
Sinbad 

Leveraging Endpoint Flexibility in Data-Intensive Clusters	



Mosharaf Chowdhury, 
Srikanth Kandula, Ion Stoica	

 UC	
  Berkeley	
  



Communication is Crucial for Analytics at Scale	



Performance 
Facebook analytics jobs spend 33% of their runtime in communication1	



As in-memory systems proliferate,	


the network is likely to become the primary bottleneck	



1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011	





Network Usage is Imbalanced1	
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Coeff. of Var.2 of Load Across 
Core-Rack Links	
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More than 50% of the time, links have 
high imbalance (Cv > 1).	



1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	


2. Coefficient of variation, Cv = (stdev/mean).	



Imbalance	


(Coeff. of Var.2 of Link Utilization)	



Imbalance	


(Coeff. of Var.2 of Link Utilization)	





Write Sources 
1. Ingestion	


2. Pre-processing	


3.  Job outputs	



What Are the Sources of Cross-Rack Traffic?	



DFS 
Reads	


14%	



Shuffle	


46%	



DFS 
Writes	



40%	



DFS 
Reads	


31%	



Shuffle	


15%	



DFS 
Writes	



54%	



Facebook Bing 

1. DFS = Distributed File System	





Distributed File Systems (DFS)	



Core	



Rack 1	

 Rack 2	

 Rack 3	



F	



F	

 F	



Pervasive in BigData clusters	


•  E.g., GFS, HDFS, Cosmos 	


•  Many frameworks interact w/ the same DFS	



	



Files are divided into blocks	


•  64MB to 1GB in size	



	



Each block is replicated	


•  To 3 machines for fault tolerance	


•  In 2 fault domains for partition tolerance.	



•  Uniformly placed for a balanced storage	



Synchronous operations	
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Fixed 
Sources	


Destinations	



Flexible 
Paths	


Rates	
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Pervasive in BigData clusters	


•  E.g., GFS, HDFS, Cosmos 	


•  Many frameworks interact w/ the same DFS	



	



Files are divided into blocks	


•  64MB to 1GB in size	



	



Each block is replicated	


•  To 3 machines for fault tolerance	


•  In 2 fault domains for partition tolerance.	



•  Uniformly placed for a balanced storage	



Synchronous operations	



 
 

How to handle	


DFS flows?	



	


	



A few seconds long	


	


	



Hedera, VLB,	



Orchestra, Coflow, 	


MicroTE, DevoFlow, …	





Pervasive in BigData clusters	


•  Many frameworks interact w/ the same DFS	



	



Files are divided into blocks	


•  64MB to 1GB in size	



	



Each block is replicated	


•  To 3 machines for fault tolerance	



•  In 2 fault domains for partition tolerance.	


•  Uniformly placed for a balanced storage	



	



Synchronous operations	
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Distributed File Systems (DFS)	



Replica locations do not matter	


as long as constraints are met	



Flexible 
Sources	


Destinations ✔	





Sinbad Steers flexible replication 
traffic away from hotspots	



1.  Faster Writes	

 By avoiding contention during replication	



2.  Faster Transfers	

 Due to more balanced network usage 
closer to edges	





The Distributed Writing Problem	
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 Rack 2	

 Rack 3	



Given	


•  Blocks of different size, and 	


•  Links of different capacities,	



Place blocks to minimize	


•  The average block write time	


•  The average file write time	



is NP-Hard 
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Given	


•  Jobs of different length, and 	


•  Machines of different speed,	



Schedule jobs to minimize	


•  The average job completion time	
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Machine 1	


Machine 2	



Machine 3	



Job Shop Scheduling 



The Distributed Writing Problem	

is NP-Hard 

Lack of future knowledge about the 	


•  Locations and durations of network hotspots,	


•  Size and arrival times of new replica placement requests	



Online!
^!
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How to Make it Easy?	



Assumptions 
1.  Link utilizations are stable	


2.  All blocks have the same size	



A	

2	



Theorem: 	


Greedy placement minimizes 
average block/file write times	





How to Make it Easy? – In Practice	



Reality 
1.  Average link utilizations are 

temporarily stable1,2	



2.  Fixed-size large blocks write 
93% of all bytes	



Assumptions 
1.  Link utilizations are stable	


2.  All blocks have the same size	



1. Utilization is considered stable if its average over next x seconds remains within ±5% of the initial value	


2. Typically, x ranges from 5 to 10 seconds. Time to write a 256MB block assuming 50MBps write throughput is 5 seconds	





Sinbad Performs two-step greedy 
replica placement	



1.  Pick the least-loaded link	


2.  Send a block from the file with the least-remaining 

blocks through the selected link	





Sinbad Overview	



Centralized master-slave architecture 	


•  Agents collocated with DFS agents	



Slaves periodically report information	



Sinbad 
Master	
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Sinbad Master	



Performs network-aware replica 
placement for large blocks	



•  Periodically estimates network hotspots	


•  Takes greedy online decisions	


•  Adds hysteresis until next measurement	



Sinbad Master	


Where to put 
block B?	



•  Static Information	


•  Network topology	


•  Link, disk capacities	


•  Dynamic distributions of 	


•  loads in links	


•  popularity of files	



Information (from slaves)	



{ Locations }	



•  At least r replicas	


•  In f fault domains	


•  Collocate with block B’	


•  …	



Constraints & Hints	





1.  Does it improve performance?	


2.  Does it balance the network?	


3.  Does the storage remain balanced?	

 YES 

Evaluation 
A 3000-node trace-driven 
simulation matched against a 
100-node EC2 deployment	





Faster	



Exp	



Sim	

 1.39X 1.58X 

1.26X 1.30X 

Job Improv.	

 DFS Improv.	



1.60X 
In-memory!
storage!

^!

1.79X 



More Balanced	


EC2 Deployment	
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Default	


Network-Aware	



Facebook Trace Simulation	
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Coeff. of Var. of Load	


Across Core-to-Rack Links	



Default	



Network-Aware	



Imbalance	


(Coeff. of Var.1 of Link Utilization)	



Imbalance	


(Coeff. of Var.1 of Link Utilization)	





What About Storage Balance?	



Network is imbalanced in the short term;	


but, in the long term,	



hotspots are uniformly distributed 	





Three 
Approaches 

Toward 
Contention 
Mitigation 

#3 
Balance 

Usage 
	


	



Manage elephant flows	


Optimize intermediate comm.	



	


	



Valiant load balancing (VLB), Hedera, Orchestra, 
Coflow, MicroTE, DevoFlow, …	



#1 
Increase 
Capacity 

	


	



Fatter links/interfaces	


Increase Bisection B/W	



	


	



Fat tree, VL2, DCell, BCube, F10, …	



#2 
Decrease  

Load 
	


	



Data locality	


Static optimization	



	


	



Fair scheduling, Delay scheduling, Mantri, Quincy, 
PeriSCOPE, RoPE, Rhea, …	





•  Improves job performance by making the network more balanced	


•  Improves DFS write performance while keeping the storage balanced	


•  Sinbad will become increasingly more important as storage becomes faster	



Sinbad Greedily steers replication 
traffic away from hotspots	



We are planning to deploy Sinbad at 

Mosharaf Chowdhury - @mosharaf	







Trace Details	



Facebook	

 Microsoft Bing	



Period	

 Oct 2010	

 Mar – Apr 2012	



Duration	

 1 Week	

 1 Month	



Framework	

 Hadoop MapReduce	

 SCOPE	



Jobs	

 175,000	

 O(10,000)	



Tasks	

 30 Millions	

 O(10 Millions)	



File System	

 HDFS	

 Cosmos	



Block Size	

 256MB	

 256MB	



Number of Machines	

 3,000	

 O(1,000)	



Number of Racks	

 150	

 O(100)	



Core : Rack Oversubscription	

 10 : 1	

 Better / Less Oversubscribed	





Writer Characteristics	
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Fraction of Task Duration in Write	



Preproc./Ingest	



Reducers	



Combined	


37% of all tasks write to the DFS	


	


Writers spend large fractions of 
runtime in writing	



42% of the reducers and 91% of other 
writers spend at least 50% of run time	





Big Blocks Write Most Bytes	
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Block Size (KB)	



30% blocks are full sized, i.e., 
they are capped at 256MB	


	


35% blocks are of at least 
128 MB or more in size	


	



256 MB blocks write 
81% of the bytes	



Blocks of size at least 128 MB or 
more write 93% of the bytes	



One third of the blocks 
generate almost all 

replication bytes	





Big Blocks Write Most Bytes	



30% 81% 
Bytes are written 
by large blocks	



Blocks are large	


(256 MB)	





Hotspots are Stable1 in the Short Term	



1. Utilization is considered stable if its average over next x seconds remains within ±5% of the initial value	


2. Time to write a 256MB block assuming 50MBps write throughput is 5 seconds	
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Duration of Utilization Stability	



Long enough2 to write a block even if disk is the bottleneck	





Greedy assignment of blocks to the least-loaded 
link in the least-remaining-blocks-first order is 
optimal for minimizing the average write times 	

Thm. 

•  If the block size is fixed, and 	


•  hotspots are temporarily stable,	



the solution is …	


Greedy 
Placement 



Utilization Estimator	



Utilizations updated using EWMA at Δ intervals 	



•  vnew = α * vmeasured + (1-α) * vold	



•  We use α = 0.2	


	


Update interval (Δ)	



•  Too small a Δ creates overhead, but too large gives stale data	


•  We use Δ = 1 second right now	


•  Missing updates are treated conservatively, as if the link is fully loaded	





Utilization Estimator	



Hysteresis after each placement decision	



•  Temporarily bump up estimates to avoid putting too many blocks in the 
same location	


•  Once the next measurement update arrives, hysteresis is removed and 

the actual estimation is used	


	


Hysteresis function	



•  Proportional to the size of block just placed	


•  Inversely proportional to the time remaining till next update	





Implementation	



Implemented and integrated with HDFS	


•  Pluggable replica placement policy on https://github.com/facebook/hadoop-20	



•  Slaves are integrated into DataNode and the master into NameNode	


•  Update comes over the Heartbeat messages	


•  Few hundred lines of Java	





Methodology	



HDFS deployment in EC2	


•  Focus on large (in terms of network bytes) jobs only	


•  100 m1.xlarge nodes with 4x400GB disks	


•  55MBps/disk maximum write throughput	


•  700+Mbps/node during all-to-all communication	



Trace-driven simulation	


•  Detailed replay of a day-long Facebook trace (circa October 2010)	


•  3000-node,150-rack cluster with 10:1 oversubscription	





Breakdown [Time Spent]	
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WriteTime	

Jobs spend varying amounts of 

time in writing	


•  Jobs in Bin-1 the least and jobs in 

Bin-5 the most	



No clear correlation	


•  We improve block writes w/o 

considering job characteristics	
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Job Write Size (MB)	



End-to-End	


WriteTime	



Breakdown [Bytes Written]	



Jobs write varying amounts to 
HDFS as well	


•  Ingestion and pre-processing jobs 

write the most	



No clear correlation	


•  We do not use file characteristics 

while selecting destinations	





Balanced Storage [Simulation]	
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Rank of Racks	



NetworkAware	


Default	



Byte Distribution	

 Block Distribution	



Reacting to the imbalance 
isn’t always perfect!	





Balanced Storage [EC2]	


An hour-long 100-node EC2 experiment	


•  Wrote ~10TB of data	


•  Calculated standard deviation of disk usage across all machines	
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Imbalance is less than 1% of the 
storage capacity of each machine	




