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1 Introduction

Web services are the new paradigm of distributed computing because of their promise to-

ward interoperability of applications and integration of large scale distributed systems. On

the other hand, with the ever increasing number of computers all around the globe, peer-

to-peer(P2P) networks have gained large popularity capitalizing on their open, distributed,

inter-operable, cost-effective and resource-friendly nature. As a consequence, the problem

of finding a way to effectively combine web services with P2P technologies has gained much

attention because of its potential to be an effective solution to business integration prob-

lems. Hence, different large-scale service infrastructures utilizing P2P systems have been

proposed by many research groups. Service discovery, an integral part of any large-scale

service infrastructure, ensures that all the services provided by different providers within the

infrastructure are collected, organized and published in a way that the clients can efficiently

search and find their desired services.

Due to the transitory nature of peer population and ever-changing information con-

tent in these peers, users almost always do not have the exact information about the available

services/resources in the system. As a result, queries are based on partial information re-

quiring a flexible search mechanism which, by the way, also have to be complete, scalable

and efficient. Existing search mechanisms in P2P networks, in general, do not provide a

satisfactory solution for achieving the conflicting goals of flexibility and efficiency. Unstruc-

tured search techniques sacrifice efficiency for flexibility, whereas structured ones (mostly
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service-name=service:print

scope-list=staff,student

location=DC1234

color=true

double-sided=true

language=PS

paper-size=letter,a4

(a) Service Advertisement

service-name=service:print

scope-list=student

paper-size=letter

(b) Query

Figure 1: Example advertisement and query in Service Discovery Systems

Distributed Hash Table (DHT)-based) can route the queries efficiently but support exact-

matching only. As all of the service discovery systems in P2P networks are, in one way or

another, based on these search mechanisms they also suffer from same problems. A lot of

efforts have been given in recent years by many research groups all over the world to mini-

mize the conflict between the goals of flexibility and efficiency and to reach a viable solution;

Secure Service Discovery System (SSDS) [7, 8], INS/Twine [6], Squid [15, 16], PWSD [11]

to name a few.

The goal of this work is to review some of the most significant of these already existing

service discovery solutions along with their underlying search technique Chord [17]. A new

search technique in P2P networks called Distributed Pattern Matching System (DPMS) [2],

that supports partial matching, is also explained and some ideas to build a service discovery

system based on DPMS are proposed. We believe that the inherent capability of DPMS to

partially match patterns can also be extended to service discovery problem.

1.1 Problem Definition and Motivation

The motivation behind solving partial matching problem for service discovery systems can

be explained by formally defining the structure of advertisements and query patterns in these

systems. An advertisement of a particular service, Ai can be expressed as a set of ni attribute-

value pairs, Ai = {Ai,1, Ai,2 . . . Ai,ni
}, where each Ai,j = (ai,j , vi,j) and 1 ≤ j ≤ ni. If there

are N advertisements from different providers in the system, the set of advertisements, A

can be expressed as, A =
⋃N

i=1 Ai. On the other hand, a query, Q is set of m attribute-value

pairs, Q = {Q1, Q2 . . . Qm}, where each Qk = (ak, vk) and 1 ≤ k ≤ m.

So the problem of finding a service given a query Q is essentially a subset-matching

problem, where the goal is to find all the services Ai such that Q ⊆ Ai and 1 ≤ i ≤ N . Fig-

ure 1 shows examples of an advertisement and a query that will match to the advertisement.
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Figure 2: Generic architecture and steps of service discovery

The existing techniques (SSDS, INS/Twine, Squid etc.) require multiple DHT-lookup

operations for solving a single query because standard operation is based on exact-match

semantics. So, they create separate keys for each of the attribute-value pairs, Ai,j in an

advertisement Ai and while searching for query, Q they perform exact-matched DHT-lookup

operation m times for m attribute-value pairs in Q. This process is extremely inefficient.

For the example query shown in Figure 1(b), a DHT-based solution will make three queries

to find the advertisements that have service-name=service:print, scope-list=student

and paper-size=letter. Then it will intersect the separate results from each query to find

out the result, if any.

On the other hand, Distributed Pattern Matching System (DPMS) inherently sup-

ports partial matching and it is experimentally proved in [2] that it outperforms DHT-based

lookup protocols such as Chord in the context of content sharing networks. We believe that

same idea can also be applied here.

1.2 Generic Architecture

Before examining different systems in detail, an overview of a service discovery system is

necessary. Service discovery systems generally consist of three types of entities - servers,

clients and middle agents [9]. This ’middle agent’ can be matchmakers, directory service,

blackboard agents or brokers. This process of discovery has following general steps (Figure 2)

[5]: 1) Bootstrapping, where clients and service providers first attach themselves to the

system, 2) Service advertisement, where service provider publishes advertisement(collection

of attribute-value pairs), 3) Querying, where a client looks for a desired service (usually a
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partial service description), 4) Lookup, where searching for the given query happens and 5)

Service handle retrieval, the final step, where a client retrieves the means to access that

service.

Directory architecture adopted by different service discovery approaches can broadly

be classified as centralized and decentralized [5] depending on how the directory/registry is

stored and managed. Centralized UDDI is an example of such architecture. The problem

with this approach is that the centralized server becomes a performance bottleneck and forms

a single point of failure. On the hand, there are several decentralized variants like replicated

(e.g. INS), distributed or partitioned (e.g. SLP, Jini, UPnP) and hybrid (e.g. TWINE) [2].

The obvious advantage is the removal of the bottleneck.

1.3 Paper Organization

Section 2 discusses two lookup protocols for P2P systems, namely Chord and DPMS, which

perform the lookup operation as mentioned in the fourth step of the generic architecture.

Section 3 is concerned with existing service discovery systems. In this section, three popular

systems, namely SSDS, INS/Twine and Squid, are examined and the way they handle multi-

criteria search is discussed. Section 4 gives some ideas regarding a DPMS-based service

discovery system that might be able to alleviate the problems of the existing systems as

explained in Section 3.

2 Peer-to-peer Lookup Protocols

Most P2P service discovery systems are based on one or another existing lookup protocols

such as Chord [17], CAN [12], Pastry [14] etc, which can broadly be categorized as structured

DHT-based lookup protocols. There are other lookup protocols which are unstructured or

semi-structured. Flooding is an example of an unstructured lookup protocol and DPMS is

an example of a semi-structured one. Here we elaborate on Chord, the most widely used

lookup protocol in P2P service discovery systems. We also discuss the basic architecture of

DPMS which will be used as the underlying lookup protocol for our proposed system.

2.1 Chord

Chord [17] is a DHT-based distributed lookup protocol that provides only one operation:

given a key, it maps the key onto a node. To achieve this functionality it uses consistent

hashing to assign keys to Chord nodes. Because of its simplicity, there are a lot of P2P

applications that are built on top of Chord. One can easily use it to store and lookup data
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by assigning a key with each data item and storing the key/data pair at the node to which

the key maps. Chord adapts well as nodes join and leave the system and it is theoretically

and experimentally known to be scalable. And its communication cost, measured in number

of hops to find a node given a key, is logarithmical with the number of Chord nodes.

Features Chord makes it easier to build P2P applications on top of it by providing some

excellent features like, (details related to these features can be found in [17])

• Load balance

• Decentralization

• Scalability

• Availability

• Flexible Naming

2.1.1 Structure and Protocol

Chord uses fast distributed hashing to map keys to nodes but it improves the scalability

of consistent hashing by removing the constraint that every node needs to know about all

other nodes in the system. Instead, each node knows about O(log N) other nodes, and lookup

requires O(log N) messages only, where N is the total number of nodes in the system. This

also reduces the amount of ‘routing’ information saved in each node.

Chord Ring The consistent hash function assigns each node and key with an m-bit iden-

tifier using SHA-1 [10]. The identifier length must be large enough to make the probability

of two nodes or keys hashing to the same identifier negligible. Identifiers are ordered on an

identifier circle modulo 2m. Any key k is assigned to the first node whose identifier is equal

to or follows (the identifier of) k in the identifier space. This node is called the successor

node of key k and the identifier circle is known as the Chord ring. Figure 3 shows a Chord

ring (m=5) which has ten nodes and stores four keys. The successor of K7 is N8 so it resides

in there. Similarly, the successor of both K21 and K29 is N31. So both of them are stored

in N31 and K53 is located at N56 due to similar reasoning.

2.1.2 Lookup Operation

In its simplest form lookup on a Chord ring can be implemented with little per node memory.

It starts from a node and visits all the nodes clockwise until the desired key k is found and

5



Figure 3: Chord ring consisting of ten nodes storing four keys

then returns back to the calling node with result. For example, in Figure 3 if a lookup(53)

call is executed in N5, messages will pass through all the nodes up to N56, where K53 is

located, and then return back with the result following the reverse path. As a result, number

of messages exchanged is O(N) in the worst case scenario.

To reduce the number of messages, Chord implements an O(log N) solution at the

expense of some memory in each of the participating nodes. In this solution each node

stores a finger table containing m entries, where ith entry in the table at node n contains

the identity of the first node s that succeeds n by at least 2(i−1) on the Chord ring, i.e.,

s = successor(n + 2i−1), where 1≤ i ≤ m. This node s is called the ith finger of node n.

The example in Figure 4 shows the fingers of node N5. The first finger of N5 points to N8

as it is the first available node in the ring succeeding (5 + 20) mod 25 = 6.

Now the lookup operation speeds up using the fingers stored in each node. If the

same lookup(53) operation is executed now, from N5 a message will be passed to N31 as it

is the maximum valued identifier on the ring accessible from N5 which is smaller than N56

that holds the key K53. N31 will then use its own finger table to reach N49, which will

eventually find N56 to complete the query. It is proved in [17] that number of hops required

to perform a lookup operation is O(log N).
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Figure 4: Fingers of node N5

2.1.3 Node Joins and Failures

At every point Chord needs to make sure that a node’s successor pointers and the entries

in its finger table are up to date. Inconsistencies can occur whenever a new node joins into

the system or some one leaves or fails. To manage this problem Chord runs a stabilization

protocol in the background for every join operation. Every time a node joins, this stabilize

protocol updates the successors as well as the fingers using the information from the nodes

preceding and succeeding the new node on the ring. Even though there might be a certain

amount of time when all the fingers are not updated, it is guaranteed that the system will

successfully perform lookup operations using the successor list albeit a little slowly [17].

The correctness of the Chord protocol basically relies on the fact that each node

knows its successor. But it can be compromised if a successor fails or leaves. To prevent this

each node keeps track of r successors instead of just one. As a result, the system will perform

perfectly fine until all r successors fails, which is highly unlikely. Assuming each node fails

independently with probability r, the probability that all the nodes in the successor list will

simultaneously fail is only pr. It can also be shown that r = Ω(N), which is pretty small in

practice i.e. memory requirement per node does not increase that much due to this extra

book-keeping.
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2.2 DPMS

Distributed Pattern Matching System or DPMS [2, 3, 4] is a semi-structured search technique

for P2P systems that enables flexible and efficient search with partial matching. DPMS uses

a hierarchy of indexing peers for disseminating advertised patterns. Patterns are replicated

and aggregated using Bloom filters at each level along the hierarchy to ensure robustness

and fault-tolerance while keeping the storage requirement in each node as low as possible.

An advertised pattern can be discovered using any subset of its 1-bits, which allows inex-

act matching and queries in conjunctive normal form. The search complexity of DPMS is

O(log N + ξ log N
log N

), where N is the total number of nodes/peers in the system and ξ is

proportional to the number of matches for a given query.

Features Features that make DPMS a better alternative in certain scenarios than Chord

or other structured DHT-based P2P systems include,

• Partial matching capability

• Search completeness

• Load balance

• Decentralization

• Scalability

2.2.1 Architectural Overview

In DPMS a peer can act as a leaf peer or an indexing peer. A leaf peer is at the bottom layer

of the indexing hierarchy and advertises its indices (created from the objects it is willing to

share) to other peers in the system. An indexing peer, on the other hand, stores indices from

other peers (leaf peers or indexing peers) that are located in lower level of the hierarchy.

Hierarchical indexing technique is also very common in many unstructured P2P sys-

tems. But DPMS improvises it by using replication at each level at the cost of some extra

storage. DPMS uses replication trees (Figure 5(a)) for disseminating patterns from a leaf

peer to a large number of indexing peers (darker edges in the figure shows the path of

propagation). But this can generate large volume of advertisement traffic. To overcome this,

DPMS combines replication with lossy-aggregation. As shown in Figure 5(b), advertisements

from different peers are aggregated and propagated to peers in the next level along the ag-

gregation tree. The amount of replication and aggregation is controlled by two system-wide

parameters, namely replication factor R and branching factor B. Patterns advertised by a
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Figure 5: Formation of Replication and Aggregation trees in DPMS

leaf peer are propagated to Rl indexing peers at level l. On the other hand, an indexing peer

at level l contains patterns from Bl leaf peers. Hence DPMS actually forms a lattice-like

structure. The optimum values for R and B are experimentally derived by trial and error.

Index/Pattern Construction Unlike DHT-based solutions where hash functions are

used to obtain an index for a node, DPMS uses Bloom filters for the same purpose. To

provide inexact matching it fragments all the keywords into η-grams (usually tri-grams). It

then passes all these η-grams through a Bloom filter to get a bit-pattern for the advertise-

ment. This procedure is followed for all the advertising peers and then DPMS hierarchy is

created, as described earlier, using repeated replication and aggregation. For example, if any

peer want to advertise ‘lord of the rings’, it will create a bit pattern by passing the set of

tri-grams P1 = {lor, ord, the, rin, ing, ngs} through a Bloom filter. Similarly ‘lord of war’

will pass P2 = {lor, ord, war} through the Bloom filter.

Query keywords are also fragmented into η-grams and encoded into a Bloom Filter.

The 1-bits on a query should be a subset of any pattern that it should match against.

This kind of encoding allows DPMS to retrieve information based on partial matching. For

example, if someone has a query ‘∗lord∗’, the resulting tri-grams’ set would be Q = {lor, ord}

and it will match with both P1 and P2 as Q ⊂ P1 and Q ⊂ P2, respectively.
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Figure 6: Index Hierarchy and Query Routing in DPMS

Aggregation Scheme As DPMS provides pluggable interface for aggregation, choice of

an appropriate aggregation scheme is very important to reduce the large volume of traffic

it creates by using replication at each level. A trivial way of pattern aggregation is bitwise

OR function, which is already used by several other systems. But due to its high loss of

information, DPMS proposes a don’t care based aggregation scheme where each bit of the

aggregated pattern is replaced by a don’t care, X whenever corresponding bits of the two

participating patterns mismatch. It ensures maximum matching but doubles the size of each

pattern as there are three states for each bit now. Another observation is this aggregation

scheme may result in more matches than there actually are as X will match with anything

whether be it 0, 1 or X. Details of this aggregation process can be found in [2, Section 3.6].

Index Distribution and Topology Maintenance Index peers are distributed along

the levels of DPMS hierarchy. Each of them belong to two sets, vertical(i.e. level) and

horizontal(i.e. replicated groups). For example, peer T in Figure 6 belongs to level 2 and

group 1.

Peers interact with each other in different roles. So each indexing peer keeps Replica-

List, Parent-List, Child-List, Sibling-List and Neighbor-List. In Figure 6, peer D has

replica G, parents {S, T}, children {A, B, C}, siblings {E, F} and neighbor Y .

2.2.2 Lookup Operation

The query life-cycle can be divided into three phases: ascending phase, blind search phase

and descending phase. In the ascending phase, an initiating peer, I searches in its local

information and if there is no match it sends the query to any of its parents. This continues

until a peer E at the top-most level is reached, i.e. E has no parents. At this point,
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blind search phase starts as E has no option but to blindly forward the message to some

other peer(its neighbors and siblings) in its group. As the query traverses a peer at level

l, aggregates from Rl leaf peers are being checked. If any match is found the query is

forwarded to associated child, otherwise if no peer in the topmost level can find a match the

query results in a failure.

A query enters into the descending phase when it hits a peer that has some aggregate

matching the query. The query is then forwarded to the child peer advertising the matching

aggregate. This process recurs until the query reaches the leaf peer advertising the pattern.

Then same path is followed in reverse to send back the result.

In Figure 6, a query is initiated by peer A and the result of the query is in node Z.

The path of the query resolution is shown by dashed lines. The path A → D → T forms the

ascending phase, whereas T → V and V → Y → Z are blind search phase and descending

phase respectively.

2.2.3 Node Joins and Failures

A peer can join the system as a leaf peer or an indexing peer or both. To join as a leaf, a

peer say C, has to find a level 1 indexing peer, say P , with an empty slot in its child-list. C

joins the indexing hierarchy as a child of P . On the other hand, to join as an indexing peer,

C has to choose a level and group (described earlier) with empty space and then construct

required lists e.g. parent-list, child-list etc. This is a non-trivial process and details of this

algorithm is explained in [2, Section 3.10]

Peer departures and failures are handled in almost similar way. As there are multiple

replicas, a query will almost always find its way. The probability that all the replicas of

a peer will fail is very low. One problem is that whenever a peer leaves or fails, there is

a cascading effect on all its parents and children, as all of them were keeping track of it.

Everyone has to update there lists and there might be a certain latency until the system

reaches a stable state.

3 Existing Service Discovery Systems

3.1 Secure Service Discovery Service (SSDS)

Secure SDS or SSDS [7, 8] is an authenticated Java RMI based scalable, fault-tolerant, and

secure information repository providing clients with directory-style access to all available

services. It supports both push-based and pull-based access; the former allows passive dis-

covery, while the latter permits the use of a query-based model. Service descriptions and
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queries are specified in XML, which gives flexibility in expressing advertisements and queries.

On the other hand, it enforces authentication to make sure that no one misuses its open envi-

ronment. The SDS architecture handles network partitions and component failures to make

it robust against typical problems in P2P networks. One of the achievements of SSDS is

that it supports a form of multi-criteria search using a novel query filtering approach. A

brief summary of its architecture and operation is presented below.

3.1.1 Design Concepts

The SDS system is composed of three main components: clients, services, and SSDS servers.

Clients want to discover the services that are running in the network. SDS servers enable

this by gathering information from the services and then using it to fulfill client queries. To

enable this SSDS uses the following concepts,

Announcement-based Information Dissemination SSDS uses periodic multicast an-

nouncements as its primary information propagation technique, and uses information caching

to manage the states of the system. The caches are updated by the periodic announcements

or purged based on the lack of them. This mechanism allows SSDS to make sure that compo-

nent failures are tolerated in normal mode of operation rather than using a special recovery

mechanism.

XML Service Description Instead of using flat name-value pairs, SSDS uses XML to

describe both service descriptions and client queries. XML allows the encoding of arbitrary

structures of hierarchical named values and enables subtyping via nested tags.

Privacy and Authentication To save itself from malicious attacks SSDS uses encryption

and authentication. Associated with every component in the SSDS system is a principal name

and public-key certificate that can be used to prove the component’s identity to all other

components in the system.

Hierarchical Organization As a scalability mechanism, SSDS servers organize into mul-

tiple shared hierarchies. From an architectural point of view, SSDS is the closest match

to DPMS. Like DPMS, SSDS uses Bloom filters and aggregation, and index distribution

is achieved through a hierarchy of indexing nodes. In contrast to the lattice-like hierarchy

used by DPMS, SSDS uses a tree-like hierarchy for index distribution. Also it does not use

replication and uses bitwise OR as its aggregation function. Figure 7 shows the main com-

ponents of SDS hierarchy and interactions between them. Apart from clients, SDS servers
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Figure 7: SDS Architecture

and services there are two more components, namely Capability Manager and Certificate

Authority, who take part in routing and authentication procedures of SSDS respectively.

Detailed explanation can be found in [8, Section 3].

3.1.2 Multi-Criteria Search

SSDS hybridizes flooding, mapping and centralization to approach multi-criteria search prob-

lem. It uses two key ideas. First, it uses push model along with pull based protocols to update

the system proactively. Second, instead of proactively filling nodes with cached query re-

sponses from the information in updates, it instead propagates summaries of node contents,

which are used as filters that are applied to queries.

To implement query filtering it uses dynamic construction and adaptation of the

neighbor relationships between SDS servers. It also decomposes the information propagation

problem into two sub-problems: providing lossy aggregation (it uses bitwise OR) of service

descriptions as they travel farther from their source and dynamically flooding client queries

through the filters to the appropriate servers based on the local aggregate data (a query

routing mechanism). In order to support multi-criteria search it cannot use DHT lookup so

it uses Bloom filters as in DPMS.
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Query Routing and Lookup Operation Upon receipt of a service announcement, an

SDS server S1 applies multiple hash functions to various subsets of tags in the service de-

scription and uses the results to set bits in a bit vector. The resulting bit vector (i.e. the

filter) summarizes its collection of descriptions. This filter is given to neighbor S2. When

S2 receives a query that it cannot resolve locally, it checks to see if the query should be

forwarded to S1 by similarly multiply hashing it and checking that all the matching bits are

set in S1s filter. If any bit is not set, then the service is definitely not there. If all bits are

set, then either it is a hit, or a false positive has occurred, which is a common problem of

using Bloom filters. The latter forces unneeded additional forwarding of the query, but does

not sacrifice correctness.

If SDS Server has children it aggregates the bit vectors from all of its children with

its own vector using bitwise OR function and passes the resultant vector to its parent, who

then associates it with corresponding branch of the tree.

Whenever a query arrives, it can be coming in either upward direction or downward

direction. If a query is coming up the hierarchy, the receiving SDS server checks to see if

it hits locally or in any of its children; if not, it passes it upward. On the other hand, If a

query is coming down the hierarchy, it is checked locally and against the childrens tables. If

there is a hit locally then it is resolved locally. If there is a hit in any of the childrens tables,

the query is routed down to the matching children. If neither of these occur, it is known as

a miss.

3.2 INS/Twine

INS/Twine [6] is an approach to scalable intentional resource discovery, where resolvers col-

laborate as peers to distribute resource information and to resolve queries. It uses Intentional

Naming System (INS) [1] as its backbone and relies on Chord for routing. It maps resources

to resolvers by transforming descriptions into numeric keys in a manner that preserves their

expressiveness, facilitates data distribution and enables efficient query resolution. Twine

achieves scalability via hash-based partitioning of resource descriptions and can evenly dis-

tribute resource information among partitions. It works with arbitrary attribute sets and

can handle queries with wildcards at the end of the query string. Twine uses XML based

resource description and from a resource description, it extracts each unique subsequence of

attributes and values. Each such subsequence is called a strand. It then computes numeric

values of these strands using hash function provided by Chord to maintain its efficient lookup

system. The architecture and operation of Twine is summarized below.
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<res>camera

<man>ACompany</man>

<model>AModel</model>

</res>

(a) Resource description (b) AVTree

Figure 8: Example of a very simple resource description and its corresponding AVTree

3.2.1 System Architecture

One of the most important aspects of Twine architecture is the way it represents resource

descriptions. It deserves special attention because of its uniqueness.

Resource Description Resources in INS/Twine are described with hierarchies consisting

of attribute-value pairs as in XML. It then converts any such description into a canonical

form : an attribute-value tree (AVTree). Figure 8 shows an example of a very simple

resource description and its AVTree. Each resource description points to a name-record,

which contains information about the current network location of the advertised resource,

including its IP address, transport/application protocol, and transport port number. In

INS/Twine, a resource matches a query if the AVTree formed by the query is the same as

the AVTree of the original description, with zero or more truncated values. For example, the

resource from Figure 8 would match the query: <res>camera<man>ACompany</man></res>

or the query: <res>camera</res>.

Architecture Overview INS/Twine uses a set of resolvers that organize themselves into

an overlay network to route resource descriptions to each other for storage, and to collabo-

ratively resolve client queries. Each resolver knows about a subset of other resolvers on the

network. Communication between resolvers takes place in the network core. These resolvers

are known as Intentional Name Resolvers (INRs).

The architecture of INS/Twine is such that there are three layers in each INR, Re-

solver, StrandMapper layer and KeyRouter layer. Resolver interfaces with a local AVTree

storage and query engine. When the Resolver receives an advertisement from its client appli-
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Figure 9: Splitting a resource description into strands

cation, it stores it locally using that engine. The Resolver then splits the advertised resource

description into strands and passes each one to the StrandMapper layer. The StrandMap-

per maps the strand onto one or more numeric m-bit keys using a hash function. It then

passes each key, together with the complete advertisement, to the KeyRouter layer. Finally,

given a key, the KeyRouter determines which resolver in the network should receive the

corresponding value and forwards the information to the selected peer. The KeyRouter may

be thought of as a distributed hash table, where each node on the network keeps key-value

bindings within a dynamically determined key range. It is built on top of Chord, which

efficiently rebuilds its overlay network in the presence of failures. As a result, Chord actually

handles the problem of finding the location of a specific key, which it can do in O(log N)

complexity.

3.2.2 Partial Query Support

At the core of an INS/Twine resolver there is strand-splitting algorithm that extracts strands

from a description. The goal of the algorithm is to break descriptions into meaningful pieces

so resolvers can specialize around subsets of descriptions. At the same time, the splitting

must preserve the description structure and support partial queries. Instead of independently

mapping attribute-value pairs into keys, Twine algorithm for strand-splitting preserves the

description structure and supports partial queries. It extracts each unique prefix subsequence

of attributes and values from a description (either advertisement or query) as illustrated in

Figure 9. As a result, Twine supports partial matching of common prefix* form only. Each

such subsequence is called a strand. Each strand is then used to produce a separate key

using 128-bit MD5 [13] hash function in the StrandMapper layer. Finally, as described

earlier Chord handles the lookup operation for Twine.
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The number of DHT-lookups increases with the number of property-value pairs in the

advertisement (or query) and consequently the amount of generated traffic becomes high.

Load-balancing also becomes a problem in this system. Peers responsible for small or popular

strands become overloaded, and the overall performance degrades. To handle this problem,

specific thresholds are used to cut down traffic into a peer.

3.3 Squid

The Squid [15, 16] is a peer-to-peer information discovery system that supports complex

queries containing partial keywords, wildcards, and ranges. Squid is built on a structured

overlay (Chord) using its lookup protocol and guarantees that all existing data elements

matching a query will be found with bounded costs in terms of the number of messages

and nodes involved. The ‘key’ difference of Squid to other DHT based systems is the way it

maps data elements to the DHT space. While other systems perform this mapping by using a

hashing function that uniformly distributes data elements to nodes enabling them to perform

a search only if the exact identifier is known, Squid uses a dimension-reducing mapping called

a space-filling curve (SFC). SFC works as a recursive, self-similar, and locality preserving

mapping function that enables Squid to support more complex queries than others.

3.3.1 Architectural Overview

The Squid architecture consists of a locality preserving mapping that deterministically maps

data elements to indices, a mapping from indices to nodes in the overlay network and a query

engine for routing and efficiently resolving keyword queries using successive refinements and

pruning. As mentioned earlier Squid uses Chord as its overlay network and for routing.

So the part of the architecture that stands out from all other service discovery systems is

actually the locality preserving mapping of data elements to indices and then mapping of

indices to nodes on the overlay network.

The idea locality preserving means that for some defined measure of locality, data

elements are physically placed close together in the network. For example, if we consider

lexicographical distance as a locality measurement then the words, computer and computing

should be placed in nodes close together, if not the same one; whereas newspaper need not

necessarily be close to them. To achieve this property of locality preservation Squid uses

Hilbert space filling curve.

Hilbert Space Filling Curve An SFC is a continuous mapping from a d-dimensional

space to a 1D space. If there is a d-dimensional cube then an SFC enters the cube in one
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(a) 1st order approximation (b) 2nd order approximation

Figure 10: Hilbert SFC approximations for d = 2, n = 2

point, passes through all the points in the cubes volume exactly once and then comes out

through another point. So using this mapping, it is possible to describe a point in the cube

by its spatial coordinates.

The construction of SFCs is recursive. The d-dimensional cube is first partitioned

into nd equal sub-cubes. An approximation to a space-filling curve is obtained by joining the

centers of these sub-cubes with line segments such that each cell is joined with two adjacent

cells. Figure 10(a) gives an example of such a curve. The same algorithm is recursively used

to fill each sub-cube, rotating and reflecting as necessary in order to keep the connecting

line continuous. The line that connects nkd cells is called the kth approximation of the SFC.

Figure 10(b) shows the 2nd order approximation of Figure 10(a).

A unit length curve constructed at the kth approximation has nk∗d equal segments,

which are equally distributed in each sub-hypercube. If distances across the line are expressed

as base-n numbers, then the numbers that refer to all the points that are in a sub-cube and

belong to a line segment are identical in their first (k ∗ d) digits (Figure 10(a),10(b)).

The most important property to notice is the way it preserves locality. Points that

are close together in the 1-dimensional space (the curve) are mapped from points that are

close together in the d-dimensional space. For k ≥ 1 and d ≥ 2, the kth order approximation

of a d-dimensional Hilbert space filling curve maps the sub-cube [0, 2k − 1]d to [0, 2kd − 1].

The reverse is not true though; not all adjacent sub-cubes in the d-dimensional space are

adjacent. A group of contiguous sub-cubes in d-dimensional space will typically be mapped

to a collection of segments on the SFC known as clusters. The grayed portion in Figure 10(b)

shows such a cluster.

In Squid, SFCs are used to generate the 1-d index space from the multi-dimensional

18



keyword space.

Mapping Indices to Peers Each data element is mapped to the first node on the Chord

ring whose identifier is equal to or follows the key in the identifier space. The complete steps

are, attaching keywords that describe the data elements content, using the SFC mapping

to construct the data elements index, and finally, using this index, store the element at the

appropriate node in the overlay.

3.3.2 Query Processing

As described earlier, data elements in the system are associated with a sequence of one or

more keywords (up to d keywords, where d is the dimensionality of the keyword space).

The queries can consist of a combination of keywords, partial keywords, or wildcards. For

example, for a 2 dimensional keyword space (flight, schedule), (flight, info*), (flight, *) are

all valid queries.

Processing a query is a 2-step task: translate the keyword query to relevant clusters

of the SFC-based index space, and query the appropriate nodes in the overlay network for

data-elements. If the query has no wildcard than it will map to at most one point in the

index space, and node containing that index is found using Chord protocol. Otherwise, in

presence of wildcards, the query identifies a set of indices in the index space. In Figure 10(b),

the grayed portion corresponds to query (00, 1*). Depending on its size, a cluster may be

mapped to one or more adjacent nodes in the overlay network. Once the clusters associated

with a query are identified, straightforward query processing consists of sending a query

message for each cluster.

This technique can be further refined by recursively processing the queries using the

properties of Hilbert SFC. Details can be found in [16, Section 3.4].

4 Proposed Solution

We present a possible implementation of a service discovery system based on the Distributed

Patter Matching System or DPMS. Using the inherent capability of DPMS to partially match

any text, we believe that this newly proposed system will successfully be able to handle the

problems that different existing service discovery technologies, e.g. SSDS, INS/Twine, Squid

etc., face regarding subset matching. If the service advertisements as well as the queries can

be expressed in a common form that can be used as input to Bloom Filter then this problem

can easily be reduced to the searching problem addressed in DPMS.
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Figure 11: Splitting a resource description into edges

4.1 Architectural Overview

The basics are similar to DPMS (Section 2.2). As before, a peer can act as a leaf peer or an

indexing peer. A leaf peer is at the bottom layer of the indexing hierarchy and advertises

its indices (created from the advertisement) to other peers in the system. An indexing peer,

on the other hand, stores indices from other peers (leaf peers or indexing peers) that are

located in lower levels of the hierarchy.

4.1.1 Resource Description

As mentioned earlier, if we can convert an advertisement or a query into a form that can

be used to create indices in DPMS, we can convert DPMS into an efficient service discovery

system. Hence, a suitable representation of resources is of utmost importance in this proposed

system. There are two choices to describe a resource. One is the trivial flat description of

attribute-value pairs and the other is using XML for describing advertisements and queries.

Even though XML has been extensively used in most of the current service discovery systems

for its hierarchical representation of attributes, it may not be very useful when used with a

DPMS based service discovery solution.

In general, DPMS uses the keywords used to describe an object to create indices using

Bloom filters. So we can feed flat description of attribute-value pairs into Bloom filter to

create index for an advertise or a query. On the other hand, we can also use XML and then

break it up in ‘strands’ as in INS/Twine (Section 3.2) and then feed those strands into the

Bloom filter to create the index. The problem with ‘strands’ have already been described

before. In this representation, prefix information is embedded in each strand and as a result

the main goal of using DPMS, wildcards at any position to perform a search, is hampered.

A better solution would be to use AVTree as in INS/Twine but to decompose it
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differently. Instead of keeping the prefix information in each decomposed part by taking the

paths from root to each node, we can use all the edges of an AVTree separately for indexing

purpose. This would give succinct representation of advertisement and query along with

flexibility to search for any portion independently. Figure 11 shows an example of this new

splitting process. The output from the splitting process can then be fed into the Bloom filter

to indices for advertisements as well as for performing queries.

Lookup operation then proceeds in a way similar to DPMS.

4.2 Security

DPMS has no security and privacy mechanisms in the system which can be improved by

introducing secured connections and authentication procedures. As in SSDS, a global Cer-

tificate Authority (CA) can be introduced to ensure security. Each service provider should

have a certificate signed by the CA, whose public key is well known. When a client tries

to contact a service provider from the search result, it will contact the CA and in reply

the CA will send back a matching certificate. That certificate will ensure that the client is

contacting with a valid, authentic provider. Secured connections should also be enforced to

make sure that valuable data transfered between client and service providers are protected

from malicious attacks.

5 Conclusion

In this paper we have summarized some of the existing DHT-based service discovery systems

along with their underlying lookup protocol as well as their capabilities and limitations

in handling queries with wildcards i.e. multi-criteria search. We have also discussed a

comparatively new lookup protocol, DPMS and proposed a service discovery system capable

of wildcard matching based on DPMS. Performance of the proposed system should be similar

to DPMS as presented in [2, Section 3.13]. But for actual results, which we intuitively believe

to be satisfactory, we will have to conduct simulations on large data sets and compare the

results with existing systems.
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