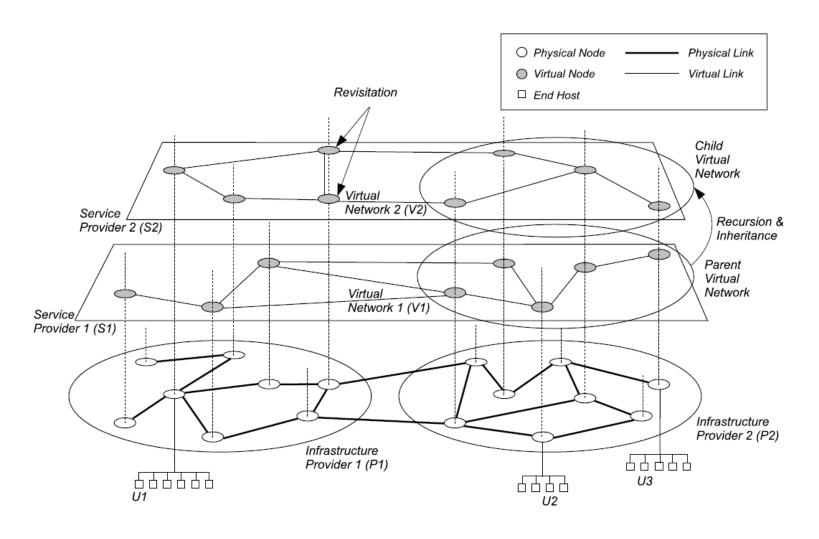
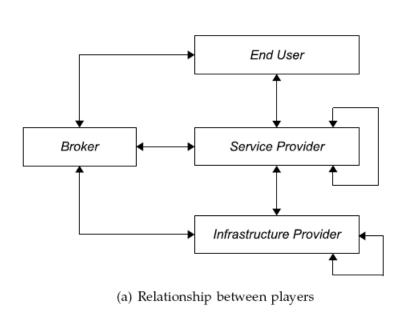
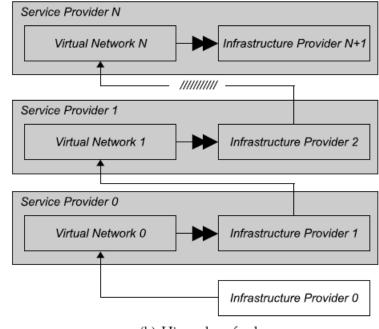
Network Virtualization from P2P Perspective

Mosharaf Chowdhury


Outline

1. What is Network Virtualization?
2. Why P2P concepts might be useful?
3. Where can we use those concepts?
4. How? Now, that's a good question.


Outline


1. What	is Network Virtualization ?
2. Why	P2P concepts might be useful?
3. Where	can we use those concepts?
4. How ?	Now, that's a good question.

Network Virtualization Architecture [7]

Network Virtualization Business Model [7]

Design Goals [7]

Flexibility

Customized VN topology, routing, and forwarding functions etc.

Manageability

Clear separation of management between SPs and InPs

Scalability

Coexistence of multiple VNs

Security and isolation

Every VN is isolated and secured from others

Programmability

Of network elements

Heterogeneity

Of underlying networking technologies, and deployed VNs

Experimental and deployment facility

Legacy support

- 1. Touch et al, The X-Bone, GLOBECOM, 1998.
- Kounavis et al, The Genesis Kernel: A Programming System for Spawning Network Architectures, JSAC, 2001.
- UToronto & UWaterloo, VNRMS: Virtual Network Resource Management System.
- UWaterloo, User Controlled Light Paths (UCLP) project, <u>http://uclp.uwaterloo.ca/</u>.
- GENI: Global Environment for Network Innovations, <u>http://www.geni.net/</u>.
- Feamster et al, How to Lease the Internet in Your Spare Time, SIGCOMM CCR, 2007.
- 7. Chowdhury et al, A Survey of Network Virtualization, Computer Networks. [In Submission: March, 2008]

Outline

1. What is Network Virtualization?
2. Why P2P concepts might be useful?
3. Where can we use those concepts?
4. How? Now, that's a good question.

Advantages of P2P [8]

Improved scalability/reliability

- No single point of failure
- Resource discovery and search algorithms

Dynamism

- Resources enter and leave the system dynamically
- Interoperability
 - Aggregation of heterogeneous resources
- Increased autonomy
 - Independence from servers
- Anonymity/privacy
- Cost reduction
 - Through cost sharing
- Customizability

8. R. Boutaba, Peer-to-peer Networking, *UW CS856 Lecture*, 2008.

Outline

1. What is Network Virtualization?
2. Why p2p concepts might be useful?
3. Where can we use those concepts?
4. How? Now, that's a good question.

Resource Trading / NV Economics

- SPs must buy/lease resources from multiple InPs to create basic end-to-end VNs
- SPs might also depend on other SPs to create <u>compound</u> VNs

Market infrastructure requirements [13]

- Functional
 - Allow multiple SPs and InPs to trade resources
 - On-demand and in-advance trading
 - Support reselling

Performance

- Economically efficient allocation of resources
- Robust against individual failures, and attacks
- Scalable up to a large number of participants

Resource Trading / NV Economics (Contd.)

• PeerMart [10, 13]

- Fully decentralized, double-auction based P2P market for VN bandwidth trading
- Agents from each party create a structured overlay to create the market

FairPeers [14]

- Micro-payment based fair economic model
- Modularized approach

Bocek et al [12]

Introduced CPU time as a scarce resource in P2P-based distributed DNS system

- 9. Ferguson *et al*, Economic Models for Allocating Resources in Computer Systems, *Market-Based Control: A Paradigm for Distributed Resource Allocation*, 1996.
- 10. Hausheer *et al*, PeerMart: The Technology for a Distributed Auction-based Market for P2P Services, *ICC*, 2005.
- 11. Hausheer *et al*, PeerMint: Decentralized and Secure Accounting for P2P Applications, *Networking*, 2005.
- 12. Bocek *et al*, Introducing CPU Time as a Scarce Resource in P2P Systems to Achieve Fair Use in a Distributed DNS, *INFOCOM*, 2006.
- 13. Hausheer et al, Auctions for Virtual Network Environments, Workshop on Management of Network Virtualization, 2007.
- 14. Ruffo *et al*, FairPeers: Efficient Profit Sharing in Fair Peer-to-Peer Market Places, *JNSM*, 2007.

Interaction Between SPs and InPs

- Different forms of interactions
 - 1. $SP \leftrightarrow SP$
 - 2. $lnP \leftrightarrow lnP$
 - 3. $SP \leftrightarrow InP$
 - 4. SP \leftrightarrow Customers
- Studied in the context of P2P overlays
 - Interaction between multiple overlays [16, 17]
 - Interaction between overlays and underlays [15, 18, 19]
 - Tussle between multiple ISPs with shared overlay [20]
 - Strategies to improve routing performance of overlays as well as underlays [15, 18, 21]
- Game theoretic, heuristics and approximation algorithm, Linear programming, and finally, empirical analysis

- 15. Liu *et al*, On the Interaction Between Overlay Routing and Traffic Engineering (MPLS), *SIGCOMM Poster Session*, 2004.
- 16. Keralapura *et al*, Can Coexisting Overlays Inadvertently Step on Each Other, *ICNP*, 2005.
- 17. Jiang et al, On the Interaction of Multiple Overlay Routing, *Performance Evaluation*, 2005.
- 18. Li et al, Virtual Multi-Homing: On the Feasibility of Combining Overlay Routing with BGP Routing, Networking, 2005.
- 19. Liu *et al*, On the Interaction Between Overlay Routing and Underlay Routing, *INFOCOM*, 2005.
- 20. Wang *et al*, Modeling the Peering and Routing Tussle between ISPs and P2P Applications, IWQoS, 2006.
- 21. Seetharaman *et al*, Preemptive Strategies to Improve Routing Performance of Native and Overlay Layers, *INFOCOM*, 2007.

Dynamism in NV Environment

Macro Level

- Connect multiple smaller VNs to create larger end-to-end VNs
- Aggregate VNs providing basic services to create composite services
- Concepts of hierarchical P2P and DHT systems might be useful [22-30]
- Level of dynamism: Low

Micro Level

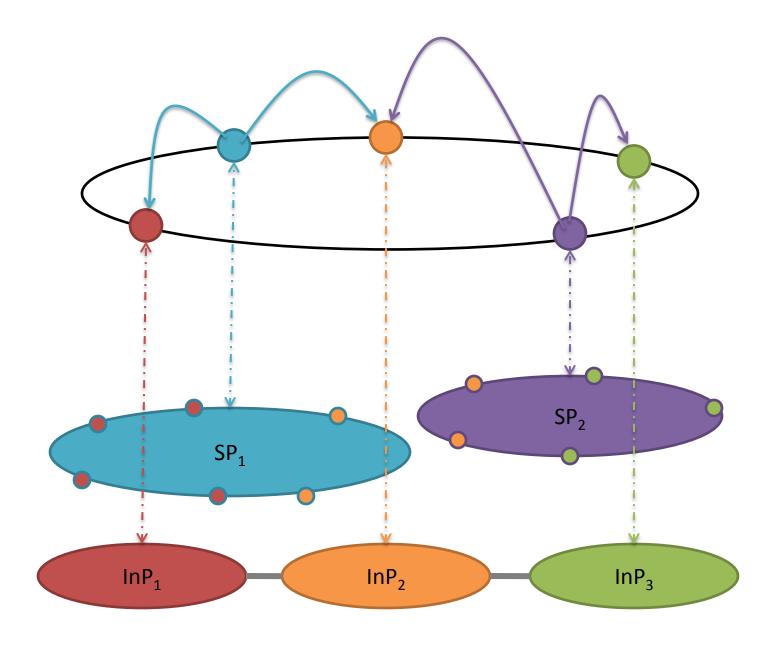
- Dynamic join and leave operations, as in P2P networks, of virtual nodes will simplify VN creation, operation, and management
- Migration of virtual machines, and virtual routers across LAN, MAN, even WAN is now reality [31-37]
- Use of migration as an integral part of NV environment will ease management tasks [36]
- Level of dynamism: Moderate

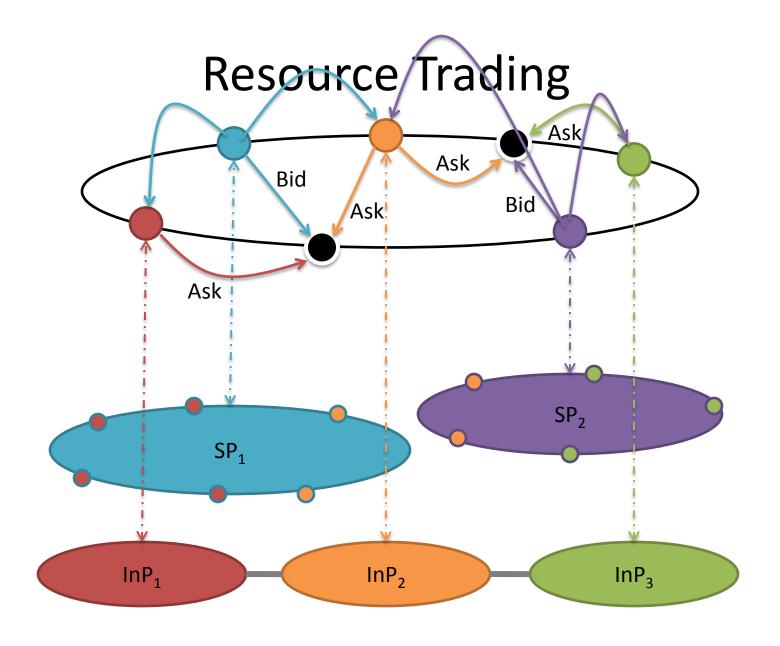
- 22. Garćes-Erice et al, Hierarchical Peer-to-peer Systems, Euro-Par, 2003.
- 23. Gupta et al, Kelips: Building an Efficient and Stable P2P DHT Through Increased Memory and Background Overhead, IPTPS, 2003.
- 24. Harvey et al, SkipNet: A Scalable Overlay Network with Practical Locality Properties, *USITS*, 2003.
- Ganesan et al, Canon in G Major: Designing DHTs with Hierarchical Structure, DCS, 2004.
- 26. A. Montresor, A Robust Protocol for Building Superpeer Overlay Topologies, *P2P*, 2004.
- 27. Artigas *et al*, Cyclone: A Novel Design Schema for Hierarchical DHTs, *P2P*, 2005.
- 28. Zoels et al, Cost-Based Analysis of Hierarchical DHT Design, *P2P*, 2006.
- 29. Artigas *et al*, A Comparative Study of Hierarchical DHT Systems, *LCN*, 2007.
- 30. Martinez-Yelmo *et al*, Routing Performance in a Hierarchical DHT-based Overlay Network, *PDP*, 2008.

- 31. Travostino *et al*, Seamless Live Migration of Virtual Machines over the MAN-WAN, Future Generation Computer Systems, 2006.
- 32. Bradford *et al*, Live Wide Area Migration of Virtual Machines Including Local Persistent State, 2007.
- 33. Huang *et al*, High Performance Virtual Machine Migration with RDMA over Modern Interconnects, Cluster, 2007.
- 34. Liebarman *et al*, Empirical Exploitation of Live Virtual Machine Migration, *Umich CSE-TR-528-07*, 2007.
- 35. Ramakrishnan *et al*, Live Data Center Migration across WANs: A Robust Cooperative Context Aware Approach, *INM*, 2007.
- 36. Wang *et al*, VROOM: Virtual ROuters On the Move, SIGCOMM HotNets VI, 2007.
- 37. Wood *et al*, Black-box and Gray-box Strategies for Virtual Machine Migration, *NSDI*, 2007.

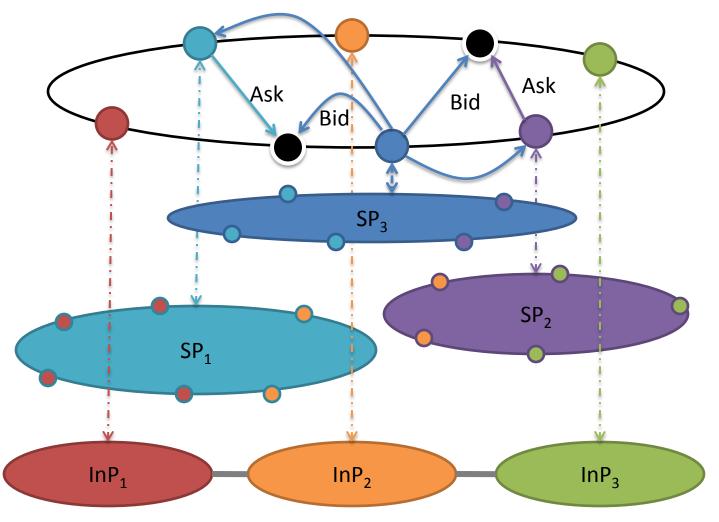
More P2P Concepts in NV Context

- P2P-XBone [38]
 - Introduce self-organization, fault-tolerance, and content-based routing to virtual IP networks
- Virtual Ring Routing (VRR) [40, 42]
 - DHT-based intra-domain routing protocol implemented directly on top of link layer
 - Location independent address
- Routing on Flat Labels (ROFL) [41, 42]
 - Hierarchical DHT-based inter-domain routing protocol based on Canon [25]
- Naming and mobility management in Autonomic Service Architecture (ASA) using P2P substrate [43, 44]
 - Hierarchical DHT-based naming architecture
 - Supports horizontal and vertical mobility of customers and network elements
- P6P [39]
 - Connects isolated IPv6 sites using P6P tunnels over IPv4 network
 - Separates the two roles of addresses: identifiers, and locators
 - Enables multihoming and dynamic addresses

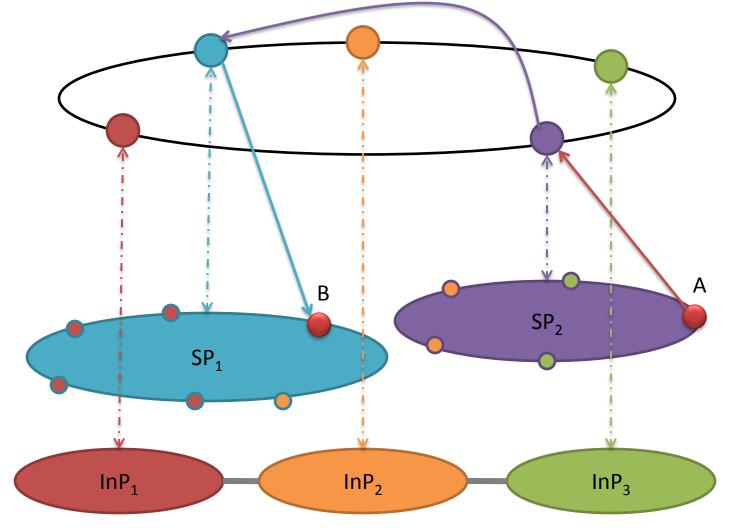

- 38. Fujita *et al*, A Dynamic Topology and Routing Management Strategy for Virtual IP Networks, *IEICE TOC*, 2006.
- 39. Zhou *et al*, P6P: A Peer-to-Peer Approach to Internet Infrastructure, *P2P Systems-III*, 2004.
- 40. Caesar *et al*, Virtual Ring Routing: Network Routing Inspired by DHTs, SIGCOMM, 2006.
- 41. Caesar et al, ROFL: Routing on Flat Labels, SIGCOMM, 2006.
- 42. M. Caesar, Identity-based Routing, Ph.D. Dissertation, University of California Berkeley, 2007.
- 43. Farha *et al*, A Novel Peer-to-Peer Naming Infrastructure for Next Generation Networks, IPOM, 2007.
- 44. R. Farha, Autonomic Service Architecture for Next Generation Network, *Ph.D. Dissertation*, University of Toronto, 2008.


Outline

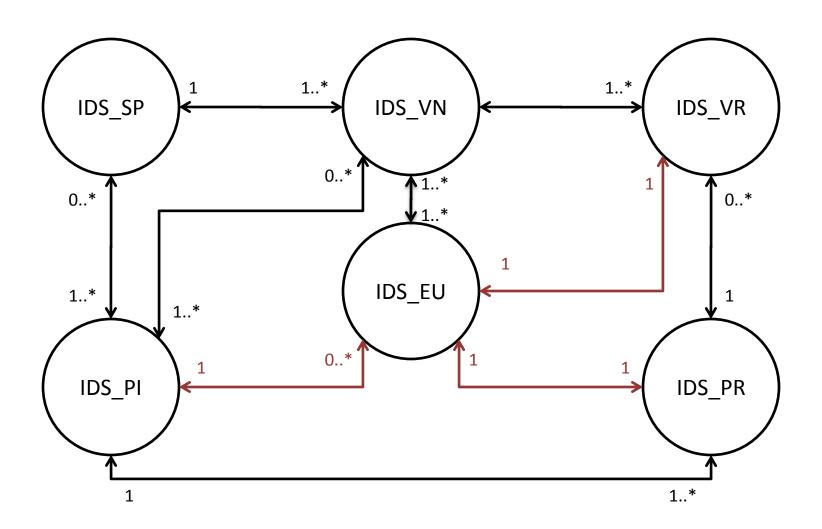
1. What is Network Virtualization?
2. Why P2P concepts might be useful?
3. Where can we use those concepts?
4. How?


Framework Design Goals

- VN Provisioning and Creation
 - A common marketplace for trading of basic, and composite VN resources
- Dynamism
 - Aggregate multiple VNs/services to create composite ones quickly and without hassle
 - Fast and easy to add, remove, or move virtual nodes/resources
- Naming and Addressing
 - Separation between *Identity* and *Location*
 - Support Mobility, and Multihoming in the form of simultaneous connection to multiple VNs
- Identity based Routing

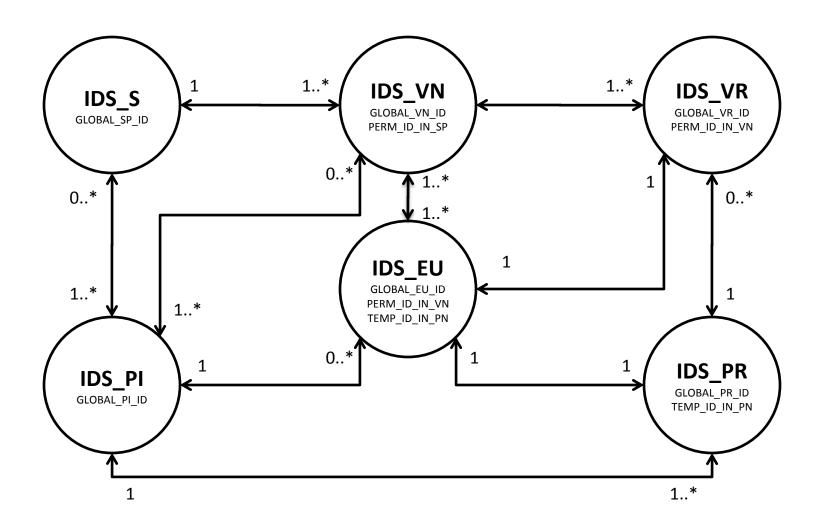


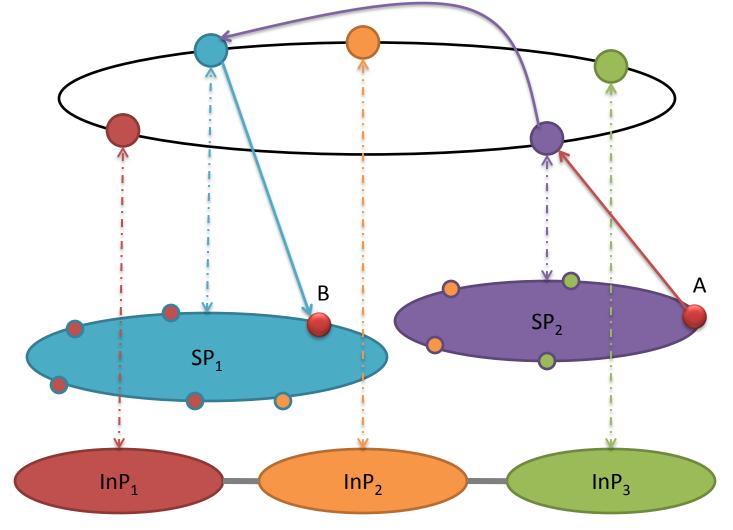
Creating Composite VNs


Inter VN Pair-wise Communication

P2P-based Naming in VN Environment (1)

- Identifier Spaces [43, 44]
 - 1. Service Providers (IDS_SP)
 - 2. Virtual Networks (IDS_VN)
 - 3. Virtual Resources (IDS_VR)
 - 4. Infrastructure Providers / Physical Networks (IDS_PI)
 - Physical Resources (IDS_PR)
 - 6. End Users (IDS_EU)


P2P-based Naming in VN Environment (2)


P2P-based Naming in VN Environment (3)

ID_SPACE	IDs
IDS_SP	GLOBAL_SP_ID
IDS_VN	GLOBAL_VN_ID, PERM_ID_IN_SP
IDS_VR	GLOBAL_VR_ID, PERM_ID_IN_VN
IDS_PI	GLOBAL_PI_ID
IDS_PR	GLOBAL_PR_ID, TEMP_ID_IN_PN
IDS_EU	GLOBAL_EU_ID, PERM_ID_IN_VN, TEMP_ID_IN_PN

P2P-based Naming in VN Environment (4)

Inter VN Pair-wise Communication

TO DO

- 1. Complete defining *Identifier Spaces* (*ID_SPACEs*)
- Complete the mappings between different IDs internal and external to ID_SPACEs
- Resolve the issues regarding global and local placement of mappings
- 4. Finalize the join, leave, and update algorithms
- 5. Analyze and compare the performance of the proposed framework with other options (e.g. VRR, ROFL) qualitatively and quantitatively (if possible)

Summary

1. What is Network Virtualization?
 2. Why P2P concepts might be useful?
 3. Where can we use those concepts?
 4. How? Hierarchical DHT, identity-based routing etc.

Questions? | /*Comments*/