. But in network

virtualization, there are capacity and placement requirements on both the virtual nodes and

the virtual links; in addition, substrate nodes and links can be shared by multiple VNs.

In order to reduce the hardness of the VN assignment problem and to enable efficient

heuristics, existing research has been restricting the problem space in different dimensions,

which include:

1. considering offline version of the problem (i.e., all the VN requests are known in

advance) [74, 119],

2. ignoring either node requirements or link requirements [43, 74],

3. assuming infinite capacity of the substrate nodes and links to obviate admission

control [43, 74, 119], and
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Figure 5.8: Effect of Increasing Load on Compared VN Embedding Algorithms in Terms of:
(a) Total Number of Accepted VN Requests; (b) Revenue; (c) Provisioning Cost; (d) Average
Node Utilization; and, (e) Average Link Utilization.
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4. focusing on specific VN topologies [74].

The authors in [117] consider all these issues, except for the location constraints on the

virtual nodes, by envisioning support from the substrate network through node and link

migration as well as multi-path routing.

However, contrary to the algorithms proposed in this chapter, all the existing algorithms

can clearly be separated into two basic phases:

1. assigning virtual nodes using some greedy heuristics, e.g., assign virtual nodes with

higher processing requirements to substrate nodes with more available resources

[119, 117], and

2. embedding virtual links onto substrate paths using shortest path algorithms [119]

in case of unsplittable flows, or using multi-commodity flow algorithms in case of

splittable flows [99, 117].

The authors in [61] have proposed a distributed algorithm that simultaneously maps

virtual nodes and virtual links without any centralized controller, but the scalability and

performance of their algorithm is still not comparable with the centralized ones.

In this chapter, we take a formal approach to solve the online VN embedding problem

using a MIP formulation under realistic assumptions of node and link constraints. To the

best of our knowledge, this is the first attempt to apply mathematical programming to

this problem in the network virtualization context. We do not restrict the problem space

by assuming infinite capacity of the substrate network resources, nor do we assume any

specialized VN topologies.

5.8 Summary

To make network virtualization an integral part of the future Internet architecture, efficient

and practical algorithms for VN embedding are specially required. In this chapter, we pro-

posed algorithms for VN embedding that differ from the previous algorithms by introducing

coordination between node and link mapping phases. We argued that this coordination

greatly increases the solution space and the quality of the heuristic algorithms. To this end

we first formulated the embedding problem as a mixed integer program. We then relaxed the

integer constraints and used deterministic and randomized rounding techniques to obtain

polynomial-time solvable algorithms for node mapping. The node mapping phase combined

with the multi-commodity flow based link mapping phase in our algorithms outperformed

the existing approaches in terms of acceptance ratio, revenue, and provisioning cost, as

shown through extensive simulation.
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Epilogue

Amid current trends of virtualizing practically every aspect of computing, ranging from

operating systems, storage systems to servers, and even large data centers (e.g., cloud

computing), network virtualization stands at a unique point in the virtualization design

space. On the one hand, it is necessary to have a virtualized network to interconnect all

other virtualized appliances to give each of the virtual entities a complete semblance of their

native counterparts.

On the other hand, after enjoying years of rapid growth, the progress of the Internet and

networking in general has come to a standstill. Most researchers now agree that a redesign

is a bare necessity, not luxury [47]. Network virtualization can take the leading role in this

scenario to promote innovation, to provide flexibility, and to introduce heterogeneity.

However, realization of the network virtualization environment must satisfy the require-

ments set by its characteristics and design goals. Even though these requirements will

ensure an open, flexible, and heterogeneous networking environment, they will also pose a

string of challenges that will require coordinated attention from the researchers working in

networking and other related fields.

In this thesis, we have addressed one inter-domain and another intra-domain problem in

the network virtualization environment. We have proposed iMark, an identity management

framework for the network virtualization environment, to manage the identities in a het-

erogeneous virtualized environment without enforcing any constraint on the naming and

addressing choices of the participant physical and virtual networks. For resource allocation in

a one infrastructure provider environment, we have devised two virtual network embedding

algorithms (D-ViNE and R-ViNE) based on a mathematical formulation of the embedding

problem with an aim to increase the utilization of the physical network resources and the

revenue of the infrastructure provider. Through extensive simulation we have demonstrated

the validity and the performance of both the contributions. In addition, we have presented a

73
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comprehensive survey of the past, the present, and the future of network virtualization with

an objective to stoke wide interests among the researchers in this field.

6.1 Summary of Contributions

The contributions of this thesis to the network virtualization literature are summarized

below:

1. The Survey of Network Virtualization provides the following:

• Historical perspective of network virtualization under the light of existing research

areas (e.g., VLANs, VPNs etc.) that are closely related to the concepts of

flexibility, heterogeneity, programmability, isolation and other design goals of

network virtualization.

• Categorization of the previous and on-going research projects that address

different aspects of network virtualization.

• Enumeration of the open problems in the network virtualization environment

accompanied by the summary of the existing works on those problems in the

networking literature.

2. The Identity Management Framework delivers the following features:

• Interoperability: iMark ensures end-to-end connectivity in the network virtual-

ization environment through interoperability between heterogeneous identifier

spaces.

• Flexibility: No explicit requirements are placed on the choice of internal naming

and addressing mechanisms of the concerned networks.

• Mobility and Überhoming: iMark inherently supports mobility and überhoming

for all the end hosts.

3. The Virtual Network Embedding Algorithms offer the following:

• Better Embedding Quality: Both D-ViNE and R-ViNE outperform the existing

embedding algorithms in terms of VN request acceptance ratio, utilization of

resources, and cost as well as revenue of the infrastructure providers.

• Load Balancing: D-ViNE-LB, the load-balanced version of D-ViNE, significantly

increases the acceptance ratio, utilization, and revenue with relatively low

increase of the provisioning cost.

• Mathematical Foundation: A MIP formulation of the embedding problem has

been presented with the help of graph augmentation and clustering techniques.

This formulation can be used to develop other embedding algorithms in addition

to the ones presented here.
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6.2 Future Research

There are several possible research avenues that directly follow from our work. In the

following, we will discuss some of the most important ones:

iMark Prototype Development

In this thesis, we have justified iMark’s design and architecture through numerical simulation

studies due to the absence of a realistic prototype of the network virtualization environment.

However, such experiments can only provide a coarse overview of the internal functionalities;

they do not capture the packet level behavior that might arise in a realistic scenario.

• In order to investigate such micro-level behavior, design and implementation of a full-

fledged prototype of the network virtualization environment is of utmost importance.

Such a prototype will not only facilitate iMark’s validation, but also allow design,

development, and validation of many other projects on network virtualization.

• In addition to validating iMark, we have demonstrated its scalability over a large

number of end hosts. Additional performance and robustness aspects of iMark along

with possible optimizations, e.g., caching, to improve its scalability can be investigated.

The effects of end host mobility and überhoming on iMark in a heterogeneous NVE.

Theoretical Analysis of D-ViNE and R-ViNE

While our approach of coordinating the node mapping and the link mapping phases to

improve VN embedding quality is, to the best of our knowledge, the first of its kind, a

number of issues remain unresolved in this work and can be good starting points for further

research in this direction.

• First and foremost is the analysis of the theoretical approximation factors of the

proposed algorithms in the worst case. Developing a primal-dual based analysis

framework to obtain lower bounds on the performance of D-ViNE and R-ViNE can be

an interesting research topic from theoretical computer science perspective.

• Finding out advanced economic models, instead of the simple revenue model used in

the existing literature, for pricing in the network virtualization environment can be

another important research topic that needs further attention.

• Finally, available approaches (e.g., column generation technique) to directly solve

integer and mixed integer programs can be employed to develop efficient algorithms

to obtain optimal or near-optimal solutions for the original mixed integer formulation

(Program 5.1) without any relaxation.
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Cross Domain Virtual Network Embedding

In this thesis, we have addressed the online intra-domain virtual network embedding problem,

i.e., we have considered only a single infrastructure provider. However, an end-to-end virtual

network can span over administrative domains of multiple infrastructure providers.

• In order to create end-to-end virtual networks over geographically distributed regions,

service providers need to contact multiple infrastructure providers who have available

resources in those regions.

In order to enable free trading and fair pricing, a framework is required in the form of

an open marketplace that will enable service providers and infrastructure providers to

trade resources at competitive prices.

• Each infrastructure provider is interested only in maximizing its own profit; usually it

means, getting requests for their high-margin equipments while offloading unprofitable

work onto their competitors. Such selfish behavior can give rise to tussles between

adjoining infrastructure providers.

Theoretical studies from game theoretic and mechanism design perspectives can give

insights into the behavior trends, which can later be used to formulate strategies as

found in the existing traffic engineering literature.
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