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Moving Data is Expensive

Typical MapReduce jobs in Facebook spend 33% of job
running time in large data transfers

Application for training a spam classifier on Twitter
data spends 40% time in communication



Limits Scalability

Scalability of Netflix-like recommendation system is
bottlenecked by communication

250
B Communication

B Computation

Did not scale beyond 60 nodes
» Comm. time increased faster than

I l comp. time decreased
10 30 60 90

Number of machines

Iteration time (s)
&
o




Transfer Patterns

R Broadcast

Transfer: set of all flows
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P transporting data between
two stages of ajob
Shuffle » Acts as a barrier
Reduce Completion time: Time for
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Contributions

1. Optimize at the level of transfers
instead of individual flows

2. Inter-transfer coordination



Orchestra

Inter-Transfer

Controller (ITC)
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Transfer Transfer Transfer
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Cornet: Cooperative broadcast ¢: «% <

Broadcast same data to every receiver
» Fast, scalable, adaptive to bandwidth, and resilient

Peer-to-peer mechanism optimized for cooperative
environments

Cornet Design Decisions

1. High-bandwidth, low-latency network v' Large block size (4-16MB)

No need for incentives (e.g., TFT)
No (un)choking

Everyone stays till the end

2. No selfish or malicious peers
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3. Topology matters Topology-aware broadcast



Cornet performance =& @

1GB data to 100 receivers on EC2
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4.5X to 5x improvement
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Topology-aware Cornet % % B

Many data center networks employ tree topologies

Each rack should receive exactly one copy of broadcast
» Minimize cross-rack communication

Topology information reduces cross-rack data transfer
» Mixture of spherical Gaussians to infer network topology



Topology-aware Cornet
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Status quo in Shuffle oy
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Links tor,andr, are full: 3time units
Link from s is full: 2 time units

Completion time: 5 time units
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Weighted Shuffle Scheduling T

Allocate rates to each flow i
using weighted fair sharing, A%

where the weight of a flow ;

between a sender-receiver pair
is proportional to the total O 0 A
amount of data to be sent HI

Completion time: 4 time units
Up to 1.5X improvement
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Inter-Transfer Controller
aka Conductor

Weighted fair sharing
» Each transfer is assigned a weight
» Congested links shared proportionally to transfers’ weights

Implementation: Weighted Flow Assignment (WFA)
» Each transfer gets a number of TCP connections

proportional to its weight
» Requires no changes in the network nor in

end host OSes




Benefits of the ITC
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Shuffle using 30 nodes on EC2
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End-to-end evaluation

Developed in the context of Spark — an iterative, in-
memory MapReduce-like framework

Evaluated using two iterative applications developed
by ML researchers at UC Berkeley

» Training spam classifier on Twitter data
» Recommendation system for the Netflix challenge



Faster spam classification
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Communication reduced from 42% to
28% of the iteration time

Overall 22% reduction in iteration time
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Scalable recommendation system
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Related work

DCN architectures (VL2, Fat-tree etc.)
» Mechanism for faster network, not policy for better sharing

Schedulers for data-intensive applications (Hadoop

scheduler, Quincy, Mesos etc.)
» Schedules CPU, memory, and disk across the cluster

Hedera
» Transfer-unaware flow scheduling

Seawall
» Performance isolation among cloud tenants



Summary

Optimize transfers instead of individual flows
» Utilize knowledge about application semantics

Coordinate transfers
» Orchestra enables policy-based transfer management
» Cornet performs up to 4.5x better than the status quo
» WSS can outperform default solutions by 1.5x

No changes in the network nor in end host OSes

http://www.mosharaf.com/



BACKUP SLIDES



MapReduce logs

Weeklong trace of
188,000 MapReduce jobs
from a 3000-node cluster
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33% time in shuffle on average
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Monarch (Oakland’11) m

Real-time spam classification . broadcast

from 345,000 tweets with urls param
» Logistic Regression
» Written in Spark

compute gradients

(Spends 42% of the iteration A

time in transfers

» 30% broadcast
» 12% shuffle

shuffle
gradients

sum & regularize

J
100 iterations to converge e

collect new
param
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Collaborative Filtering [tk

Does not scale beyond 60 nodes
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Cornet performance

1GB data to 100 receivers on EC2
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4.5X to 6.5x improvement
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Shuffle bottlenecks
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At a sender At a receiver In the network

An optimal shuffle schedule must keep at least one link
fully utilized throughout the transfer
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Current implementations

Shuffle 1GB to 30 reducers on EC2
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