Orchestra

Managing Data Transfers in Computer Clusters

Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I. Jordan, Ion Stoica

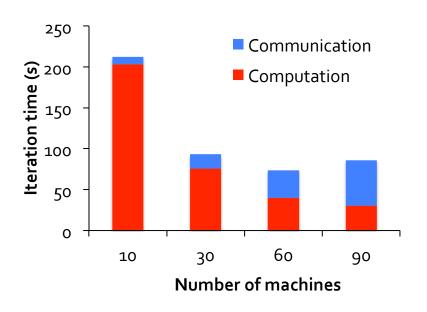
Moving Data is Expensive

Typical MapReduce jobs in Facebook spend 33% of job running time in large data transfers

Application for training a spam classifier on Twitter data spends 40% time in communication

Limits Scalability

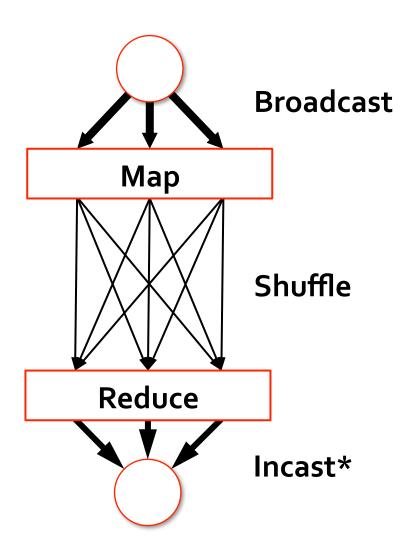
Scalability of Netflix-like recommendation system is bottlenecked by communication



Did not scale beyond 60 nodes

» Comm. time increased faster than comp. time decreased

Transfer Patterns



Transfer: set of all flows transporting data between two stages of a job

» Acts as a bαrrier

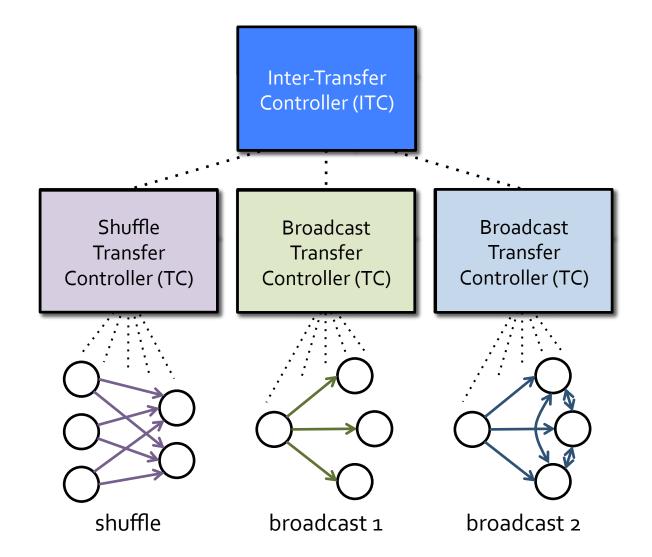
Completion time: Time for the last receiver to finish

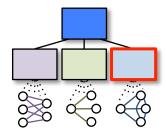
Contributions

1. Optimize at the level of transfers instead of individual flows

2. Inter-transfer coordination

Orchestra



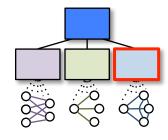


Cornet: Cooperative broadcast

Broadcast same data to every receiver » Fast, scalable, adaptive to bandwidth, and resilient

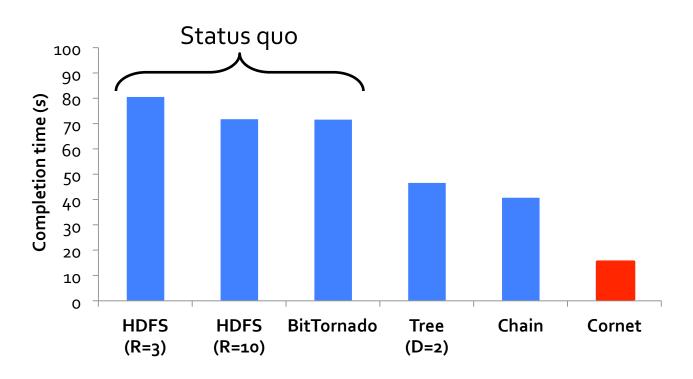
Peer-to-peer mechanism optimized for cooperative environments

Observations	Cornet Design Decisions
1. High-bandwidth, low-latency network	✓ Large block size (4-16MB)
2. No selfish or malicious peers	 ✓ No need for incentives (e.g., TFT) ✓ No (un)choking ✓ Everyone stays till the end
3. Topology matters	✓ Topology-aware broadcast

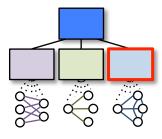


Cornet performance

1GB data to 100 receivers on EC2



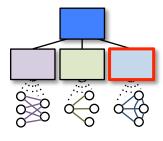
4.5x to 5x improvement



Many data center networks employ tree topologies

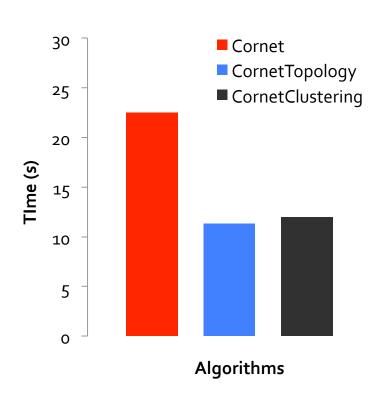
Each rack should receive exactly one copy of broadcast » Minimize cross-rack communication

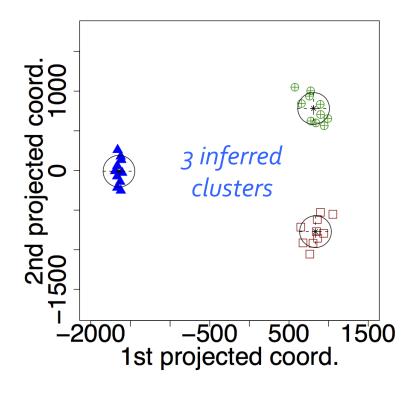
Topology information reduces cross-rack data transfer » Mixture of spherical Gaussians to infer network topology



Topology-aware Cornet

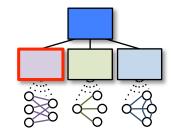
200MB data to 30 receivers on DETER

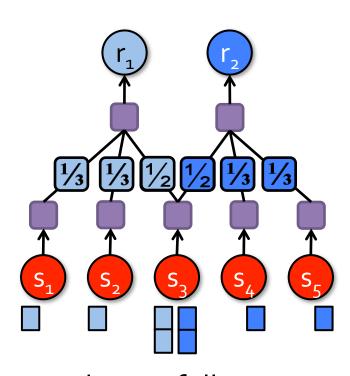




~2x faster than vanilla Cornet

Status quo in Shuffle



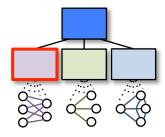


Links to r_1 and r_2 are full: 3 time units

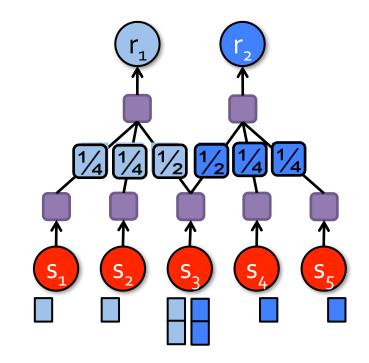
Link from s_3 is full: 2 time units

Completion time: 5 time units

Weighted Shuffle Scheduling



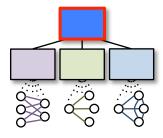
Allocate rates to each flow using weighted fair sharing, where the weight of a flow between a sender-receiver pair is proportional to the total amount of data to be sent



Completion time: 4 time units

Up to 1.5X improvement

Inter-Transfer Controller aka Conductor



Weighted fair sharing

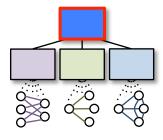
- » Each transfer is assigned a weight
- » Congested links shared proportionally to transfers' weights

Implementation: Weighted Flow Assignment (WFA)

» Each transfer gets a number of TCP connections proportional to its weight

» Requires no changes in the network nor in end host OSes

13



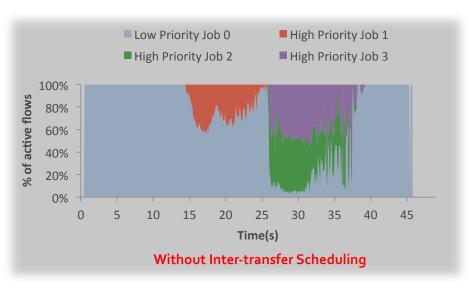
Shuffle using 30 nodes on EC2

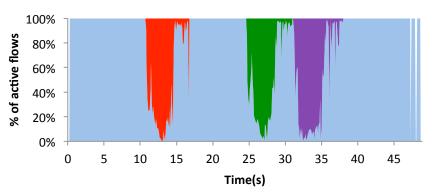
Two priority classes

» FIFO within each class

Low priority transfer » 2GB per reducer

High priority transfers» 250MB per reducer





Priority Scheduling in Conductor

43% reduction in high priority xfers 6% increase of the low priority xfer

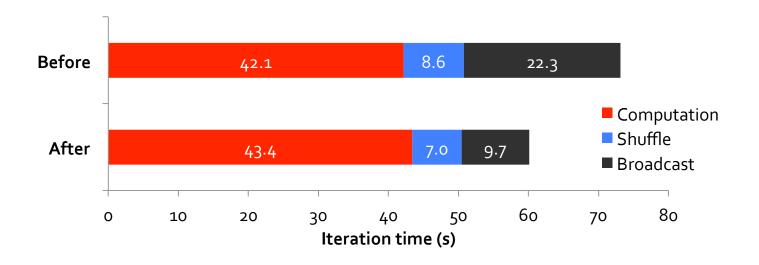
End-to-end evaluation

Developed in the context of Spark – an iterative, inmemory MapReduce-like framework

Evaluated using two iterative applications developed by ML researchers at UC Berkeley

- » Training spam classifier on Twitter data
- » Recommendation system for the Netflix challenge

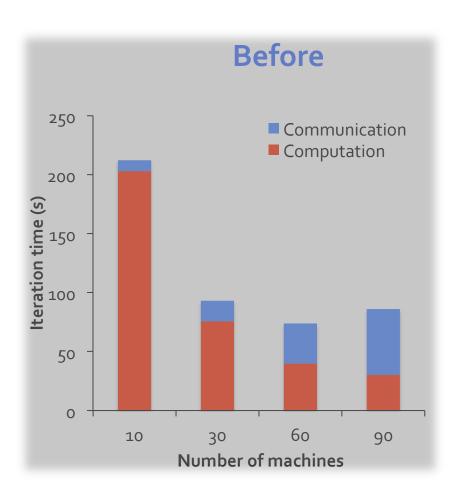
Faster spam classification

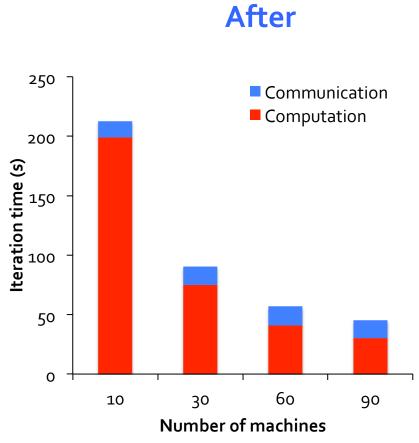


Communication reduced from 42% to 28% of the iteration time

Overall 22% reduction in iteration time

Scalable recommendation system





1.9x faster at 90 nodes

Related work

DCN architectures (VL2, Fat-tree etc.)

» Mechanism for faster network, not policy for better sharing

Schedulers for data-intensive applications (Hadoop scheduler, Quincy, Mesos etc.)

» Schedules CPU, memory, and disk across the cluster

Hedera

» Transfer-unaware flow scheduling

Seawall

» Performance isolation among cloud tenants

Summary

Optimize transfers instead of individual flows

» Utilize knowledge about application semantics

Coordinate transfers

- » Orchestra enables policy-based transfer management
- » Cornet performs up to 4.5x better than the status quo
- » WSS can outperform default solutions by 1.5x

No changes in the network nor in end host OSes

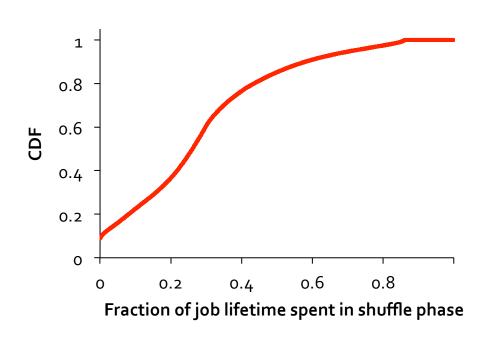
http://www.mosharaf.com/

BACKUP SLIDES

MapReduce logs

Weeklong trace of 188,000 MapReduce jobs from a 3000-node cluster

Maximum number of concurrent transfers is several hundreds



33% time in shuffle on average

Monarch (Oakland'11)

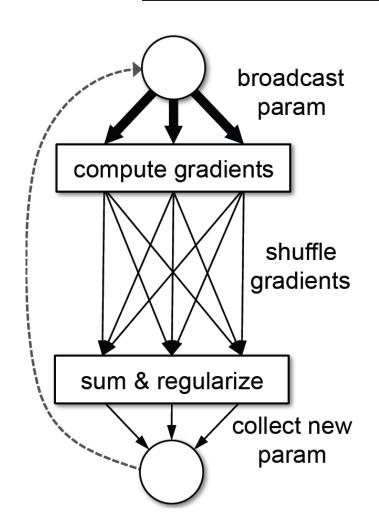
Real-time spam classification from 345,000 tweets with urls

- » Logistic Regression
- » Written in Spark

Spends 42% of the iteration time in transfers

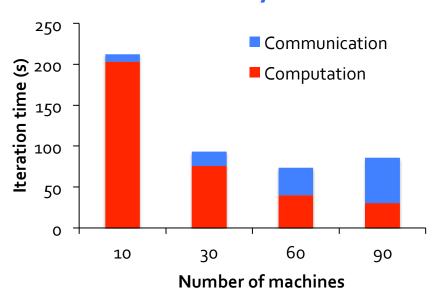
- » 30% broadcast
- » 12% shuffle

100 iterations to converge

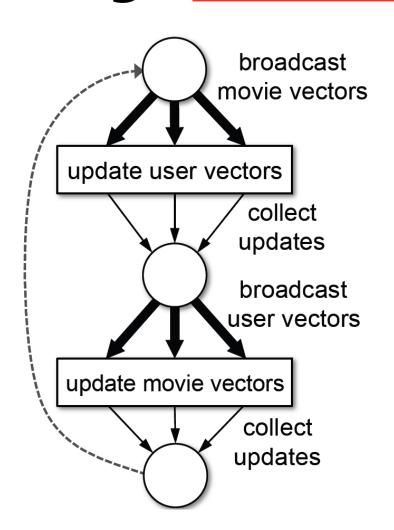


Collaborative Filtering

Does not scale beyond 60 nodes

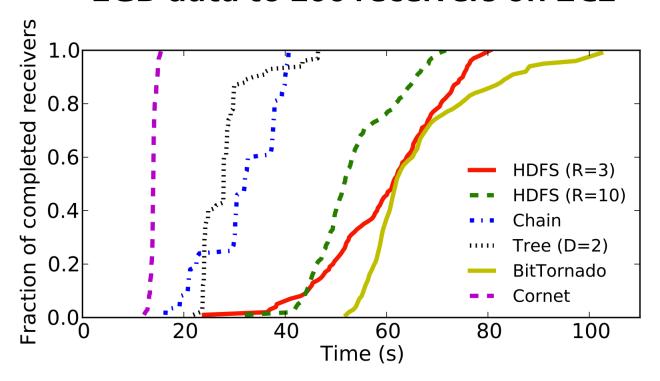


385MB data broadcasted in each iteration



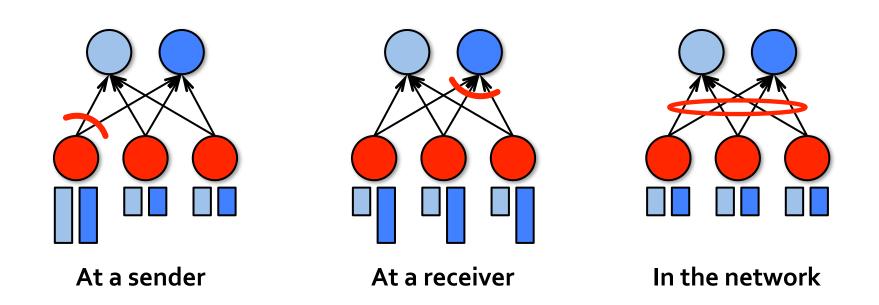
Cornet performance

1GB data to 100 receivers on EC2



4.5x to 6.5x improvement

Shuffle bottlenecks



An optimal shuffle schedule must keep at least one link fully utilized throughout the transfer

Current implementations

Shuffle 1GB to 30 reducers on EC2

