Orchestra

Managing Data Transfers in
Computer Clusters

Mosharaf Chowdhury, Matei Zaharia, Justin Ma,
Michael |. Jordan, lon Stoica

lab

UC Berkeley

Moving Data is Expensive

Typical MapReduce jobs in Facebook spend 33% of job
running time in large data transfers

Application for training a spam classifier on Twitter
data spends 40% time in communication

Limits Scalability

Scalability of Netflix-like recommendation system is
bottlenecked by communication

250
B Communication

B Computation

Did not scale beyond 60 nodes
» Comm. time increased faster than

I l comp. time decreased
10 30 60 90

Number of machines

Iteration time (s)
&
o

Transfer Patterns

R Broadcast

Transfer: set of all flows

Ma
P transporting data between
two stages of ajob
Shuffle » Acts as a barrier
Reduce Completion time: Time for

\é/ | o the last receiver to finish
Nncas

Contributions

1. Optimize at the level of transfers
instead of individual flows

2. Inter-transfer coordination

Orchestra

Inter-Transfer

Controller (ITC)

Shuffle Broadcast Broadcast
Transfer Transfer Transfer
Controller (TC) Controller (TC) Controller (TC)

shuffle broadcast 1 broadcast 2

B

Cornet: Cooperative broadcast ¢: «% <

Broadcast same data to every receiver
» Fast, scalable, adaptive to bandwidth, and resilient

Peer-to-peer mechanism optimized for cooperative
environments

Cornet Design Decisions

1. High-bandwidth, low-latency network v' Large block size (4-16MB)

No need for incentives (e.g., TFT)
No (un)choking

Everyone stays till the end

2. No selfish or malicious peers

DN N NN

3. Topology matters Topology-aware broadcast

Cornet performance =& @

1GB data to 100 receivers on EC2

) Status quo
109 A
% | ™
) 80 -
] _
E°
= 60 -
5 i
= 50
e
o 39
O 5 -
10 -
(0] T T
HDFS HDFS BitTornado Tree Chain Cornet
(R=3) (R=10) (D=2)

4.5X to 5x improvement

B

Topology-aware Cornet % % B

Many data center networks employ tree topologies

Each rack should receive exactly one copy of broadcast
» Minimize cross-rack communication

Topology information reduces cross-rack data transfer
» Mixture of spherical Gaussians to infer network topology

Topology-aware Cornet

30

25 7

20

Time (s)

10

~2X faster than vanilla Cornet

15 7

200MB data to 30 receivers on DETER

B Cornet
H CornetTopology
M CornetClustering

Algorithms

B

1000

| @ 3 inferred
clusters

2nd projec(:)ted coord.

-1500

&

O

-20000 -500 500 1500

1st projected coord.

10

Status quo in Shuffle oy

IZIIZIHIII

Links tor,andr, are full: 3time units
Link from s is full: 2 time units

Completion time: 5 time units
11

Weighted Shuffle Scheduling T

Allocate rates to each flow i
using weighted fair sharing, A%

where the weight of a flow ;

between a sender-receiver pair
is proportional to the total O 0 A
amount of data to be sent HI

Completion time: 4 time units
Up to 1.5X improvement

12

.

Inter-Transfer Controller
aka Conductor

Weighted fair sharing
» Each transfer is assigned a weight
» Congested links shared proportionally to transfers’ weights

Implementation: Weighted Flow Assignment (WFA)
» Each transfer gets a number of TCP connections

proportional to its weight
» Requires no changes in the network nor in

end host OSes

Benefits of the ITC

100%

Shuffle using 30 nodes on EC2

I

Low Priority Job O B High Priority Job 1
B High Priority Job 2 B High Priority Job 3

I '
5 10 15 20 25 30 35 40 45

Time(s)

Without Inter-transfer Scheduling

é 80% -

E 60% -

. . E 40% -

Two priority classes

» FIFO within each class "o
Low priority transfer

100% -

» 2GB per reducer 2 sou -

§ 60% -

High priority transfers S

» 250MB per reducer o

5

10

0 25 30 35 40 45

Time(s)

15 2

Priority Scheduling in Conductor

43% reduction in high priority xfers
6% increase of the low priority xfer

End-to-end evaluation

Developed in the context of Spark — an iterative, in-
memory MapReduce-like framework

Evaluated using two iterative applications developed
by ML researchers at UC Berkeley

» Training spam classifier on Twitter data
» Recommendation system for the Netflix challenge

Faster spam classification

Before 42.1 8.6 22.3
B Computation
W Shuffl
After wii Z >/ u Brc?adiast
o 10 20 30 40 50 60 70 8o

Iteration time (s)

Communication reduced from 42% to
28% of the iteration time

Overall 22% reduction in iteration time

16

Scalable recommendation system

250

200

[
(%))
(@)

100

Iteration time (s)

50

Before

B Communication
B Computation

10 30 60 90

Number of machines

Iteration time (s)

250

200

150

100

50

After

B Communication
B Computation

10 30 60 90

Number of machines

1.9x faster at go nodes

17

Related work

DCN architectures (VL2, Fat-tree etc.)
» Mechanism for faster network, not policy for better sharing

Schedulers for data-intensive applications (Hadoop

scheduler, Quincy, Mesos etc.)
» Schedules CPU, memory, and disk across the cluster

Hedera
» Transfer-unaware flow scheduling

Seawall
» Performance isolation among cloud tenants

Summary

Optimize transfers instead of individual flows
» Utilize knowledge about application semantics

Coordinate transfers
» Orchestra enables policy-based transfer management
» Cornet performs up to 4.5x better than the status quo
» WSS can outperform default solutions by 1.5x

No changes in the network nor in end host OSes

http://www.mosharaf.com/

BACKUP SLIDES

MapReduce logs

Weeklong trace of
188,000 MapReduce jobs
from a 3000-node cluster

1 -

0.8

0.6

CDF

0.4

0.2 7

Maximum number of)

concurrent transfers is o o2 o4 06 o8
Fraction of job lifetime spent in shuffle phase
several hundreds

33% time in shuffle on average

21

Monarch (Oakland’11) m

Real-time spam classification . broadcast

from 345,000 tweets with urls param
» Logistic Regression
» Written in Spark

compute gradients

(Spends 42% of the iteration A

time in transfers

» 30% broadcast
» 12% shuffle

shuffle
gradients

sum & regularize

J
100 iterations to converge e

collect new
param

22

Collaborative Filtering [tk

Does not scale beyond 60 nodes

250 7
B Communication
2 200 7 B Computation /
v ,I
£] '
S 150 ’,
C I
o I
'S 100 !
E I
2 :
1
1
(0] T T T 1 :
10 30 60 90 =|
Number of machines 'l‘
!
\
385MB data broadcasted

in each iteration

. broadcast
el movie vectors

update user vectors

collect
updates

broadcast
user vectors

update movie vectors

collect
updates

\\
S
~
S

23

Cornet performance

1GB data to 100 receivers on EC2

Time (s)

4.5X to 6.5x improvement

&

g 10—

O 1

O |

2 0.8t '

o |

2 0.6 ' :
2 : HDFS (R=3)

= : HDFS (R=10)
S 0.47 : . Chain 1
ke U Tree (D=2)

S 0.2 : BitTornado

E 'l o Cornet

£ 0.0 20 40 60 80 100

24

Shuffle bottlenecks

|:|I OB O EII EII [II OB 08 08

At a sender At a receiver In the network

An optimal shuffle schedule must keep at least one link
fully utilized throughout the transfer

25

Current implementations

Shuffle 1GB to 30 reducers on EC2

35 '

30l e—e] receiver |
_ &~ -o 10 receivers
Y 25k | ¥.-v 30 ' i
- " receivers
£20f
% 191 I\!'z
c X e %

T]_0 _____ —___%_';'_' i e S ;
5
% 5 10 15 20 25 30

Number of concurrent connections per receiver

