
Leveraging Endpoint Flexibility in Data-Intensive Clusters

Mosharaf Chowdhury1, Srikanth Kandula2, Ion Stoica1

1UC Berkeley, 2Microsoft Research
{mosharaf, istoica}@cs.berkeley.edu, srikanth@microsoft.com

ABSTRACT
Many applications do not constrain the destinations of their net-
work transfers. New opportunities emerge when such transfers con-
tribute a large amount of network bytes. By choosing the endpoints
to avoid congested links, completion times of these transfers as well
as that of others without similar flexibility can be improved. In this
paper, we focus on leveraging the flexibility in replica placement
during writes to cluster file systems (CFSes), which account for al-
most half of all cross-rack traffic in data-intensive clusters. The
replicas of a CFS write can be placed in any subset of machines as
long as they are in multiple fault domains and ensure a balanced
use of storage throughout the cluster.

We study CFS interactions with the cluster network, analyze op-
timizations for replica placement, and propose Sinbad – a system
that identifies imbalance and adapts replica destinations to navi-
gate around congested links. Experiments on EC2 and trace-driven
simulations show that block writes complete 1.3× (respectively,
1.58×) faster as the network becomes more balanced. As a col-
lateral benefit, end-to-end completion times of data-intensive jobs
improve as well. Sinbad does so with little impact on the long-term
storage balance.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Distributed sys-
tems—Cloud computing

Keywords
Cluster file systems, data-intensive applications, datacenter net-
works, constrained anycast, replica placement

1 Introduction
The network remains a bottleneck in data-intensive clusters, as ev-
idenced by the continued focus on static optimizations [7, 31] and
data-local task schedulers [10, 34, 43, 44] that reduce network us-
age, and on scheduling the exchanges of intermediate data [10,20].
The endpoints of a flow are assumed to be fixed: network sched-
ulers [8,13,20,28] can choose between different paths, vary rates of
flows, and prioritize one flow over another, but they cannot change
where a flow originates from or its destination.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

However, many inter-machine transfers do not require their des-
tinations to be in specific locations as long as certain constraints
are satisfied. An example of such transfers in data-intensive clus-
ters is the writes to cluster file systems (CFSes) like GFS [27],
HDFS [15], Cosmos [19], Amazon S3 [2], or Windows Azure Stor-
age [17]. These systems store large pieces of data by dividing them
into fixed-size blocks, and then transferring each block to three
machines (for fault-tolerance) in two different racks (for partition-
tolerance) using chain replication [42]. The replicas can be in any
subset of machines that satisfy the constraints.

Analysis of traces from production clusters at Facebook and Mi-
crosoft reveals that such replicated writes (referred to as distributed
writes from hereon) account for almost half of all cross-rack traf-
fic in both clusters (§4). Moreover, recent data suggests a grow-
ing trend in the volume of distributed writes with hundreds of ter-
abytes of data being ingested everyday into different CFS installa-
tions [5, 6, 17]. We also find that while the network is often under-
utilized, there exists substantial imbalance in the usage of bottle-
neck links. Such imbalance leads to congestion and performance
degradation. Common causes of imbalance include skew in appli-
cation communication patterns1 [14, 35] and a lack of control on
the background traffic in multi-tenant datacenters.

Even though replication takes place over the network, its inter-
actions with the network have so far been ignored. In this pa-
per, we present Sinbad, a system that leverages the flexibility in
endpoint placement during distributed writes to steer replication
transfers away from network hotspots. Network-balanced place-
ment has two implications. First, it improves CFS write through-
put by avoiding network contention; response times of tasks that
write improve as well. Second, by steering CFS’ traffic away from
hotspots, throughput of non-CFS traffic on those links increase; in
data-intensive clusters, this speeds up tasks that shuffle intermedi-
ate data and jobs with large shuffles.

Exercising the freedom in endpoint selection in our approach is
akin to that of overlay anycast, which is typically employed by
latency-sensitive request-response applications to select the “best”
source (server) from where to retrieve the content [18, 25]. How-
ever, in the case of distributed writes, we exploit this flexibility for
picking the “best” set of destinations to maximize the throughput
of replicating large blocks. In addition, we consider constraints
like the number of fault domains and aim to minimize the storage
imbalance across machines.

Storage imbalance during replica placement is harmful, because
machines receiving too many replicas can become hotspots for fu-
ture tasks. Existing CFSes employ a uniform replica placement

1For example, when counting the occurrences of DISTINCT keys
in a dataset, the amount of data in each partition (to be received by
corresponding reducer) can be very skewed.

policy and perform periodic re-balancing to avoid such imbalance.
We show that a network-balanced placement policy does not trig-
ger additional storage balancing cycles. While network hotspots
are stable in the short term to allow network-balanced placement
decisions, they are uniformly distributed across all bottleneck links
in the long term ensuring storage load balancing.

Optimizing distributed writes is NP-hard even in the offline case,
because finding the optimal solution is akin to optimally schedul-
ing tasks in heterogeneous parallel machines without preemption
[9, 26]. We show that if hotspots are stable while a block is be-
ing written and all blocks have the same size, greedy placement
through the least-loaded bottleneck link is optimal for optimizing
the average block write time (§5). Under the same assumptions, we
also show that to optimize the average file write time, files with the
least remaining blocks should be prioritized.

Sinbad employs the proposed algorithms and enforces necessary
constraints to make network-aware replica placement decisions
(§6). It periodically measures the network and reacts to the im-
balance in the non-CFS traffic. An application layer measurement-
based predictor performs reasonably well in practice due to short-
term (few tens of seconds) stability and long-term (hours) uniform-
ness of network hotspots. We find this approach attractive because
it is not tied to any networking technology, which makes it readily
deployable in public clouds.

We have implemented Sinbad as a pluggable replica placement
policy for the Facebook-optimized HDFS distribution [4]. HDFS is
a popular open-source CFS, and it is the common substrate behind
many data-parallel infrastructures [3, 32, 45]. We avoid the many
known performance problems in Hadoop [3] by running jobs using
an in-memory compute engine (e.g., Spark [45]). We have eval-
uated Sinbad (§7) by replaying the scaled-down workload from a
Facebook trace on a 100-machine Sinbad deployment on Amazon
EC2 [1]. We show that Sinbad improves the average block write
time by 1.3× and the average end-to-end completion time of jobs
by up to 1.26× with limited penalties due to its online decisions.
In the process, it decreases the imbalance across the network with
little impact on storage load balancing. For in-memory storage sys-
tems, the improvements can be even higher. Through trace-driven
simulations, we also show that Sinbad’s improvement (1.58×) is
close to that of an optimistic estimation (1.89×) of the optimal.

We discuss known issues and possible solutions in Section 8, and
we consider Sinbad in light of relevant pieces of work in Section 9.

2 CFS Background
This section provides a brief architectural overview of cluster
file systems (CFSes) focusing primarily on the end-to-end write
pipeline. Examples of CFSes include distributed file systems (DFS)
like GFS at Google [27], HDFS at Facebook and Yahoo! [4, 15],
and Cosmos [19] at Bing. We also include public cloud-based
storage systems like Amazon S3 [2] and Windows Azure Storage
(WAS) [17] that have similar architecture and characteristics, and
are extensively used by popular services like dropbox.com.

2.1 System Model
A typical CFS deployment consists of a set of storage slaves and a
master that coordinates the writes to (reads from) CFS slaves. Files
(aka objects/blobs) stored in a CFS are collections of large blocks.
Block size in production clusters varies from 64 MB to 1 GB.2 The
block size demonstrates a trade-off between disk I/O throughput
vs. the benefit from parallelizing across many disks. Most CFS
designs provide failure recovery guarantees for stored files through
replication and ensure strong consistency among the replicas.
2Blocks are not padded, i.e., the last block in a file can be smaller.

Core!

Fault Domain 1/!
Rack 1!

Fault Domain 2/!
Rack 2!

Fault Domain 3/!
Rack 3!

Figure 1: Distributed write pipeline. Each block has three copies in two
racks and three different machines.

Write Workflow When writing a file to the CFS, the client pro-
vides a replication (r) factor and a fault-tolerance (f) factor to
ensure that each block of that file has r copies located in at least
f(< r) fault domains. The former is for load balancing (blocks
in popular files have more replicas [11]), while the latter ensures
availability in spite of failures. Machines in different racks are typ-
ically considered to be in independent fault domains. Typically,
r = 3 and f = 1; meaning, each block is stored in three machines
in two racks and can survive at most one rack failure (Figure 1).
Thus, writing a block copies it at least once across racks.

The replica placement policy in the CFS master independently
decides where to place each block irrespective of their parent files.
Blocks from the same file and their replicas need not be collocated.
The goal is to uniformly place blocks across all machines and fault
domains so as to
• minimize the imbalance in storage load across disks, and
• balance the number of outstanding writes per disk.

Both these constraints assume that writes are bottlenecked only
by disks. This assumption, however, is not always true since the ex-
tent of oversubscription in modern datacenter networks (typically
between the core and racks) can cause writes to bottleneck on the
oversubscribed links. Even on topologies with full bisection band-
width, writes can bottleneck on the servers’ network interfaces for
high in-degrees or when the cumulative write throughput of a server
is larger than its NIC speed. For example, a typical server with six
to eight commodity disks [33, 41] has sequential write throughput
that is several times the typical NIC speed (1 Gbps).

Once replica locations have been determined, the CFS slave
transfers the block to the selected destinations using chain repli-
cation [42]. Distributed writes are synchronous; to provide strong
consistency, the originator task will have to wait until the last
replica of the last block has been written. Hence, write response
times influence task completion times as well.

Read Workflow Reading from the CFS is simpler. Given a file,
the CFS master reports the locations of all the replicas of all the
blocks of that file. Given these locations, task schedulers try to
achieve data locality through a variety of techniques [10,34,43,44].

Although reads are separate from writes, read performance is
still influenced by the placement of blocks. By minimizing storage
imbalance, a CFS strives to minimize the performance impact of
reads in future tasks.

2.2 Network Model

CFS deployments in modern clusters run on topologies that often
have a full-bisection bandwidth core (e.g., fat-tree [38], VL2 [28])
with some oversubscription in core-to-rack links (Figure 1). We
consider a network model, where downlinks to storage racks can
be skewed. This is common in typical data-intensive clusters with

•  Static Information!
•  Network topology!
•  Link, disk capacities!
•  Dynamic distributions of !
•  loads in links!
•  popularity of files!

Info (from slaves)!

Sinbad Master!Where to put
block B?!

{ Locations }!

•  At least r replicas!
•  In f fault domains!
•  Collocate with block B’!
•  …!

Constraints & Hints!

Figure 2: Decision process of Sinbad master.

collocated compute and storage. For dedicated storage racks (i.e.,
when compute and storage are not collocated), skew can still exist
due to random placement decisions made by the CFS master.

3 Sinbad Overview
Sinbad is a measurement-based system to perform network-
balanced replica placement during distributed writes. In this sec-
tion, we present a brief overview of Sinbad to help the reader follow
the measurements (§4), analysis (§5), and design (§6) presented in
subsequent sections.

3.1 Problem Statement

Given a replica placement request – with information about the lo-
cation of the writer, size of the block, and the replication factor –
Sinbad must return a set of locations for the CFS master to replicate
that block to (Figure 2). All information about a block request is
unknown prior to its arrival.

One can think of this problem as constrained overlay anycast
in a throughput-sensitive context. However, instead of retrieving
responses from the best sources, we have to replicate large blocks
to multiple machines in different fault domains without introducing
significant storage imbalance across the cluster.

The problem of placing replicas to minimize the imbalance
across bottleneck links is NP-hard even in the offline case (§5).
Sinbad employs algorithms developed by exploiting observations
from real-world clusters (§4) to perform reasonably well in realis-
tic settings.

3.2 Architectural Overview

Sinbad is designed to replace the default replica placement policy in
existing CFSes. Similar to its target CFSes, Sinbad uses a central-
ized architecture (Figure 3) to use global knowledge while making
its decisions. Sinbad master is collocated with the CFS master, and
it makes placement decisions based on information collected by its
slaves.

Sinbad slaves (collocated with CFS slaves) periodically send
measurement updates to the master by piggybacking on regular
heartbeats from CFS slaves. They report back several pieces of
information, including incoming and outgoing link utilizations at
host NICs and current disk usage. Sinbad master aggregates the
collected information and estimates current utilizations of bottle-
neck links (§6.2). Sinbad uses host-based application layer tech-
niques for measurements. This comes out of practicality: we

Sinbad
Master!

CFS
Master!

CFS
Slave!

Sinbad
Slave!

CFS
Slave!

Sinbad
Slave!

CFS
Slave!

Sinbad
Slave!

Where to put
block B?!

Machine!

Figure 3: Sinbad architecture. Sinbad agents are collocated with the cor-
responding agents of the parent CFS.

Table 1: Details of Facebook and Microsoft Bing Traces

Facebook Microsoft Bing
Date Oct 2010 Mar-Apr 2012
Duration One week One month
Framework Hadoop [3] SCOPE [19]
Jobs 175, 000 Tens of Thousands
Tasks 30 million Tens of Millions
CFS HDFS [4] Cosmos [19]
Block Size 256 MB 256 MB
Machines 3, 000 Thousands
Racks 150 Hundreds
Core:Rack
Oversubscription

10 : 1 Lower (i.e., Better)

want Sinbad to be usable in public cloud offerings with little or
no access to in-network measurement counters. Sinbad can inter-
act nicely with existing network-level load balancers (e.g., Hed-
era [8], MicroTE [13], or ECMP [28]). This is because network-
level techniques balance load among paths given source-destination
pairs, whereas Sinbad dictates destinations without enforcing spe-
cific paths.

Fault Tolerance and Scalability Since Sinbad agents are collo-
cated with that of the parent CFS, host failures that can take Sinbad
slaves offline will take down corresponding CFS agents as well.
If Sinbad master dies, the CFS master can always fall back to the
default placement policy. Because most CFSes already have a cen-
tralized master with slaves periodically reporting to it – Sinbad does
not introduce new scalability concerns. Furthermore, piggybacked
measurement updates from Sinbad slaves introduce little overhead.

4 Measurements and Implications
In this section, we analyze traces from two production data-parallel
clusters – Facebook’s Hadoop-HDFS cluster and Microsoft Bing’s
SCOPE-Cosmos cluster. Table 1 lists the relevant details. In both
clusters, core-to-rack links are the most likely locations for network
bottlenecks.

Our goal behind analyzing these traces is to highlight character-
istics – the volume of distributed writes, the impact of writes on job
performance, and the nature of imbalance in bottleneck link utiliza-
tions – that motivate us to focus on distributed writes and enable us
to make realistic assumptions in our analysis and evaluation.

4.1 Network Footprint of Distributed Writes

Available data points indicate a growing trend of the volume of data
ingested into data-intensive clusters. Recent data from Facebook

Table 2: Sources of Cross-Rack Traffic

Reads Inter. Job Writes Other Writes
Facebook 14% 46% 10% 30%
Microsoft 31% 15% 5% 49%!"#$

!"#%
!"#&
!"#'
!"#(
!")
!")*
!")#
!"))
!")+
!")$
!")%
!")&
!")'
!")(
!"+
!"+*

0!

0.25!

0.5!

0.75!

1!

0! 0.25! 0.5! 0.75! 1!

C
D

F!
(W

ei
gh

te
d

by
 B

yt
es

 W
ri

tte
n)
!

Fraction of Task Duration in Write!

Preproc./Ingest!
Reducers!
Combined!

Figure 4: Weighted CDF of the fraction of task durations spent in writing
to HDFS by tasks with write phases.

claims that it ingests more than 500 TB every day (Aug. 2012) [5].
To provide fresh ads and content recommendations, ingestion hap-
pens at regular intervals including peak hours [16, 41]. The inges-
tion engine of Windows Azure Storage (WAS) keeps around 350
TB of Facebook and Twitter data to provide near-realtime search
results within 15 seconds [17]. Finally, Amazon S3 has experi-
enced a sharp rise in the number of objects it stores since 2006; it
currently stores more than 1.3 trillion objects (Jan. 2013) [6], many
of which are likely to be large blobs due to S3’s performance and
pricing models.3

The impact of the increasing volume of writes was evident in
our traces. Although intermediate transfers are known to have sig-
nificant impact on application performance [20], they are far from
being the dominant source of cross-rack traffic! We found that in-
termediate transfers account for 46% and 15% of all cross-rack
traffic in Facebook and Microsoft clusters (Table 2). As expected,
both clusters achieved good data locality – only 10% of all tasks
read input from non-local machines [10, 34, 44].

Contrary to our expectations, however, we observed that cross-
rack replication due to distributed writes accounted for 40% and
54% of the network traffic in the two clusters. In addition to the
final output that jobs write to the CFS, we identified two additional
sources of writes:

1. Data ingestion or the process of loading new data into the clus-
ter amounted for close to 50% of all cross-rack bytes in the
Microsoft cluster.

2. Preprocessor outputs. Preprocessing jobs only have map tasks.
They read data, apply filters and other user-defined functions
(UDFs) to the data, and write what remains for later consump-
tion by other jobs. Combined with data ingestion, they con-
tributed 30% of all cross-rack bytes in the Facebook cluster.

4.2 Impact of Writes on Job Performance

To understand the impact of writes on task durations, we compare
the duration of the write phase with the runtime of each writer.
For a reduce task, we define its “write phase” as the time from
the completion of shuffle (reading its input from map outputs over
the network) until the completion of the task. For other writers,
we define the write phase as the timespan between a task finishing
reading its entire input (from local disk) and its completion time.

3S3 charges for individual PUT requests, and PUT response times
are empirically better for larger objects.

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4! 5! 6!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load Across
Core-Rack Links!

Down Links!

Up Links!

(a) Facebook

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load Across
Core-Rack Links!

Down Links!

Up Links!

(b) Microsoft Bing

Figure 5: Imbalance in 10s average utilizations of up and downlinks be-
tween the core and racks in Facebook and Microsoft clusters due to CFS
and non-CFS traffic.

We found that 37% of all tasks write to the CFS. A third of these
are reducers; the rest are other writers. We observed that 42% of
the reduce tasks and 91% of other writers spent at least half their
durations in the write phase (Figure 4). This suggests that faster
writes can help many tasks to complete earlier.

4.3 Characteristics of Network Imbalance

We found that the cumulative traffic from intermediate transfers,
distributed writes, cluster management workload, and the traffic
from collocated services can be substantially imbalanced across the
bottleneck links in the short term (e.g., tens of seconds). Causes
of imbalance include skew in application communication patterns
[14, 35], imbalance in the number of mappers and reducers, and
cluster management events such as rolling updates.

We measured network imbalance using the coefficient of varia-
tion4 (Cv) of the average link utilization in each 10s interval across
up and downlinks (Figure 5). With perfect balance, these values
would be zero. However, in both traces, we found that the down-
links had Cv > 1 for almost half the time. Uplinks were equally
imbalanced in the Facebook trace, but the imbalance was somewhat
lower in the Bing trace. We do not yet know the reason for this.

Although skewed, link utilizations remained stable over short
intervals. Such stability is important to enable predictable online
placement decisions for relatively short block transfers. To analyze
the stability of link utilizations, we calculated average utilization
over different time intervals in all core-to-rack links in the Face-
book cluster. We consider a link’s utilization Ut(l) at time t to be
stable for the duration T if the difference between Ut(l) and the
average value of Ut(l) over the interval [t, t + T) remains within
StableCap% of Ut(l). We observed that average link utilizations
remained stable for smaller durations with very high probabilities.
For the most unpredictable link, the probabilities that its current
utilization from any instant will not change by more than 5% for
the next 5, 10, 20, and 40 seconds were 0.94, 0.89, 0.80, and
0.66, respectively. Compare these with the 256 MB blocks used
in these clusters. It will take around 5s to write such a block at a
disk throughput of 50 MBps, which is small enough to exploit uti-
lization stability periods. We found that 81% of all bytes written to
the CFS come from 32% of the blocks that are 256 MB in size.

Imbalance without congestion may not impact performance. We
observed in the Facebook trace that the 95th percentile load across
bottleneck links was more than 75% of link capacity 25% of the
time. However, the effect of congested links is magnified – a single

4Coefficient of variation, Cv = σ
µ

, shows the extent of variability
in relation to the mean of the population.

bottleneck link can impact a large number of jobs if they have tasks
communicating through that congested link.

Finally, despite significant short-term imbalance, link usages be-
come more balanced over longer intervals (e.g., over hours). Dur-
ing normal operation (i.e., in absence of failures), we observed that
each bottleneck link is almost equally likely to become a hotspot.

4.4 Summary

We make the following observations in this section.
• Replication accounts for almost half the cross-rack traffic in

data-intensive clusters, and its magnitude is rapidly increasing.
• Network congestion in such clusters has significant skew across

bottleneck links in the short term, but the skew is minimal over
longer durations.

• Durations of write tasks (e.g., ingestion and preprocessing
tasks) are dominated by time spent in writing.

• Most bytes written to the CFS belong to the maximum sized
(256 MB) blocks.

5 Analytical Results
The distributed writing problem is NP-hard. In this section, we
provide insights into the complexity of this problem, consider as-
sumptions that make the problem tractable, and present two opti-
mal algorithms under the simplifying setting. We also discuss the
potential for improvements using a network-aware solution.

Detailed analysis and proofs can be found in the appendix.

5.1 Optimizing Block Writes

The primary objective of a CFS is to minimize the average block
write time, which also results in maximizing the system utiliza-
tion of the CFS. The optimal placement algorithm must select the
best destinations (through suitable bottleneck links) for all block
requests as they arrive.

Complexity Optimizing for block writes is NP-hard, even when
all block requests and link capacities are known beforehand. This
can be proven by a reduction from the NP-hard job-shop scheduling
problem (Theorem A.1).

The online distributed writing problem is even harder because of
the following reasons:
1. Links have different available capacities.
2. Lack of future knowledge about

(a) bottleneck link utilizations throughout the duration of repli-
cation, and

(b) new replica placement requests (sizes and arrival times) to
arrive while a block is being replicated.

Variations of job shop scheduling with one or more of the above-
mentioned characteristics are known to be NP-hard and hard to ap-
proximate as well [9, 36, 37].

Simplified Model For the ease of analysis, we make the following
assumptions based on our observations in Section 4.
1. Blocks have a fixed size. The size of each block is already

bounded. Additionally, we assume all blocks to have the same
size (i.e., blocks are padded). Because most bytes are generated
by a third of all blocks written, we ignore the impact of the rest
during analysis.

2. Link utilization is fixed while a block is being written. Since
link utilizations remain reasonably stable in the short term, we
assume that changes in bottleneck links are precisely known
throughout the duration of writing a block. Changes are ex-
pected only due to traffic introduced by replication.

3. Potential bottleneck links are easily discernible. Given the
oversubscribed (logical) tree-based topologies of data-intensive
clusters, links leading in and out of the racks are likely to be the
bottlenecks. We assume that the potential network bottlenecks
are known, which allows us to abstract away the topology.5

4. Decision intervals are independent. We assume that block re-
quests arrive at the beginning of decision intervals, and they are
small enough so that their replication finishes within the same
interval. All decision intervals have the same length, q.

Given the aforementioned assumptions, greedy assignment of
blocks to the least-loaded link first is optimal for minimizing the
average block write time (see Theorem A.2). We refer to this algo-
rithm as OPT . OPT ’s improvements over the uniform placement
policy increases with the increasing imbalance in the network and
as the number of off-rack replicas increases (§A.2).

5.2 Optimizing File Writes
CFSes store data by dividing it into fixed-sized blocks. Hence, a
request to write a large file/object generates a sequence of block
write requests. For a writer, the objective then to minimize the
average file write time. Optimizing the average file write time is
no easier than optimizing the average block write time, and, it is
NP-hard as well.

OPT is optimal when all blocks have the same size. However,
files can have different sizes, which can result in different numbers
of equal-sized blocks. Using a simple counter-example it can be
shown that OPT is not optimal in this case (Lemma B.1).

Given the assumptions in Section 5.1 and with OPT in place,
greedy assignment of blocks through links in the least-remaining-
blocks-first order is optimal for minimizing the average file write
time (see Theorem B.2). We refer to this algorithm as OPT ′.

OPT ′ favors smaller files. However, larger files will not com-
pletely starve as long as the arrival rate of block requests does not
exceed the simultaneous serving capacity of the system.

OPT ′ requires the decision interval to be longer than zero (i.e.,
q > 0) so that it can order blocks from different files by the num-
ber of blocks remaining in their parent files. In contrast, q = 0
refers to a pure online solution, where OPT ′ reduces to OPT . The
length of the decision interval (q) presents a tradeoff. A larger q po-
tentially provides better opportunities for OPT ′, but it introduces
additional delay to the write time of each block in that interval.

6 Design Details
This section discusses the expected operating environment of Sin-
bad (§6.1), how Sinbad estimates bottleneck link utilizations across
the cluster (§6.2), and how it incorporates (§6.3) the algorithms in-
troduced in Section 5.

6.1 Operating Environment
We make the following assumptions about the characteristics of
write requests and on the availability of certain pieces of informa-
tion (e.g., oversubscription in the topology).

Because most bytes are generated by a third of all blocks writ-
ten, we consider only fixed-sized blocks in Sinbad. This allows
Sinbad to ignore the arrival order of block requests when making
a decision for the current block request. In a sense, this problem
is akin to an online load balancing problem. A frequent stream
of roughly equal-sized entities is quite easy to balance. Contrast
this with the case when block sizes are unbounded; whether or not
large blocks will arrive in the future crucially impacts placement,
5Generalizing to arbitrary topologies adds overhead. For example,
we would have to run max-flow/min-cut to determine which of the
many bottlenecks are tight given a placement.

Pseudocode 1 Request Dispatching Algorithm
1: procedure GETREPLICALOCATIONS(Request B)
2: if B.size < THRESHOLD then ▷ Ignore small blocks
3: return Default.getReplicaLocations(B)
4: end if
5:
6: if q = 0 then ▷ Instantaneous decision
7: return selectLinks(B, Nil)
8: end if
9:

10: Q.addToQueue(B) ▷ Queue up the request. Order by policy.
11: end procedure

12: procedure DISPATCHREQUEST(Link l) ▷ Called at q intervals.
13: for all B ∈ Q do
14: return selectLinks(B, Nil)
15: end for
16: end procedure

since one needs to keep room on both network links and disks for
such blocks. The rest of the blocks, which are many but contribute
insignificant amount of bytes, are placed using the default policy.

Sinbad uses optional information provided by the operator in-
cluding the topology of the cluster, oversubscription factors at dif-
ferent levels of the topology, and fault domains with corresponding
machines. We populate the bottleneck links’ set (L) with links that
are likely to become bottlenecks; on the topologies used in data-
centers today, these are links that have a high oversubscription fac-
tor (e.g., host to top-of-rack switch and top-of-rack-switch to core).
In the absence of this information, Sinbad assumes that each ma-
chine is located in its own fault domain, and L is populated with
the host-to-rack links.

6.2 Utilization Estimator

Sinbad master receives periodic updates from each slave at ∆ in-
tervals containing the receiving and transmitting link utilizations at
corresponding NICs. After receiving individual updates, Sinbad es-
timates, for each potential bottleneck link l, the downlink (Rx(l))
and uplink (Tx(l)) utilizations using exponentially weighted mov-
ing average (EWMA):

vnew(l) = α vmeasured(l) + (1− α) vold(l)

where, α is the smoothing factor (Sinbad uses α = 0.2), and v(.)
stands for both Rx(.) and Tx(.). EWMA smooths out the random
fluctuations. v(l) is initialized to zero. Missing updates are treated
conservatively, as if the update indicated the link was fully loaded.

When L contains internal links of the topology (i.e., links be-
tween switches at different levels), vnew(l) is calculated by sum-
ming up the corresponding values from the hosts in the subtree of
the farthest endpoint of l from the core.

The update interval (∆) determines how recent the vnew(l) val-
ues are. A smaller ∆ results in more accurate estimations; however,
too small a ∆ can overwhelm the incoming link to the master. We
settled for ∆ = 1s, which is typical for heartbeat intervals (1 to 3
seconds) in existing CFSes.

Hysteresis After a Placement Decision Once a replica placement
request has been served, Sinbad must temporarily adjust its esti-
mates of current link utilizations in all the links involved in trans-
ferring that block to avoid selecting the same location for subse-
quent block requests before receiving the latest measurements. We
use an increment function I(B, δ) that is proportional to the size of
the block and inversely proportional to the amount of time remain-
ing until the next update (denoted by δ). At the beginning of an
update period, we set v̂(l) = vnew(l), and upon each assignment

Pseudocode 2 Link Selection Algorithm
1: procedure SELECTLINKS(Request B, Link l)
2: if l is an edge link then ▷ Terminating condition
3: return {Machine attached to l}
4: end if
5:
6: M = {}
7: if l = Nil then ▷ Called with the tree root
8: Lcur = L ▷ Consider all bottleneck links
9: M = {B.localMachine}

10: B.r = B.r − 1
11: else ▷ Called recursively
12: Lcur = {l′ : l′ ∈ subtree of l}
13: end if
14:
15: Lcur = Lcur.filter(B.constraints) ▷ Filter (§6.4)
16:
17: if |Lcur| < B.r then
18: return Nil ▷ Not enough locations
19: end if
20:
21: SORT_DESC Lcur by expectedCapacity(l)
22: for all l ∈ {First B.r links from Lcur} do
23: Add hysteresis to l ▷ Only to the selected links
24: Set B.r = 1 ▷ One replica from each subtree
25: M = M ∪ {selectLinks(B, l)}
26: end for
27: return M
28: end procedure

29: procedure EXPECTEDCAPACITY(Link l)
30: return min(Cap(l)− R̂x(l), DiskWriteCap)
31: end procedure

of a block B to link l, we add hysteresis as follows:

I(B, δ) = min(Cap(l)− v̂(l),
Size(B)

δ
)

v̂(l) = v̂(l) + I(B, δ)

When an updated measurement arrives, v̂(l) is invalidated and
vnew(l) is used to calculate the weighted moving average of v(l).
Here, Cap(l) represents the capacity of link l and Size(B) is the
size of block B.

6.3 Network-Balanced Placement Using Sinbad

Sinbad employs the algorithms developed in Section 5 to perform
network-aware replica placement. It involves two steps: ordering
of requests and ordering of bottleneck links.

Sinbad queues up (Pseudocode 1) all block requests that ar-
rive within a decision interval of length q and orders them by
the number of remaining blocks in that write request (for OPT ′).
For q = 0, Sinbad takes instantaneous decisions. The value of
THRESHOLD determines which blocks are placed by Sinbad. Re-
call that to lower overhead, Sinbad causes most of the smaller
blocks, which are numerous but contribute only a small fraction
of cluster bytes, to be placed using the default policy.

Given an ordered list of blocks, Sinbad selects the machine with
the highest available receiving capacity, i.e., the one that is reach-
able along a path with bottleneck link lsel, which has the largest
remaining capacity among all potential bottlenecks:

lsel = argmax
l∈L

min(Cap(l)− R̂x(l),DiskWriteCap)

where, R̂x(l) is the most recent estimation of Rx(l) at time
Arr(B) and DiskWriteCap is the write throughput of a disk. This
holds because the copy has to move in the transmit direction re-
gardless. The choice of placement only impacts where it ends up,
and hence, which other links are used on their receive direction.

Further, Sinbad can generalize to the case when there are multiple
bottleneck links along such receiving paths. Hysteresis (described
above) lets Sinbad track the ongoing effect of placement decisions
before new utilization estimates arrive.

Pseudocode 2 shows how Sinbad proceeds recursively, starting
from the bottleneck links, to place the desired number of replicas.
The entry point for finding replicas for a request B with this pro-
cedure is SELECTLINKS(B, Nil). Calling it with an internal link
restricts the search space to a certain subtree of the topology.

Because a replication flow cannot go faster than DiskWriteCap,
it might seem appealing to try to match that throughput as closely
as possible. This choice would leave links that have too much spare
capacity for a given block free, possibly to be used for placing an-
other larger block in near future. However, in practice, this causes
imbalance in the number of replication flows through each bottle-
neck link and in the number of concurrent writers in CFS slaves,
and hurts performance.

6.4 Additional Constraints

In addition to fault tolerance, partition tolerance, and storage bal-
ancing, CFS clients can provide diverse suitability constraints. Col-
location of blocks from different files to decrease network commu-
nication during equi-joins is one such example [23]. Because such
constraints decrease Sinbad’s choices, the improvements are likely
to be smaller. Sinbad satisfies them by filtering out unsuitable ma-
chines from Lcur (line 15 in Pseudocode 2).

7 Evaluation
We evaluated Sinbad through a set of experiments on a 100-
machine EC2 [1] cluster using workloads derived from the Face-
book trace. For a larger scale evaluation, we used a trace-driven
simulator that performs a detailed replay of task logs from the same
trace. Through simulation and experimentation, we look at Sin-
bad’s impact when applied on two different levels of the network
topology: in the former, Sinbad tries to balance load across links
connecting the core to individual racks; whereas, in the latter, it
aims for balanced edge links to individual machines (because the
EC2 topology and corresponding bottlenecks are unknown). Our
results show the following:

• Sinbad improves the average block write time by 1.3× and the
average end-to-end job completion time by up to 1.26×, with
small penalties for online decisions (§7.2).

• Through simulations, we show that Sinbad’s improvement
(1.58×) is close to that of an optimistic estimation (1.89×) of
the optimal (§7.2).

• Sinbad decreases the median imbalance across bottleneck links
(i.e., median Cv) by up to 0.33 in both simulation and experi-
ment (§7.3).

• Sinbad has minimal impact on the imbalance in disk usage
(0.57% of disk capacity), which remains well within the tol-
erable limit (10%) (§7.4).

• If disks are never the bottlenecks, Sinbad improves the aver-
age block write time by 1.6× and the average end-to-end job
completion time by up to 1.33× (§7.6).

7.1 Methodology

Workload Our workload is derived from the Facebook trace (§4).
During the derivation, we preserve the original workload’s write
characteristics, including the ratio of intermediate and write traffic,
the inter-arrival times between jobs, the amount of imbalance in
communication, and the input-to-output ratios for each stage. We
scale down each job proportionally to match the size of our cluster.

Table 3: Jobs Binned by Time Spent in Writing

Bin 1 2 3 4 5

Write Dur. < 25% 25–49% 50–74% 75–89% ≥ 90%

% of Jobs 16% 12% 12% 8% 52%

% of Bytes 22% 5% 3% 3% 67%

We divide the jobs into bins (Table 3) based on the fraction of
their durations spent in writing. Bin-5 consists of write-only in-
gestion and preprocessing jobs (i.e., jobs with no shuffle), and bins
1–4 consist of typical MapReduce (MR) jobs with shuffle and write
phases. The average duration of writes in these jobs in the original
trace was 291 seconds.

Cluster Our experiments use extra large EC2 instances with 4
cores and 15 GB of RAM. Each machine has 4 disks, and each
disk has 400 GB of free space. The write throughput of each disk
is 55 MBps on average.

The EC2 network has a significantly better oversubscription fac-
tor than the network in the original Facebook trace – we observed a
bisection bandwidth of over 700 Mbps/machine on clusters of 100
machines. At smaller cluster sizes we saw even more – up to 900
Mbps/machine for a cluster of 25 machines. Note that the virtual
machine (VM) placement in EC2 is governed by the provider and
is supposed to be transparent to end users. Further, we did not see
evidence of live migration of VMs during our experiments.

We use a computation framework similar to Spark [45] and the
Facebook-optimized distribution of HDFS [4] with a maximum
block size of 256 MB. In all experiments, replication and fault-
tolerance factors for individual HDFS files are set to three (r = 3)
and one (f = 1), respectively. Unless otherwise specified, we make
instantaneous decisions (q = 0) in EC2 experiments.

Trace-Driven Simulator We use a trace-driven simulator to as-
sess Sinbad’s performance on the scale of the actual Facebook clus-
ter (§4) and to gain insights at a finer granularity. The simulator
performs a detailed task-level replay of the Facebook trace that was
collected on a 3000-machine cluster with 150 racks. It preserves
input-to-output ratios of all tasks, locality constraints, and presence
of task failures and stragglers. We use the actual background traf-
fic from the trace and simulate replication times using the default
uniform placement policy. Disk write throughput is assumed to be
50 MBps. Unless otherwise specified, we use 10 second decision
intervals (q = 10s) in simulations to make them go faster.

Metrics Our primary metric for comparison is the improvement
in average completion times of individual block replication, tasks,
and jobs (when its last task finished) in the workload, where

Factor of Improvement =
Current

Modified

We also consider the imbalance in link utilization across bottleneck
links as well as the imbalance in disk usage/data distribution across
the cluster. The baseline for our deployment is the uniform replica
placement policy used in existing systems [4, 19]. We compare the
trace-driven simulator against the default policy as well.

7.2 Sinbad’s Overall Improvements

Sinbad reduces the average completion time of write-heavy jobs
by up to 1.26× (Figure 6) and jobs across all bins gain a 1.29×
boost in their average write completion times. Note that varying
improvements in write times across bins are not correlated with the
characteristics of jobs in those bins; blocks in these experiments
were placed without considering any job-specific information. MR
jobs in bin-1 to bin-4 have lower overall improvements than bin-5

1.
11
!

1.
08
!

1.
08
! 1.

18
! 1.

26
!

1.
19
!

1.
45
!

1.
27
!

1.
19
!

1.
24
!

1.
28
!

1.
29
!

1!

1.1!

1.2!

1.3!

1.4!

1.5!

1.6!

Bin 1! Bin 2! Bin 3! Bin 4! Bin 5! ALL!

Fa
ct

or
 o

f I
m

pr
ov

em
en

t! End-to-End!
WriteTime!

Figure 6: [EC2] Improvements in average job completion times and time
spent in distributed writes.

1.
07
!

1.
11
!

1.
08
!

1.
13
!

1.
22
!

1.
20
!

1.
31
!

1.
15
! 1.
44
!

1.
23
!

0!

0.5!

1!

1.5!

2!

[0, 10)! [10, 100)! [100, 1E3)![1E3, 1E4)![1E4, 1E5)!

Fa
ct

or
 o

f I
m

pr
ov

em
en

t!

Job Write Size (MB)!

End-to-End!
WriteTime!

Figure 7: [EC2] Improvements in jobs categorized by amounts of dis-
tributed writes.

because they are computationally heavy and because shuffles see
negligible change in these set of experiments. The average end-to-
end completion times of jobs improved by 1.19× and block write
time across all jobs improved by 1.3×.

Being an online solution, Sinbad does not always perform well.
We found that 15% of the jobs either had no improvements or ex-
perienced slightly higher overall completion times. In contrast, the
top 15% jobs improved by at least 1.4×. Part of Sinbad’s ineffi-
ciency can be attributed to its limited view of the network in the
virtualized EC2 environment.

A breakdown of improvements in jobs by their write sizes (Fig-
ure 7) does not show any significant difference between categories.
This is because we optimize for blocks in the experiments using
q = 0 which does not differentiate between the different amounts
that each task or job writes.

Trace-Driven Simulation Unlike the EC2 deployment, we pre-
calculated the background traffic due to shuffle in the simulation
and assumed it to be unaffected by placement decisions. Hence, we
do not distinguish between jobs in different bins in the simulation.
We used OPT ′ in the simulations with q = 10s.

We found that 46% of individual block replication requests im-
proved, 47% remained the same, and 7% became slower. The av-
erage improvement across all requests was 1.58×, and 16% com-
pleted at least 2× faster. Average completion times of writers and
communication times of jobs (weighted by their sizes) improved by
1.39× and 1.18×, respectively.

How Far are We From the Optimal? While it was not possible
to exhaustively enumerate all the possible orderings of block re-
quests to find the optimal, we tried to find an optimistic estimation
of improvements. First, we increased q to up to 100s. But, it did
not result in significant increase in improvements.

Next, we tried a drastic simplification. Keeping q = 10s, we as-
sumed that there are no bottlenecks at sources; i.e., sources can also
be placed at suitable locations before writes start. Note that unlike

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Core Links!

Network-Aware!

Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Core-to-Rack Links!

Network-Aware!

Default!

(a) Uplinks

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Core Links!

Network-Aware!

Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Core-to-Rack Links!

Network-Aware!

Default!

(b) Downlinks

Figure 8: [Simulation] Network awareness (Sinbad) decreases load imbal-
ance across racks in the Facebook trace.

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Host-to-Rack Links!

Network-
Aware!
Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Host Links!

Network-
Aware!
Default!

(a) Uplinks

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Host-to-Rack Links!

Network-
Aware!
Default!

0!

0.25!

0.5!

0.75!

1!

0! 1! 2! 3! 4!

Fr
ac

tio
n

of
 T

im
e!

Coeff. of Var. of Load!
Across Rack-to-Host Links!

Network-
Aware!
Default!

(b) Downlinks

Figure 9: [EC2] Network awareness (Sinbad) decreases load imbalance
across machines.

destination placement, this is hard to achieve in practice because it
is hard to predict when a task might start writing. With this simpli-
fication, we found that 58% requests improved, 39% remained the
same, and 3% were worse off using Sinbad. The average improve-
ments in block write time, task completion time, and weighted job
communication time were 1.89×, 1.59×, and 1.36×, respectively.

On Batched Decisions We did not observe significant improve-
ment for q > 0 using OPT ′. This is because the effectiveness
of batching depends on the duration of the window to accumulate
requests, which in turn depends on the request arrival rate and the
average time to serve each request. Batching can only be effective
when the arrival rate and/or the service time are substantial (i.e.,
larger blocks).

In the Facebook trace, on average, 4 large block requests arrive
every second. With 50 MBps disk write speed, writing a 256 MB
block would take 5 seconds. However, the number of suitable bot-
tleneck links is several times larger than the arrival rate. Conse-
quently, batching for a second will not result in any improvement,
but it will increase the average write time of those 4 blocks by 20%.

7.3 Impact on Network Imbalance

We found that Sinbad decreases the network imbalance in both sim-
ulation and deployment. Figure 8 plots the change in imbalance of
load in the bottleneck links in the Facebook cluster. We see that
Sinbad significantly decreases load imbalance (Cv) across up and
downlinks of individual racks – decrease in median Cv being 0.35
and 0.33, respectively. We observed little improvement on the low
end (i.e., Cv close to zero) because those rack-to-core links had
almost equal utilizations to begin with.

Figure 9 presents the imbalance of load in the edge links con-
necting individual machines to the EC2 network. We notice that
irrespective of the placement policy, the average values of imbal-

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
lo

ck
s!

Rank of Racks!

NetworkAware!

Default!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
yt

es
!

Rank of Racks!

NetworkAware!

Default!

(a) Distribution of blocks

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
lo

ck
s!

Rank of Racks!

NetworkAware!

Default!

0.5!

0.6!

0.7!

0.8!

0.9!

1!

1! 26! 51! 76! 101! 126! 151!Pr
ob

ab
ili

ty
 D

en
si

ty
 o

f B
yt

es
!

Rank of Racks!

NetworkAware!

Default!

(b) Distribution of bytes

Figure 10: [Simulation] PDFs of blocks and bytes across racks. Network-
aware placement decisions do not significantly impact data distribution.

ance (Cv) are higher than that observed in our simulation. This is
because we are calculating network utilization and corresponding
imbalance at individual machines, instead of aggregating over 20
machines in each rack. We find that Sinbad decreases imbalance
across edge links as well – decrease in median values of Cv for up
and downlinks are 0.34 and 0.46, respectively. For high Cv values
(Cv ≥ 2.5), Sinbad experienced more variations; we found that
most of these cases had low overall utilization and hence had little
impact on performance.

7.4 Impact on Future Jobs (Disk Usage)

Since replica placement decisions impact future jobs,6 does Sinbad
create significant imbalance in terms of disk usage and the total
number of blocks placed across bottleneck links?

We found that after storing 9.24 TB data (including replicas) in
an hour-long EC2 experiment, the standard deviation of disk usage
across 100 machines was 15.8 GB using Sinbad. For the default
policy it was 6.7 GB. Hence, the imbalance was not so much more
that it would trigger an automated block rebalancing, which typi-
cally happens when imbalance is greater than some fixed percent-
age of disk capacity.

Simulations provided a similar result. Figure 10 presents the
probability density functions of block and byte distributions across
150 racks at the end of a day-long simulation. We observe that
Sinbad performs almost as good as the default uniform placement
policy in terms of data distribution.

Sinbad performs well because it is always reacting to the im-
balance in the background traffic, which is uniformly distributed
across all bottleneck links in the long run (§4.3). Because Sinbad
does not introduce noticeable storage imbalance, it is not expected
to adversely affect the data locality of future jobs. Reacting to net-
work imbalance is not always perfect, however. We see in Figure 10
that some locations (less than 4%) received disproportionately large
amounts of data. This is because these racks were down7 through-
out most of the trace. Sinbad can be extended with constraints on
maximum imbalance in data placement to avoid such scenarios.

7.5 Impact of Cluster/Network Load

To understand the impact of network contention, we compared Sin-
bad with the default placement policy by changing the arrival rate
of jobs. In this case, we used a shorter trace with the same job mix,
scaled down jobs as before, but we spread the jobs apart over time.

We notice in Figure 11 that Sinbad performed well for differ-
ent levels of network contention. However, changing the arrival
6Placing too many blocks in some machines and too few in others
can decrease data locality.
7Likely reasons for downtimes include failure or upgrade, but it
can be due to any number of reasons.

1.
08
!

1.
45
!

1.
14
!

1.
13
!

1.
07
!

1.
4!

1.
27
!

1.
27
!

1.
1!

1.
25
!

1.
26
!

1.
28
!

1!
1.1!
1.2!
1.3!
1.4!
1.5!
1.6!
1.7!

End-to-End! WriteTime! End-to-End! WriteTime!

Bins 1-4! Bin 5!

Fa
ct

or
 o

f I
m

pr
ov

em
en

t! 2X Arrival!
Original Rate!
0.5X Arrival!

Figure 11: [EC2] Improvements in average completion times with different
arrival rates of jobs.

rate by a factor of N does not change the network load by N×
which depends on many factors including the number of tasks, the
input-output ratio, and the actual amount of data in the scaled-down
scenario. By making jobs arrive 2× faster, we saw around 1.4×
slower absolute completion times for both policies (not shown in
Figure 11); this suggests that the network load indeed increased by
some amount. We observe that Sinbad’s improvements decreased
as well: as the network becomes more and more congested, the
probability of finding a less loaded destination decreases.

Changing the arrival rate to half of the original rate (i.e., 0.5×
arrival rate) decreased the overall time very little (not shown in
Figure 11). This suggests that perhaps resource contention among
tasks from the same job is more limiting compared to that across
tasks from different jobs. For the write-only jobs, Sinbad’s im-
provements did not change either. However, for the MR jobs, shuf-
fle time improved at the expense of corresponding writes.

7.6 Impact on In-Memory Storage Systems

So far we have considered Sinbad’s performance only on disk-
based CFSes. However, improvements in these systems are
bounded by the write throughput of disks and depend on how
CFSes schedule writes across multiple disks. To avoid disk con-
straints, several in-memory storage systems and object caches have
already been proposed [12]. To understand Sinbad’s potentials
without disk constraints, we implemented an in-memory object
cache similar to PACMan [12]. Blocks are replicated and stored
in the memory of different machines, and they are evicted (in FIFO
order) when caches become full. Note that the network is the only
bottleneck in this setup. We used the same settings from §7.2.

From EC2 experiments, we found that jobs across all bins gained
boosts of 1.44× and 1.33× in their average write and end-to-end
completion times, respectively. The average block write time im-
proved by 1.6× using Sinbad in the in-memory CFS.

A trace-driven simulation without disk constraints showed a
1.79× average improvement across all block write requests. We
found that 64% of individual block replication requests improved,
29% remained the same, and 7% became slower. Average comple-
tion times of writers and communication times of jobs (weighted
by their sizes) improved by 1.4× and 1.15×, respectively.

8 Discussion
Network-Assisted Measurements In the virtualized EC2 envi-
ronment, Sinbad slaves cannot observe anyone else’s traffic in the
network including that of collocated VMs. This limits Sinbad’s ef-
fectiveness. When deployed in private clusters, with proper instru-
mentation (e.g., queryable SDN switches), Sinbad would observe
the impact of all incoming and outgoing traffic. We expect that
correcting for more imbalances will increase Sinbad’s gains.

Sinbad is also sensitive to delayed and missing heartbeats, which

can introduce inaccuracy in usage estimations. By placing the
heartbeats in a higher priority queue [24], the network can ensure
their timely arrival.

Flexible Source Placement By carefully placing the sources of
write traffic, it is possible to make the entire write pipeline network
aware. However, this is harder and less useful than choosing desti-
nations. Because, a task must finish everything else before writing,
e.g., computation for a preprocessing task and shuffle for a reducer,
it is hard to estimate the start time or the size of a write operation.
Moreover, all the blocks to be written by a source share the same
upstream bottleneck. This further constrains source placement, be-
cause effectively they look like one large, variable-sized block.

Optimizing Parallel Writers The completion time of a data-
parallel job depends on the task that finishes last [20, 21]. Hence,
to minimize the job completion time, one must minimize the
makespan of all the concurrent writers of that job. This, however,
calls for a cross-layer design with additional job-specific details in
the placement algorithm.

9 Related Work
Datacenter Traffic Management Hedera [8] uses a centralized
scheduler to infer the demands of elephant flows and assigns them
to one of the several paths through the core that exist in a fat-tree
topology between the same endpoints. MicroTE [13] adapts to traf-
fic variations by leveraging short-term predictability of the traffic
matrix. Orchestra [20] focuses on certain forms of network traf-
fic in data-intensive applications (shuffles and broadcasts) but does
not consider the network impact of cluster storage. All of the above
manage flows with already-fixed endpoints and do not leverage the
flexibility in endpoint placement.

Endpoint-Flexible Transfers Overlay anycast comes the closest
to Sinbad in exploiting flexibility in choosing endpoints [18, 25].
However, anycast has typically been used in low latency request-
response traffic (e.g., DNS requests); on the contrary, we use end-
point flexibility in a throughput-sensitive context for replica place-
ment. Our constraints – number of replicas/fault domains and over-
all balance in storage – are different as well.

Full Bisection Bandwidth Networks Recent datacenter network
architectures [28–30, 38] aim for full bisection bandwidth for bet-
ter performance. This, however, does not imply no network con-
tention. In presence of (skewed) data-intensive communication,
some links often become more congested than others [35]. Selec-
tion of appropriate destinations during replica placement is neces-
sary to pick less congested destinations.

Distributed File Systems Distributed file systems [15, 19, 27] of-
ten focus on the fault-tolerance and consistency of stored data with-
out considering the network. Replica placement policies emphasize
availability in presence of network failures. We focus on perfor-
mance improvement through network-balanced replica placement
without changing any of the fault-tolerance, availability, or consis-
tency guarantees. Unlike traditional designs, Flat Datacenter Stor-
age (FDS) separates computation and storage: data is always read
over the network [39]. FDS does not have a centralized master and
uses randomization for load balancing. Network-awareness can po-
tentially improve its performance as well.

Erasure-Coded Storage Systems To mitigate the storage crunch
and to achieve better reliability, erasure coding of stored data is be-
coming commonplace [33,40]. However, coding typically happens
post facto, i.e., each block of data is three-way replicated first, then
coded lazily, and replicas are deleted after the coding finishes. This

has two implications. First, network awareness accelerates the end-
to-end coding process. Second, in presence of failures and ensuing
rebuilding storms, the network experiences even more contention;
this strengthens the need for Sinbad.

Data Locality Disk locality [22] has received more attention than
most concepts in data-intensive computing, in designing both dis-
tributed file systems and schedulers for data-intensive applications
[10, 34, 44]. Data locality, however, decreases network usage only
during reads; it does not affect the network consumption of dis-
tributed writes. Sinbad has little impact on data locality, because
it keeps the storage balanced. Moreover, Sinbad can help systems
like Scarlett [11] that increase replica count to decrease read con-
tention. Recent calls for memory locality [12] will make network-
aware replication even more relevant by increasing network con-
tention during off-rack reads.

10 Conclusion
We have identified the replication traffic from writes to cluster file
systems (CFSes) as one of the major sources of network commu-
nication in data-intensive clusters. By leveraging the fact that a
CFS only requires placing replicas in any subset of feasible ma-
chines, we have designed and evaluated Sinbad, a system that iden-
tifies network imbalance through periodic measurements and ex-
ploits the flexibility in endpoint placement to navigate around con-
gested links. Network-balanced replica placement improves the av-
erage block write time by 1.3× and the average completion time of
data-intensive jobs by up to 1.26× in EC2 experiments. Because
network hotspots show short-term stability but they are uniformly
distributed in the long term, storage remains balanced. We have
also shown that Sinbad’s improvements are close to that of the op-
timal, and they will increase if network imbalance increases.

Acknowledgments
We thank Yuan Zhong, Matei Zaharia, Gautam Kumar, Dave Maltz, Ali
Ghodsi, Ganesh Ananthanarayanan, Raj Jain, the AMPLab members, our
shepherd John Byers, and the anonymous reviewers for useful feedback.
This research is supported in part by NSF CISE Expeditions award CCF-
1139158 and DARPA XData Award FA8750-12-2-0331, and gifts from
Amazon Web Services, Google, SAP, Blue Goji, Cisco, Clearstory Data,
Cloudera, Ericsson, Facebook, General Electric, Hortonworks, Huawei, In-
tel, Microsoft, NetApp, Oracle, Quanta, Samsung, Splunk, VMware, Ya-
hoo!, and a Facebook Fellowship.

11 References

[1] Amazon EC2. http://aws.amazon.com/ec2.
[2] Amazon Simple Storage Service.

http://aws.amazon.com/s3.
[3] Apache Hadoop. http://hadoop.apache.org.
[4] Facebook Production HDFS. http://goo.gl/BGGuf.
[5] How Big is Facebook’s Data? 2.5 Billion Pieces Of Content And

500+ Terabytes Ingested Every Day. TechCrunch
http://goo.gl/n8xhq.

[6] Total number of objects stored in Amazon S3.
http://goo.gl/WTh6o.

[7] S. Agarwal et al. Reoptimizing data parallel computing. In NSDI,
2012.

[8] M. Al-Fares et al. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, 2010.

[9] N. Alon et al. Approximation schemes for scheduling on parallel
machines. Journal of Scheduling, 1998.

[10] G. Ananthanarayanan et al. Reining in the outliers in mapreduce
clusters using Mantri. In OSDI, 2010.

[11] G. Ananthanarayanan et al. Scarlett: Coping with skewed popularity
content in mapreduce clusters. In EuroSys, 2011.

http://aws.amazon.com/ec2
http://aws.amazon.com/s3
http://hadoop.apache.org
http://goo.gl/BGGuf
http://goo.gl/n8xhq
http://goo.gl/WTh6o

[12] G. Ananthanarayanan et al. PACMan: Coordinated memory caching
for parallel jobs. In NSDI, 2012.

[13] T. Benson et al. MicroTE: Fine grained traffic engineering for data
centers. In CoNEXT, 2011.

[14] P. Bodik et al. Surviving failures in bandwidth-constrained
datacenters. In SIGCOMM, 2012.

[15] D. Borthakur. The Hadoop distributed file system: Architecture and
design. Hadoop Project Website, 2007.

[16] D. Borthakur et al. Apache Hadoop goes realtime at Facebook. In
SIGMOD, 2011.

[17] B. Calder et al. Windows Azure Storage: A highly available cloud
storage service with strong consistency. In SOSP, 2011.

[18] M. Castro et al. Scalable application-level anycast for highly
dynamic groups. LNCS, 2003.

[19] R. Chaiken et al. SCOPE: Easy and efficient parallel processing of
massive datasets. In VLDB, 2008.

[20] M. Chowdhury et al. Managing data transfers in computer clusters
with Orchestra. In SIGCOMM, 2011.

[21] M. Chowdhury and I. Stoica. Coflow: A networking abstraction for
cluster applications. In HotNets-XI, 2012.

[22] J. Dean and S. Ghemawat. MapReduce: Simplified data processing
on large clusters. In OSDI, 2004.

[23] M. Y. Eltabakh et al. CoHadoop: Flexible data placement and its
exploitation in hadoop. In VLDB, 2011.

[24] A. D. Ferguson et al. Hierarchical policies for Software Defined
Networks. In HotSDN, 2012.

[25] M. Freedman, K. Lakshminarayanan, and D. Mazières. OASIS:
Anycast for any service. In NSDI, 2006.

[26] M. Garey and D. Johnson. “Strong” NP-completeness results:
Motivation, examples, and implications. Journal of the ACM,
25(3):499–508, 1978.

[27] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.
In SOSP, 2003.

[28] A. Greenberg et al. VL2: A scalable and flexible data center network.
In SIGCOMM, 2009.

[29] C. Guo et al. DCell: A scalable and fault-tolerant network structure
for data centers. In SIGCOMM, 2008.

[30] C. Guo et al. BCube: A High Performance, Server-centric Network
Architecture for Modular Data Centers. ACM SIGCOMM, 2009.

[31] Z. Guo et al. Spotting code optimizations in data-parallel pipelines
through PeriSCOPE. In OSDI, 2012.

[32] B. Hindman et al. Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center. In NSDI, 2011.

[33] C. Huang et al. Erasure coding in Windows Azure Storage. In
USENIX ATC, 2012.

[34] M. Isard et al. Quincy: Fair scheduling for distributed computing
clusters. In SOSP, 2009.

[35] S. Kandula et al. The nature of datacenter traffic: Measurements and
analysis. In IMC, 2009.

[36] J. Lenstra, D. Shmoys, and É. Tardos. Approximation algorithms for
scheduling unrelated parallel machines. Mathematical Programming,
46(1):259–271, 1990.

[37] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant scheduling.
In SODA, 1993.

[38] R. N. Mysore et al. PortLand: A scalable fault-tolerant layer 2 data
center network fabric. In SIGCOMM, 2009.

[39] E. Nightingale et al. Flat Datacenter Storage. In OSDI, 2012.
[40] M. Sathiamoorthy et al. XORing elephants: Novel erasure codes for

big data. In PVLDB, 2013.
[41] A. Thusoo et al. Data warehousing and analytics infrastructure at

Facebook. In SIGMOD, 2010.
[42] R. van Renesse and F. B. Schneider. Chain replication for supporting

high throughput and availability. In OSDI, 2004.
[43] M. Zaharia et al. Improving mapreduce performance in

heterogeneous environments. In OSDI, 2008.
[44] M. Zaharia et al. Delay scheduling: A simple technique for achieving

locality and fairness in cluster scheduling. In EuroSys, 2010.
[45] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In NSDI, 2012.

APPENDIX
A Optimizing Block Writes
A.1 Problem Formulation and Complexity

Assume that a replica placement request for a block B of size
Size(B) arrives at time Arr(B) with replication factor r and fault-
tolerance factor f . The CFS client will write a local copy wherever
it is located, and the replica placement policy must find locations
for (r − 1) off-rack copies in f other fault domains across rack
boundaries. We choose r = 2 and f = 1 to simplify the analysis:
the case of larger r is ignored, because an increase in r does not
increase the number of off-rack copies; the case of larger f is dis-
cussed in §A.2. Assume that there are no other constraints besides
physical limits such as link capacity and disk throughput.

Let L denote the set of possible bottleneck links in the network.
Also, let Cap(l) and Ut(l) denote the capacity and the estimation
of the utilization of link l ∈ L at time t. Placement decisions are
instantaneous.

For a given time period T (discretized into equal-sized decision
interval or quanta, q) from t, the objective (U(.)) can then be rep-
resented by the following equation.

Minimize
∑

{B | Arr(B)∈[t,t+T)}

Dur(B) (1)

where Dur(B) is the time to write a block B from Arr(B).
Distributed writing (i.e., optimizing U) is NP-hard, even when

all block requests and link capacities are known beforehand.

Theorem A.1 Distributed Writing is NP-hard.

Proof Sketch We reduce job shop scheduling, which is NP-hard
[26], to distributed writing. Consider m identical machines, and
n jobs (J1, J2, . . . , Jn) of varying lengths that arrive over time.
Let dur(Jk) denote the time to process Jk in any of the machines.
Now, consider a network with m bottleneck links, where all links
have the same capacity. For each job Jk, create a block Bk, such
that Bk takes exactly dur(Jk) time to be written through any of the
bottleneck links. Then, optimally placing these n blocks through
m links will provide the optimal schedule of jobs. ■

A.2 Optimal Block Placement Algorithm

If all blocks have the same size, decision intervals are indepen-
dent, and link utilizations do not change within the same decision
interval, greedy assignment of blocks to the least-loaded link will
maximize U.

Theorem A.2 Under the assumptions in Section 5.1, greedy as-
signment of blocks to the least-loaded link is optimal (OPT).

Proof Sketch Assume that the bottleneck links in L at time t
are sorted in the non-decreasing order of their current utilizations(
Ut(l1) ≤ Ut(l2) ≤ . . . ≤ Ut(l|L|)

)
, and multiple block requests

(B = {Bj}) of equal size arrived at t. Since all blocks have the
same size, they are indistinguishable and can be assigned to corre-
sponding destinations through some bottleneck links one by one.

Assume block Bj is placed through a bottleneck link li. If there
is another link li−1 with more available capacity, then we can sim-
ply place Bj through li−1 for a faster overall completion time. This
process will continue until there is no more such links, and Bj has
been placed through l1 – the least-loaded bottleneck link. ■

10%!

20%!

30%!
40%!50%!

0!

0.2!

0.4!

0.6!

0.8!

1!

1! 2! 3! 4!

Pr
ob

ab
ili

ty
 o

f
Ex

pe
ri

en
ci

ng
 S

lo
w

do
w

n!

Number of Fault Domains, f!

Figure 12: Analytical probability of at least one off-rack replica experienc-
ing a slowdown with uniform placement, as the number of off-rack replicas
(f) increases. Each line corresponds to the fraction of contended links (out
of 150) that can cause slowdown.

Improvements Over the Default Policy Let AC(li) denote the
available capacity to write block B through li,

AC(li) = min(Cap(li)− Ut(li),DiskWriteCap)

where DiskWriteCap is the write throughput of a disk. Then the
completion time of OPT for writing |B| blocks that must be placed
during that quantum is

U(OPT) = |B|Size(B)

|L|∑
i=1

fi
AC(li)

(2)

where fi is the fraction of blocks allocated through li. Because
OPT greedily places blocks starting from the least-loaded link,
higher AC(li) will result in higher fi.

Current CFS replica placement algorithms (UNI) place replicas
uniformly randomly across all bottleneck links. The expected time
for UNI to write |B| blocks that must be placed during a single
quantum is

U(UNI) =
|B|Size(B)

|L|

|L|∑
i=1

1

AC(li)
(3)

where each link li will receive equal fractions (1
|L|) of blocks.

Given (2) and (3), the factor of improvement (I) of OPT over
UNI at any decision interval is

I =
U(UNI)

U(OPT)
= |L|

∑|L|
i=1

fi
AC(li)∑|L|

i=1
1

AC(li)

(4)

The overall improvement during the discretized interval [t, t + T)
is ∑

[t,t+T) U(UNI)∑
[t,t+T) U(OPT)

(5)

Improvements for f > 1 We have assumed that only one copy of
each block crosses the bottleneck links (i.e., f = 1). However, for a
given placement request, the probability of experiencing contention
using UNI increases with f ; this should increase I, because OPT
will never experience more contention than UNI .

While creating replicas in f fault domains through |L|(≫ f)
bottleneck links, if one of the f replicas experience contention, the
entire write will become slower. Using the uniform placement pol-
icy, the probability of at least one of them experiencing contention
is

P (UniSlowdown) =
(
1−

f∏
g=1

|L| −G− g + 1

|L| − g + 1

)

where G is the number of congested links in L. As f increases, so
does P (UniSlowdown); Figure 12 shows this for different values
of G in a 150-rack cluster. The extent of UNI slowdown (thus I)
depends on the distribution of imbalance.

B Optimizing File Writes
B.1 Problem Formulation and Complexity
Assume that a file W = (B1, B2, . . . , B|W |) with |W | blocks ar-
rives at Arr(W). Requests for its individual blocks Bj arrive one
at a time, each at the beginning of a discrete decision interval. For a
given time period T (discretized into equal-sized quanta, q) from t,
the objective (V(.)) can then be represented by the following equa-
tion.

Minimize
∑

{W | Arr(W)∈[t,t+T)}

Dur(W) (6)

where Dur(W) = max
Bj∈W

Dur(Bj) denotes the time to finish writ-

ing all the blocks of W from Arr(W). Optimizing (6) is no easier
than optimizing (1), and it is NP-hard as well.

B.2 Optimal File Write Algorithm
Lemma B.1 OPT is not optimal for end-to-end write operations
with multiple blocks (V).

Proof Sketch We prove this using a counterexample. Let us take a
simple example with two bottleneck links, l1 and l2, through which
a single block can be written in d1 and d2 time units (d1 < d2 and
d1, d2 ≤ 1 time unit), respectively. Also assume that two write
requests W1 = (B11, B12) and W2 = (B21) arrive at the same
time t; more specifically, B11 and B21 arrive at t and B12 arrives
at (t+ 1).

Because OPT treats requests interchangeably, it can either write
B11 through l1 and B21 through l2 or in the inverse order (B11

through l2 and vice versa) at t. In either case, OPT will write B12

through l1 at (t+1) because d1 is smaller. Irrespective of the order,
U(OPT) = 2d1 + d2.

However, end-to-end response times are different for the two
cases: in the former, V1 = (1 + d1) + d2, while in the latter,
V2 = (1 + d1) + d1. Because OPT can choose either with equal
probability, its expected total response time is 1

2
(V1 + V2), which

is more than the actual optimal V2. ■

Theorem B.2 Given Theorem A.2, greedy assignment of writes
through links using the least-remaining-blocks-first order is opti-
mal (OPT ′).

Proof Sketch Given OPT , the bottleneck links li ∈ L at time t
are sorted in the non-decreasing order of their expected times to
write a block, i.e., d1 ≤ d2 ≤ . . . ≤ d|L|. Assume that multiple
equal-sized block requests (B = {Bj}) from unique write opera-
tions (W = {Wj}) have arrived at t, and let us denote the number
of remaining blocks in a write operation Wj by Rem(Wj).

Consider two blocks Bj and Bj+1 from writes Wj and Wj+1

that will be considered one after another and will be assigned to
destinations through links li and li+1 such that di ≤ di+1. As-
sume, Rem(Wj) > 1 and Rem(Wj+1) = 1. Now, the total
contributions of Bj and Bj+1 to V(OPT ′) is (1 + di+1). We can
decrease it to (1 + di) by swapping the order of Bj and Bj+1.
By continuously performing this pairwise swapping, we will end
up with an order where the block from the write with the fewest
remaining blocks will be considered before others. ■

	Introduction
	CFS Background
	System Model
	Network Model

	Sinbad Overview
	Problem Statement
	Architectural Overview

	Measurements and Implications
	Network Footprint of Distributed Writes
	Impact of Writes on Job Performance
	Characteristics of Network Imbalance
	Summary

	Analytical Results
	Optimizing Block Writes
	Optimizing File Writes

	Design Details
	Operating Environment
	Utilization Estimator
	Network-Balanced Placement Using Sinbad
	Additional Constraints

	Evaluation
	Methodology
	Sinbad's Overall Improvements
	Impact on Network Imbalance
	Impact on Future Jobs (Disk Usage)
	Impact of Cluster/Network Load
	Impact on In-Memory Storage Systems

	Discussion
	Related Work
	Conclusion
	References
	Optimizing Block Writes
	Problem Formulation and Complexity
	Optimal Block Placement Algorithm

	Optimizing File Writes
	Problem Formulation and Complexity
	Optimal File Write Algorithm

