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ABSTRACT
Intra-domain virtual network embedding is a well studied
problem in the network virtualization literature. For most
practical purposes, however, virtual networks (VNs) must
be provisioned across heterogeneous administrative domains
managed by multiple infrastructure providers (InPs).

In this paper we present PolyViNE, a policy-based inter-
domain VN embedding framework that embeds end-to-end
VNs in a decentralized manner. PolyViNE introduces a dis-
tributed protocol that coordinates the VN embedding pro-
cess across participating InPs and ensures competitive prices
for service providers (SPs), i.e., VN owners. We also present
a location aware VN request forwarding mechanism – based
on a hierarchical addressing scheme (COST) and a loca-
tion awareness protocol (LAP) – to allow faster embedding
and outline scalability and performance characteristics of
PolyViNE using quantitative and qualitative evaluations.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.5 [Computer-Communication Networks]:
Local and Wide-Area Networks

General Terms
Algorithms; Design

Keywords
Inter-domain Virtual Network Embedding; Policy-based Re-
source Allocation; Decentralized Embedding; Network Vir-
tualization

1. INTRODUCTION
Network virtualization has gained significant attention in

recent years as a means to support multiple coexisting vir-
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tual networks (VNs) on top of shared physical infrastruc-
tures [1, 3, 6, 16]. The first step toward enabling network
virtualization is to instantiate such VNs by embedding1 VN
requests onto substrate networks. But the VN embedding
problem, with constraints on virtual nodes and virtual links,
is known to be NP-hard [19,21]. Several heuristics [5,9,11,
19, 21] have been proposed to address this problem in the
single infrastructure provider (InP) scenario. However, in
realistic settings, VNs must be provisioned across heteroge-
neous administrative domains belonging to multiple InPs to
deploy and deliver services end to end.

One of the biggest challenges in end-to-end VN embedding
is to organize the InPs under a framework without putting
restrictions on their local autonomy. Each InP should be
able to embed parts or the whole of a VN request accord-
ing to its internal administrative policies while maintaining
global connectivity through mutual agreements with other
InPs.

Moreover, InPs (i.e., network operators) are notoriously
known for their secrecy of traffic matrices and topology in-
formation. As a result, existing embedding algorithms that
assume complete knowledge of the substrate network are not
applicable in this scenario. Each InP will have to embed a
particular segment of the VN request without any knowl-
edge of how the rest of the VN request has already been
mapped or will be mapped.

Finally, there will be constant tussles between SPs and
InPs on multiple levels:

• Each InP will be interested in getting as much of the
deployment as possible put on its equipment, and then
optimizing allocation under given constraints. In ad-
dition, InPs will be more interested in getting requests
for their high-margin equipment while offloading un-
profitable work onto their competitors.

• SPs are also interested in getting their requirements
satisfied while minimizing their expenditure. Tussles
might arise between SPs and InPs when each party try
to optimize their utility functions.

Any inter-domain VN embedding mechanism must enforce
proper incentives and mechanisms to address these tussles.

In this paper, we introduce PolyViNE – a policy-based
end-to-end VN embedding framework – that embeds VNs
across multiple InPs in a globally distributed manner while
allowing each concerned InP to enforce its local policies at

1The words ‘embedding’, ‘mapping’, and ‘assignment’ are
used interchangeably throughout this paper.



the same time. PolyViNE introduces a distributed protocol
that coordinates the participating InPs and ensures compet-
itive pricing through repetitive bidding at every step of the
embedding process.

We do not claim PolyViNE to be the best or the only way
of performing end-to-end VN embedding. However, to the
best of our knowledge, this is the first foray into this unex-
plored domain in the context of network virtualization, and
we believe this problem to be absolutely critical in realizing
network virtualization for most practical purposes.

The rest of the paper is organized as follows. Section 2 for-
mally defines the inter-domain VN embedding problem. In
Section 3 we describe the design choices and the distributed
embedding protocol used by PolyViNE, followed by a dis-
cussion of its enabling technologies in Section 4. Section 5
and Section 6 respectively provide preliminary quantitative
and qualitative evaluations of PolyViNE. We discuss related
work in Section 7. Finally, Section 8 concludes the paper
with a discussion on possible future work.

2. PROBLEM FORMULATION
The intra-domain VN embedding problem is well-defined

in the literature [5,9,11,19,21]. In this section, we formally
define the inter-domain VN embedding problem. For sim-
plicity, we avoid intra-domain aspects (e.g., node and link
attributes) wherever we see fit.

2.1 Substrate Networks and the Underlay
We consider the underlay to be comprised of D substrate

networks (Figure 1(a)), and we model each substrate net-
work controlled by the i-th InP2 (1 ≤ i ≤ D) as a weighted
undirected graph denoted by GS

i =
(
NS

i , L
S
i

)
, where NS

i is

the set of substrate nodes and LS
i is the set of intra-domain

substrate links. Each substrate network has a (centralized or
distributed) logical Controller [4] that performs administra-
tive/control functionalities for that InP. Finally, AS

i (⊂ NS
i )

denotes the set of border nodes [4] in the i-th InP that
connect it to other InPs through inter-domain links based
on Service Level Agreements (SLAs) to form the underlay.
Each InP also has a set of policies PS

i that is used to take
and enforce administrative decisions.

We denote the underlay (shown in Figure 1(b)) as a graph
GU =

(
NU , LU

)
, where NU

(
=
∑

i A
S
i

)
is the set containing

border nodes across all InPs (i ≤ i ≤ D) and LU is the set
of physical inter-domain links connecting the border nodes
between two InPs. However, the underlay does not have the
full connectivity, which is achieved through simple topology
abstraction method [10]. All border nodes belonging to a
single InP are collapsed to one single node corresponding to
that InP (Figure 1(c)) in this representation resulting in a
multigraph GW =

(
NW , LW

)
, where NW essentially is the

set of InPs in the underlay and LW (= LU ) is a multiset of
inter-domain links that connect the InPs. Finally, GC =(
NC , LC

)
is a simple graph (Figure 1(d)) referring to the

controller network [4], where NC(= NW ) represents the set
of Controllers in InPs and LC is the set of links between
Controllers obtained from the multiset LW .

2We will use the terms InP and substrate network inter-
changeably throughout the rest of this paper.

2.2 VN Request
Similar to substrate networks, we model VN requests as

weighted undirected graphs and denote a VN request by
GV =

(
NV , EV

)
. We express the requirements on virtual

nodes and virtual links in standard terms [5,19]. Figure 1(e)
depicts a VN request with virtual node and link require-
ments.

Each VN request has an associated non-negative value
RV expressing how far a virtual node nV ∈ NV can be
placed from the location specified by loc

(
nV
)

[5], which can
be interpreted as the preferred geolocation of that virtual
node. Figure 1(f) shows the substrate nodes within the pre-
ferred geolocation for each virtual node using dashed ver-
tical boxes. Similar to InPs, SPs can also provide a set of
policies/preferences PV for a VN request to dictate certain
characteristics. For example, the VN request in Figure 1(e)
could have a policy that would require embedding of the vir-
tual node C in InP#3 domain, ruling out the other possible
embedding in InP#4.

2.3 VN Assignment
The assignment of an end-to-end VN request V onto the

underlay can be decomposed into three major components:

(i) partitioning the VN request into K subgraphs to be
embedded onto K substrate networks,

(ii) establishing inter-connection between the K subgraphs
using inter-domain paths, and

(iii) embedding each subgraph in each InP substrate net-
work using intra-domain algorithm.

Since we want to allow each InP to implement its own em-
bedding algorithms, intra-domain embedding is out-of-scope
of this work. From PolyViNE’s point of view, an end-to-end
VN assignment is performed on the controller network, GC .

The VN request GV =
(
NV , LV

)
is partitioned into K

subgraphs GV
k =

(
NV

k , LV
k

)
such that NV = ∪kN

V
k and

LV =
(
∪kL

V
k

)⋃
LV

M , where LV
M is the set of virtual links

that will cross domain boundaries. In Figure 1(g), K = 3:
GV

1 = ({A} , {}), GV
2 = ({B} , {}), GV

3 = ({C,D} , {CD}),
and LV

M = {AB,AC,BC,BD}. Each subgraph GV
k can be

collapsed into a single node to form the meta-VN request
GV

M =
(
NV

M , LV
M

)
using a transformation function F : GV

k →
NV

M (Figure 1(h)) for simplicity.
Now we can formally express inter-domain VN embed-

ding as two mappings, MN : NV
M → NC that embeds each

subgraph to different InP andML : LV
M → LC that embeds

inter-domain links in the InP controller network. Figure 1(i)
shows a possible InP-level embedding for the VN request
shown in Figure 1(e). Note that, InP#2 has not embedded
any virtual node but is still in the embedding by being in
an inter-domain virtual link.

3. POLYVINE OVERVIEW
In this section, we discuss PolyViNE design decisions, ex-

plain its workflow, and describe the distributed protocol that
coordinates the PolyViNE embedding process.

3.1 Design Choices
We have made the following design choices for PolyViNE

aiming toward decentralization of the embedding process,
promotion of policy-based decision making, and support for
local agility within flexible global framework.
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Figure 1: Overview of the inter-domain VN embedding process.

3.1.1 Decentralized embedding
PolyViNE argues for using a distributed (decentralized)

VN embedding solution over a centralized broker-based one.
In a centralized solution, the broker will have to know the
internal details and mutual agreements between all the InPs
to make an informed embedding. However, InPs are tra-
ditionally inclined to share as little information as possible
with any party. A distributed solution will allow for em-
bedding based only on mutual agreements. Moreover, in a
distributed market there will be no single-point-of-failure or
no opportunity for a monopolistic authority (e.g., the bro-
ker).

3.1.2 Local autonomy with global competition
PolyViNE allows each InP to use its own policies and al-

gorithms to take decisions without any external restrictions.
However, it also creates a high level of competition among all
the InPs by introducing competitive bidding at every level
of distributed VN embedding. Even though each InP is free
to make self-serving decisions, they have to provide compet-
itive prices to take part and gain revenue in PolyViNE. To
keep track of the behavior of InPs over time, a reputation
management mechanism can also be introduced [13,18].

3.1.3 Location-assisted embedding
PolyViNE decision making and embedding process is deeply

rooted into the location constraints that come with each VN
request. After an InP embeds a part of a VN request, in-
stead of blindly disseminating the rest of the request, it uses
geographic constraints as beacons to route the request to
other possible providers. PolyViNE aggregates and dissem-
inates location information about how to reach a particular
geographical region in the controller network and which InPs
might be able to provide virtual resources in that region.

3.2 Workflow Summary
PolyViNE is an enabling framework for multi-step dis-

tributed embedding of VN requests across InP boundaries.
In its simplest form, an SP forwards its VN request to mul-
tiple known/trusted InPs; once they reply back with em-
beddings and corresponding prices, the SP chooses the VN
embedding with the lowest price similar to a bidding process.

However, a complete end-to-end VN request may not be
mappable by any individual InP. Instead, an InP can em-
bed a part of the request and outsource the rest to other
InPs in a similar bidding process giving rise to a recursive
multi-step bidding mechanism. Not only does such a mech-
anism keep a VN embedding simple for an SP (since the SP
does not need to contact all of the eventual InPs), but it
also ensures competitive prices due to bidding at every step.
Figure 2 provides a high level depiction of the inter-domain
VN embedding process.

3.3 PolyViNE Embedding Protocol
In order to exchange information between the SP and the

InPs, and to organize the distributed embedding process,
a communication protocol must be established. We refer
to this protocol as the PolyViNE Protocol, which is based
on six types of messages: EMBED, SUCCESS, FAILURE,
CONNECT, RELAY and ACK. These messages are sent
and received asynchronously between concerned InPs and
the SP to carry out the embedding process from beginning
to end. The protocol messages are described in the following:

• EMBED (Req id,G, InPSet): This message is sent
from the SP to InPs to initiate the embedding process
of the VN request G with an empty InPSet. InPs
also use this message to outsource the unmapped part
of the request after appending itself to InPSet.

• SUCCESS (Req id,M, InPSet): Once an embed-
ding is successfully completed, InPs reply back with
the embeddingM and the set of InPs involved in that
embedding, InPSet.

• FAILURE (Req id, errorDesc): In case of a failure,
InPs reply back with a description outlining the reason
of failure using errorDesc.

• CONNECT
(
Req id,GV

M , InPSet
)
: Once all the dif-

ferent parts of a VN request are embedded by different
InPs, the meta-VN request GV

M is formed. This mes-
sage is sent to the InPs that will connect the nodes in
GV

M using inter-domain links.
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Figure 2: Propagation of multiple instances of the
same VN request in the controller network through-
out the embedding process. The dashed lines
demonstrate the back-propagation of accumulated
prices toward the SP.

• RELAY (Req id,G, InPSet, InP#): When an InP
cannot embed any part of a request, it may relay the
request to one or more InPs instead of announcing fail-
ure right away. Here, InP# indicates the requester
InP to which the new InPs should directly reply back
to.

• ACK (Req id): Once an SP decides on an embedding
after receiving one or more SUCCESS messages, it will
acknowledge the embedding by directly contacting to
the InPs involved using this message.

3.4 SP Workflow
Since there is no centralized broker in PolyViNE, each

SP must know at least one InP to send the VN request it
wants to instantiate. However, sending the request to only
one InP can encourage monopolistic behavior. To create a
competitive environment, we argue that an SP should send
its VN request to kSP (≥ 1) InPs based on direct contact.
Figure 3 depicts an SP sending embedding requests using
the EMBED message to kSP InPs. As soon as the receiv-
ing InPs have viable embeddings (M) with corresponding
prices (Price (M)) or they fail, the kSP InPs reply back
with SUCCESS or FAILURE messages. Once the SP se-
lects an embedding, it proceeds toward instantiating its VN
by sending ACK messages to the InPs involved in the se-
lected embedding.

3.5 InP Workflow
While an SP’s workflow is straightforward with a single

decision at the end, it shifts much more work to the InPs.
An InP has to work through several steps of decision making,
organizing, and coordinating between heterogeneous policies
to complete the embedding process. From an InP’s point of
view, there are three major stages in embedding each end-
to-end VN request.

3.5.1 Local embedding
Upon receiving a VN request, an InP must decide whether

to reject or to accept the request. It can reject a VN request
outright, in case of possible policy violations. Even if there
are no discernible policy violations, it might still need to

ACK (Req_id)
ACK (Req_id)

ACK (Req_id)

Service
Provider

Controller

InP #jz

Controller
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Controller

InP #iz
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GV
M

CONNECT (Req_id, GV
M, {iz,kz})

SUCCESS (Req_id, M, {iz,jz,kz})

par

selectMapping ()

[for each InP iz in (1..kSP)]

Figure 3: Sequence diagram showing PolyViNE em-
bedding process in action.

reject a VN request if it fails to profitably3 embed any part
of that request.

In order to decide which part of a VN request to embed,
if at all, the InP can use existing intra-domain VN embed-
ding algorithms [5,19] that can identify conflicting resource
requirements in a VN request4.

In case of a failure, the InP will send back a FAILURE
message (optionally with reasons for the failure). However,
sometimes it might know of other InPs that it believes will
be able to embed part or whole of the VN request. In that
case, it will RELAY the VN request to that InP. In Figure 3,
InP#jz is relaying the VN request G′ to InP#kz.

3.5.2 Forwarding
If an InP can only partially embed a VN request, it will

have to forward the rest of the request to other InPs in
the controller network in order to complete the VN request.
An InP should take care to not forward a VN request to
another InP already in the InPSet to avoid cycles. For
example, InP#iz in Figure 3 is forwarding the unmapped

3Each InP uses its own pricing mechanism by which it at-
taches a price to any embedding it provides.
4This can be done by looking into the output of the linear
programs used in both [19] and [5] without modifying the
actual algorithms presented in those work.



VN request G′ to InP#jz. Similar to SPs, InPs also for-
ward the request to kInP (≥ 1) InPs for similar reasons (e.g.,
competitive prices). While forwarding a request, an InP can
prefer to perform a transformation on the VN request in or-
der to hide the details of its mapping (as in Figure 1(h)).
At this point, it can use one of the two possible methods for
unmapped VN request forwarding:

• Recursive forwarding: In this case, when an InP for-
wards a VN request, the receiver InP embeds part of
it based on its policies and forwards the rest further
away to another InP.

• Iterative forwarding: In iterative forwarding, the re-
ceiver InP return the control back to the sender InP
once it is finished with embedding.

In any case, the forwarding decision is a non-trivial one
and requires careful consideration. We believe that instead
of blindly forwarding based on some heuristics, we can do
informed forwarding by utilizing the location constraints at-
tached to all the virtual nodes in a VN request. Details of
this forwarding scheme are presented in the next section.

3.5.3 Back-propagation
The VN request proceeds from one InP to the next, un-

til either there are no available InPs to send the request to
(FAILURE) or the VN request has been satisfied completely
(SUCCESS). In case of a successful embedding of a VN re-
quest, the SUCCESS message carries back the embedding
details and corresponding price. At each step of this back-
propagation of SUCCESS and FAILURE messages, the sender
InP can select mappings based on internal policies or lower
price or some other criteria. As VN embeddings follow paths
back to the SP, the prices are accumulated and the SP ends
up with multiple choices (Figure 2).

4. LOCATION AWARE FORWARDING
Näıvely an InP can forward a VN request to a set of InPs

in the controller network at random. However, this decision
is blind to the location requirements of the virtual nodes and
the availability of virtual resources at the destination InP to
satisfy the constraints for the VN request. This may result
in high failure rate or prices well above the fair value. To
avoid flooding a VN request or sending it to random InPs
which might be unable to meet the constraints of the request,
we propose using location constraints associated with unas-
signed virtual nodes to assist an InP in making this decision.
Location constraints of the virtual nodes together with the
location information of the underlay will allow informed VN
request forwarding in the controller network.

To accommodate such location aware forwarding, we in-
troduce a hierarchical geographic addressing scheme with
support for aggregation, named COST. InPs in PolyViNE
must associate COST addresses with all the substrate nodes
and SPs must express location requirements in terms of
COST. Controllers in different InPs publish/disseminate in-
formation about the geographic locations of their nodes along
with the unit price of their resources. They can then ag-
gregate and disseminate data collected from all neighboring
Controllers to build their own knowledge bases of location
to InP mappings, each accompanied by path vectors of InPs
in the controller network and corresponding prices. We pro-
pose Location Awareness Protocol (LAP) to perform this

InP #1

InP #2

InP #3

Toronto, ON

New York, NY

Austin, TX

Montreal, QC

New York, NY

COST Prefix

NA.CA.ON.*

NA.US.CA.*

NA.US.NY.*

NA.US.TX.*

Path (Cost)

1 2 (500)

1 2 3 (700)

1 2 (650), 1 2 3 (725)

1 2 3 (500)

San Francisco, CA

Figure 4: LAP database at InP #1. InP #1 has
two choices to forward to an InP with a node in
New York state.

task. Careful readers will notice in the following that COST
and LAP are significantly influenced by BGP.

4.1 COST Addressing Scheme
As outlined in the problem formulation (Section 2), each

virtual node in a VN request comes with a permissible ge-
ographic region in which it must be embedded. One de-
sign question at this point is how to represent and encode
the geolocation. We have chosen a hierarchical geolocation
representation scheme similar to [14] with the form Con-
tinent.cOuntry.State.ciTy (hence the name COST). Even
though in this paper we are using a simple postal address
like scheme for simplicity, any hierarchical geolocation rep-
resentation system will work with PolyViNE.

A virtual node may restrict its location preference to any
prefix in this addressing scheme. For example, to restrict a
node within Canada, one may assign the address NA.CA.*
to a virtual node. This indicates that beyond requiring that
the node be mapped within Canada, the SP does not care
where in the country it is ultimately mapped.

On the other hand, each substrate node has a complete
COST address associated with it. This address indicates
within which city lies the given substrate node. If an InP is
not willing to share the exact location, it can always choose
a higher level address. For example, instead of announcing
nodes in Toronto using NA.CA.ON.Toronto, the InP can
announce NA.CA.ON.*. However, such announcements can
result in receiving of VN requests that it may never be able
to satisfy, which will affect its reputation among other InPs.

4.2 Location Awareness Protocol (LAP)
Location Awareness Protocol (LAP) is a hybrid of Gossip

and Publish/Subscribe protocols that assists an InP in mak-
ing informed decisions about which InPs to forward a VN
request to without making policy violations, and thus pro-



gressing toward completing the VN embedding. Controllers
in different InPs keep track of the geolocations of their inter-
nal substrate nodes in COST format and announce availabil-
ity and prices of available resources to their neighbors using
LAP updates in the controller network. This information is
aggregated and propagated throughout the controller net-
work to create global view of the resources in the underlay
in each Controller’s LAP database.

Initially, LAP operates as a path vector based gossip pro-
tocol. Every InP in the controller network informs its neigh-
bors of where its nodes are located along with estimated
unit prices for its resources. Whenever a Controller receives
a LAP update, it updates its LAP database and before an-
nouncing updates to its neighbors it adds itself to the path
vector. Note that keeping complete paths allows avoiding
unnecessary forwarding toward and through InPs that might
violate SP’s policies or originating InP’s policies. InPs can
also tune this price to encourage or discourage VN request
forwarding to them. In steady-state, each InP should know
about all the InPs with nodes in a given geographic region
along with price estimations of embedding on their substrate
networks. Figure 4 shows an example LAP database.

However, in a rapidly changing environment with contin-
uously fluctuating prices, gossip may not be sufficient to
disseminate updated prices in a timely fashion. To reduce
the number of failures stemming from staleness of pricing
information, we propose extensions to LAP using a Pub-
lish/Subscribe mechanism along with its basic gossip pro-
tocol. By using this mechanism, any InP will be able to
subscribe to announcements of Controllers that are not its
direct neighbors. While we leave VN request routing deci-
sions to the discretion of InPs, an InP may use the pricing
information to prefer forwarding the VN request to a lower
priced InP, all other things being equal.

The question that remains open to more investigation is
why would an InP be honest when announcing pricing es-
timates? We believe that a reputation metric – indicating
long-term accuracy of an InP’s pricing estimate to the actual
cost of establishing a VN request – is necessary to remedy
this situation. We would like to integrate such a reputation
metric within LAP to allow dissemination of path vectors
attributed with corresponding prices and overall reputation
score of the InPs on the paths. An InP will then be able to
use pricing and reputation scores to rank multiple paths to
a common destination to make a forwarding decision.

5. NUMERICAL EVALUATION
We have written a 3000 line multi-threaded C++ simula-

tor that allows independent responses from various entities
in the controller network. While the embedding process is
complete for the most part, the back-propagation of price
information and the selection of the lowest-priced mapping
at each step are yet to be implemented.

We have performed three preliminary experiments. In our
current experiments, each InP performs a naive greedy node
and link mapping to embed the largest possible connected
component. The InP then picks out a random node yet to
be mapped, and uses its LAP table to look-up InPs that
can satisfy the node’s location constraints. It forwards the
partial request to the top three InPs provided by LAP. To
restrict the search space, we drop the VN request and report
failure after 12 hops between InPs.

Unless otherwise specified, we have used the following set-
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Figure 5: Nodes mapped by each InP per VN re-
quest vs. hop count.

tings. For each experiment, we randomly create a controller
network with 100 InPs. Each InP network consists of 80 to
100 nodes and 540 to 600 links on the average. Each node
has a maximum CPU capacity uniformly chosen from 1 to
100 CPU units, and each link has a maximum bandwidth
capacity of 100 bandwidth units. VN requests vary between
experiments in terms of the average numbers of virtual nodes
and virtual links.

5.1 Node Mapping and Hop Count
In the first experiment, we investigate the number of vir-

tual nodes mapped by each InP located at increasing num-
ber of hops away from the SP. Intuitively, as a VN request is
passed forward from one InP to another, each InP will map
some virtual nodes and leave fewer and fewer nodes to be
mapped by the other participating InPs. Figure 5 confirms
this intuition. For this particular experiment, we have used
VN requests with 50 nodes and 200 links on the average.

We observe an exponential decay in the number of nodes
mapped as the hop count increases. At this time, we are
uncertain whether this pattern is a function of the random
graphs we generated or the simple greedy algorithm we use
for mapping or both. If this exponential decay is found
to be a reproducible property of VN mappings in random
graphs, we may be able to use that information to compute
a reasonable number of hops that must be allowed for the
completion of a successful VN mapping.

5.2 Node Mapping and VN Request Size
Next, we look at the number of nodes mapped by the

first set of InPs neighboring the request-generating SP. We
vary the VN request size, where each VN request is a sparse
random graph with an expected n nodes and 4n links (n is
set between 10 and 70).

Figure 6 demonstrates that the number of nodes mapped
by the first-hop InPs grows linearly with the size of the VN
request. Since each VN request is significantly sparser and
smaller than the resources available to the InPs, this result
is unsurprising. However, it is possible that we may observe
significantly different behavior as the size of the VN request
approaches total available resources of the first-hop InPs.
We leave that experiment for future work.

5.3 InPs Involved in a Successful Mapping
In the third experiment, we observe the number of InPs

that are involved in a successfully satisfied VN request. As
before, for this experiment, we only consider InPs that con-
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Figure 6: Nodes mapped on first hop vs. VN request
size.

18

16

14In
P

12Pe
r  t

10

 
re
qu

es

8pp
ed

 
 M

a
 V
N

6

N
od

es pe
r

4

2

0

0 2 4 6 8 10

Hop Count From SP

30

25H
op

st
 

20

on
 F
ir

15

 
pp

ed

10 M
a

N
od

es

5

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10

N
od

es
 M

ap
pe

d 
Pe

r 
In
P

pe
r V

N
 r
eq

ue
st

Hop Count From SP

0

5

10

15

20

25

30

10 20 30 40 50 60 70

N
od

es
 M

ap
pe

d 
on

 F
ir
st
 H
op

Nodes per VN Request

0

2

4

6

8

10

12

14

15 25 35 45 55 65

In
Ps
 in
vo
lv
ed

 in
 S
uc
ce
ss
fu
l M

ap
pi
ng

Nodes per VN Request

Figure 7: Number of InPs involved in a successful
mapping with increasing VN request size.

tribute substrate node resources to the VN mapping, and
not InPs that simply reserved bandwidth as relays. We con-
sider sparse VN requests, with an expected n nodes, and 4n
links. As evident in Figure 7, the number of InPs involved
grows linearly with the size of the VN request. However,
the 12-hop restriction prevents mapping VN requests with
70 nodes or more.

6. DISCUSSION

6.1 Scalability
Scalability concerns in PolyViNE come from several fronts:

size of the search space, dissemination time of location infor-
mation, and storage of location and price information among
others. As the number of InPs increases in the controller net-
work, the amount of control traffic will increase even with
the tweaks proposed in this paper. Moreover, the size of
stored location and path information will grow very quickly
with more and more InPs joining the controller network. We
can limit the number of stored paths to a certain destination
based on some heuristics (e.g., keep only the top M paths
and flush the rest after each update), but such loss can result
in degraded embedding. Finally, the freshness of the loca-
tion information is dependent upon the update frequency
and the total number of InPs in the controller network.

6.2 Performance

6.2.1 Response time
Recursive processes, by definition, can go on for a long

time in the absence of proper terminating conditions result-

ing in unsuitable response times. Combining iterative mech-
anism wherever possible and limiting the level of recursion
at the expense of search completeness can improve the re-
sponse time of PolyViNE. However, the question regarding
suitable response time depends on the arrival rate and the
average life expectancy of VN requests.

6.2.2 Embedding quality
The quality of a VN embedding in a distributed multi-InP

environment is highly dependent on the individual policies
enforced by the participating InPs. Since PolyViNE uses a
multi-InP bidding mechanism at every step, the price of an
embedded VN request is likely to be very competitive within
the search horizon. However, PolyViNE avoids flooding in
the controller network by restricting the number of bidder
InPs at each step, which can result in inadvertently rejected
requests or higher embedding prices.

6.2.3 Overheads
InPs participating in a PolyViNE embedding will face ma-

jor computation overheads while trying to map the VN re-
quest and minor communication overheads due to relaying
of the rest of the request. Since for each VN embedding
every InP in each step except for the winning bidder will
fail to take part in the embedding, the overheads can be dis-
couraging. We are working toward finding incentives for the
InPs to partake in the embedding process.

6.3 Trust and reputation
Since each InP will try to selfishly improve its own perfor-

mance and will not expose its internal information, InPs can
lie to or hide information from each other. From previous
studies it is known that it is hard to use mechanism design
or game theory to thwart such behaviors in a large scale dis-
tributed system [12]. Our solution against such behavior is
the use of competitive bidding at each step of embedding to
expose the market price of any leased resource.

7. RELATED WORK
The VN embedding problem, with constraints on both vir-

tual nodes and virtual links, is known to beNP-hard [19,21].
A number of heuristics have appeared in the literature based
on the complete separation of the node mapping and the link
mapping phases [11,19,21]. Existing research has also been
restricting the problem space in different dimensions: [11,21]
consider the offline version of the problem; [11] ignores node
requirements; [11, 21] assume infinite capacity in substrate
nodes and links to obviate admission control; and [11] fo-
cuses on specific VN topologies. Chowdhury et al. [5] pro-
posed a pair of algorithms that provide improved perfor-
mance through increased correlation between the two phases
of VN embedding, while [9] proposed a graph isomorphism-
based integrated solution that can take exponential time in
the worst case. All these algorithms address VN embed-
ding as an intra-domain problem and take advantage of a
centralized embedding entity.

Recently proposed V-Mart [20] framework approaches the
inter-domain VN embedding problem using an auction-based
model, where the SP performs the partitioning task using
heuristics for simplification. As a result, V-Mart cannot en-
able local and inter-InP policy enforcement and fine-grained
resource management.



Unlike inter-domain VN embedding, inter-domain light-
path provisioning [2, 10] as well as cross-domain QoS-aware
path composition [17, 18] are well studied areas. UCLP [2]
allows users to dynamically compose, modify, and tear down
lightpaths across domain boundaries and over heterogeneous
networking technologies (e.g., SONET/SDH, GMPLS etc.).
Xiao et al. have shown in [17] that QoS-assured end-to-end
path provisioning can be solved by reducing it to the clas-
sic k-MCOP (k-Multi Constrained Optimal Path) problem.
iREX architecture [18], on the other hand, uses economic
market-based mechanisms to automate inter-domain QoS
policy enforcement through negotiation between participat-
ing domains. PolyViNE is similar to iREX in its allowance of
intra-domain policy-enforcement and in using market-based
mechanisms, but iREX is concerned about mapping simple
paths whereas PolyViNE embeds more complicated VN re-
quests. PeerMart [8] is another auction-based marketplace
for resource trading in a network virtualization environment,
but it basically deals only with virtual links.

The geographic location representation and related infor-
mation dissemination protocol proposed in PolyViNE is in-
spired by the previous proposals of geographic addressing
and routing in IPv6 networks [7,14] as well as the predomi-
nant global routing protocol in the Internet, BGP [15]. How-
ever, unlike these works, PolyViNE does not use the infor-
mation for addressing or routing purposes; rather it uses the
location information to find candidate InPs that will be able
to embed part or whole of the remaining unmapped VN re-
quest. Moreover, such location information is disseminated
between and stored in Controllers instead of border routers
as in BGP or GIRO [14]. The concepts of Controllers in
InPs and controller network connecting multiple InPs’ Con-
trollers are discussed in the iMark framework [4].

8. CONCLUSIONS AND FUTURE WORK
In this paper we have formally defined the inter-domain

VN embedding problem and presented PolyViNE – a novel
policy-based inter-domain VN embedding framework – to
address it. PolyViNE allows embedding of end-to-end VNs
in a distributed and decentralized manner by promoting
global competition in the presence of local autonomy. We
have laid down the workflows of InPs and SPs throughout
the PolyViNE embedding process and identified the most
crucial stage in the InP workflow, VN request forwarding.
In this respect, we have proposed a hierarchical address-
ing system (COST) and a location dissemination protocol
(LAP) that jointly allow InPs to make informed forwarding
decisions. We have also presented preliminary performance
characteristics of PolyViNE through simulation.

In the future we would like to address issues such as pric-
ing models, InP interactions, reputation management, and
incentives for InP truthfulness. Relative advantages and
disadvantages of contrasting choices (e.g., recursive vs it-
erative forwarding, values of kSP and kInP ) in different
stages of InP workflow should also be scrutinized. Finally,
the scalability, stability, and performance characteristics of
PolyViNE require further studies through larger simulations
and distributed experiments with a heterogeneous mix of
intra-domain VN embedding algorithms and policies.

Another interesting direction of research for this problem
would be to model it as a distributed constrained optimiza-
tion problem (DCOP) and to try to solve that with minimal
information exchange between InPs.
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