
Sinbad

Leveraging Endpoint Flexibility in Data-Intensive Clusters	

Mosharaf Chowdhury,
Srikanth Kandula, Ion Stoica	

 UC	
 Berkeley	

Communication is Crucial for Analytics at Scale	

Performance
Facebook analytics jobs spend 33% of their runtime in communication1	

As in-memory systems proliferate,	

the network is likely to become the primary bottleneck	

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011	

Network Usage is Imbalanced1	

Facebook

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

 5	

 6	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var.2 of Load Across
Core-Rack Links	

Bing

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var. of Load Across
Core-Rack Links	

More than 50% of the time, links have
high imbalance (Cv > 1).	

1. Imbalance considering all cross-rack bytes. Calculated in 10s bins.	

2. Coefficient of variation, Cv = (stdev/mean).	

Imbalance	

(Coeff. of Var.2 of Link Utilization)	

Imbalance	

(Coeff. of Var.2 of Link Utilization)	

Write Sources
1. Ingestion	

2. Pre-processing	

3.  Job outputs	

What Are the Sources of Cross-Rack Traffic?	

DFS
Reads	

14%	

Shuffle	

46%	

DFS
Writes	

40%	

DFS
Reads	

31%	

Shuffle	

15%	

DFS
Writes	

54%	

Facebook Bing

1. DFS = Distributed File System	

Distributed File Systems (DFS)	

Core	

Rack 1	

 Rack 2	

 Rack 3	

F	

F	

 F	

Pervasive in BigData clusters	

•  E.g., GFS, HDFS, Cosmos 	

•  Many frameworks interact w/ the same DFS	

	

Files are divided into blocks	

•  64MB to 1GB in size	

	

Each block is replicated	

•  To 3 machines for fault tolerance	

•  In 2 fault domains for partition tolerance.	

•  Uniformly placed for a balanced storage	

Synchronous operations	

F
 I
 L
 E

I	

I	

I	

E	

 L	

L	

 E	

L	

 E	

Fixed
Sources	

Destinations	

Flexible
Paths	

Rates	

Core	

Rack 1	

 Rack 2	

 Rack 3	

F	

F	

I	

I	

E	

 L	

L	

 E	

Pervasive in BigData clusters	

•  E.g., GFS, HDFS, Cosmos 	

•  Many frameworks interact w/ the same DFS	

	

Files are divided into blocks	

•  64MB to 1GB in size	

	

Each block is replicated	

•  To 3 machines for fault tolerance	

•  In 2 fault domains for partition tolerance.	

•  Uniformly placed for a balanced storage	

Synchronous operations	

How to handle	

DFS flows?	

	

	

A few seconds long	

	

	

Hedera, VLB,	

Orchestra, Coflow, 	

MicroTE, DevoFlow, …	

Pervasive in BigData clusters	

•  Many frameworks interact w/ the same DFS	

	

Files are divided into blocks	

•  64MB to 1GB in size	

	

Each block is replicated	

•  To 3 machines for fault tolerance	

•  In 2 fault domains for partition tolerance.	

•  Uniformly placed for a balanced storage	

	

Synchronous operations	

Fixed
Sources	

Destinations	

Flexible
Paths	

Rates	

Core	

Rack 1	

 Rack 2	

 Rack 3	

F	

F	

I	

I	

E	

 L	

L	

 E	

Distributed File Systems (DFS)	

Replica locations do not matter	

as long as constraints are met	

Flexible
Sources	

Destinations ✔	

Sinbad Steers flexible replication
traffic away from hotspots	

1.  Faster Writes	

 By avoiding contention during replication	

2.  Faster Transfers	

 Due to more balanced network usage
closer to edges	

The Distributed Writing Problem	

Core	

Rack 1	

 Rack 2	

 Rack 3	

Given	

•  Blocks of different size, and 	

•  Links of different capacities,	

Place blocks to minimize	

•  The average block write time	

•  The average file write time	

is NP-Hard

F	

 E	

I	

 L	

Given	

•  Jobs of different length, and 	

•  Machines of different speed,	

Schedule jobs to minimize	

•  The average job completion time	

F	

 E	

I	

 L	

Machine 1	

Machine 2	

Machine 3	

Job Shop Scheduling

The Distributed Writing Problem	

is NP-Hard

Lack of future knowledge about the 	

•  Locations and durations of network hotspots,	

•  Size and arrival times of new replica placement requests	

Online!
^!

1	

C	

 B	

T	

T+1	

Time	

How to Make it Easy?	

Assumptions
1.  Link utilizations are stable	

2.  All blocks have the same size	

A	

2	

Theorem: 	

Greedy placement minimizes
average block/file write times	

How to Make it Easy? – In Practice	

Reality
1.  Average link utilizations are

temporarily stable1,2	

2.  Fixed-size large blocks write
93% of all bytes	

Assumptions
1.  Link utilizations are stable	

2.  All blocks have the same size	

1. Utilization is considered stable if its average over next x seconds remains within ±5% of the initial value	

2. Typically, x ranges from 5 to 10 seconds. Time to write a 256MB block assuming 50MBps write throughput is 5 seconds	

Sinbad Performs two-step greedy
replica placement	

1.  Pick the least-loaded link	

2.  Send a block from the file with the least-remaining

blocks through the selected link	

Sinbad Overview	

Centralized master-slave architecture 	

•  Agents collocated with DFS agents	

Slaves periodically report information	

Sinbad
Master	

DFS
Master	

DFS
Slave	

Sinbad
Slave	

DFS
Slave	

Sinbad
Slave	

DFS
Slave	

Sinbad
Slave	

Machine	

Sinbad Master	

Performs network-aware replica
placement for large blocks	

•  Periodically estimates network hotspots	

•  Takes greedy online decisions	

•  Adds hysteresis until next measurement	

Sinbad Master	

Where to put
block B?	

•  Static Information	

•  Network topology	

•  Link, disk capacities	

•  Dynamic distributions of 	

•  loads in links	

•  popularity of files	

Information (from slaves)	

{ Locations }	

•  At least r replicas	

•  In f fault domains	

•  Collocate with block B’	

•  …	

Constraints & Hints	

1.  Does it improve performance?	

2.  Does it balance the network?	

3.  Does the storage remain balanced?	

 YES

Evaluation
A 3000-node trace-driven
simulation matched against a
100-node EC2 deployment	

Faster	

Exp	

Sim	

 1.39X 1.58X

1.26X 1.30X

Job Improv.	

 DFS Improv.	

1.60X
In-memory!
storage!

^!

1.79X

More Balanced	

EC2 Deployment	

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var. of Load	

Across Rack-to-Host Links	

Default	

Network-Aware	

Facebook Trace Simulation	

0	

0.25	

0.5	

0.75	

1	

0	

 1	

 2	

 3	

 4	

Fr
ac

tio
n

of
 T

im
e	

Coeff. of Var. of Load	

Across Core-to-Rack Links	

Default	

Network-Aware	

Imbalance	

(Coeff. of Var.1 of Link Utilization)	

Imbalance	

(Coeff. of Var.1 of Link Utilization)	

What About Storage Balance?	

Network is imbalanced in the short term;	

but, in the long term,	

hotspots are uniformly distributed 	

Three
Approaches

Toward
Contention
Mitigation

#3
Balance

Usage
	

	

Manage elephant flows	

Optimize intermediate comm.	

	

	

Valiant load balancing (VLB), Hedera, Orchestra,
Coflow, MicroTE, DevoFlow, …	

#1
Increase
Capacity

	

	

Fatter links/interfaces	

Increase Bisection B/W	

	

	

Fat tree, VL2, DCell, BCube, F10, …	

#2
Decrease

Load
	

	

Data locality	

Static optimization	

	

	

Fair scheduling, Delay scheduling, Mantri, Quincy,
PeriSCOPE, RoPE, Rhea, …	

•  Improves job performance by making the network more balanced	

•  Improves DFS write performance while keeping the storage balanced	

•  Sinbad will become increasingly more important as storage becomes faster	

Sinbad Greedily steers replication
traffic away from hotspots	

We are planning to deploy Sinbad at

Mosharaf Chowdhury - @mosharaf	

Trace Details	

Facebook	

 Microsoft Bing	

Period	

 Oct 2010	

 Mar – Apr 2012	

Duration	

 1 Week	

 1 Month	

Framework	

 Hadoop MapReduce	

 SCOPE	

Jobs	

 175,000	

 O(10,000)	

Tasks	

 30 Millions	

 O(10 Millions)	

File System	

 HDFS	

 Cosmos	

Block Size	

 256MB	

 256MB	

Number of Machines	

 3,000	

 O(1,000)	

Number of Racks	

 150	

 O(100)	

Core : Rack Oversubscription	

 10 : 1	

 Better / Less Oversubscribed	

Writer Characteristics	

0	

0.25	

0.5	

0.75	

1	

0	

 0.25	

 0.5	

 0.75	

 1	

C
D

F	

(W

ei
gh

te
d

by
 B

yt
es

 W
ri

tt
en

)	

Fraction of Task Duration in Write	

Preproc./Ingest	

Reducers	

Combined	

37% of all tasks write to the DFS	

	

Writers spend large fractions of
runtime in writing	

42% of the reducers and 91% of other
writers spend at least 50% of run time	

Big Blocks Write Most Bytes	

0	

0.25	

0.5	

0.75	

1	

1	

 100	

 10000	

 1000000	

Fr
ac

tio
n

of
 D

FS
 B

yt
es
	

Block Size (KB)	

30% blocks are full sized, i.e.,
they are capped at 256MB	

	

35% blocks are of at least
128 MB or more in size	

	

256 MB blocks write
81% of the bytes	

Blocks of size at least 128 MB or
more write 93% of the bytes	

One third of the blocks
generate almost all

replication bytes	

Big Blocks Write Most Bytes	

30% 81%
Bytes are written
by large blocks	

Blocks are large	

(256 MB)	

Hotspots are Stable1 in the Short Term	

1. Utilization is considered stable if its average over next x seconds remains within ±5% of the initial value	

2. Time to write a 256MB block assuming 50MBps write throughput is 5 seconds	

0.94	

 0.89	

0.8	

0.66	

0	

0.2	

0.4	

0.6	

0.8	

1	

5s	

 10s	

 20s	

 40s	

Pr
ob

ab
ili

ty
	

Duration of Utilization Stability	

Long enough2 to write a block even if disk is the bottleneck	

Greedy assignment of blocks to the least-loaded
link in the least-remaining-blocks-first order is
optimal for minimizing the average write times 	

Thm.

•  If the block size is fixed, and 	

•  hotspots are temporarily stable,	

the solution is …	

Greedy
Placement

Utilization Estimator	

Utilizations updated using EWMA at Δ intervals 	

•  vnew = α * vmeasured + (1-α) * vold	

•  We use α = 0.2	

	

Update interval (Δ)	

•  Too small a Δ creates overhead, but too large gives stale data	

•  We use Δ = 1 second right now	

•  Missing updates are treated conservatively, as if the link is fully loaded	

Utilization Estimator	

Hysteresis after each placement decision	

•  Temporarily bump up estimates to avoid putting too many blocks in the
same location	

•  Once the next measurement update arrives, hysteresis is removed and

the actual estimation is used	

	

Hysteresis function	

•  Proportional to the size of block just placed	

•  Inversely proportional to the time remaining till next update	

Implementation	

Implemented and integrated with HDFS	

•  Pluggable replica placement policy on https://github.com/facebook/hadoop-20	

•  Slaves are integrated into DataNode and the master into NameNode	

•  Update comes over the Heartbeat messages	

•  Few hundred lines of Java	

Methodology	

HDFS deployment in EC2	

•  Focus on large (in terms of network bytes) jobs only	

•  100 m1.xlarge nodes with 4x400GB disks	

•  55MBps/disk maximum write throughput	

•  700+Mbps/node during all-to-all communication	

Trace-driven simulation	

•  Detailed replay of a day-long Facebook trace (circa October 2010)	

•  3000-node,150-rack cluster with 10:1 oversubscription	

Breakdown [Time Spent]	

1.
11
	

1.
08
	

1.
08
	

 1.

18
	

 1.

26
	

1.
19
	

1.
45
	

1.
27
	

1.
19
	

1.
24
	

1.
28
	

1.
29
	

1	

1.25	

1.5	

1.75	

Bin 1	

 Bin 2	

 Bin 3	

 Bin 4	

 Bin 5	

 ALL	

Fa
ct

or
 o

f I
m

pr
ov

em
en

t	

 End-to-End	

WriteTime	

Jobs spend varying amounts of

time in writing	

•  Jobs in Bin-1 the least and jobs in

Bin-5 the most	

No clear correlation	

•  We improve block writes w/o

considering job characteristics	

1.
07
	

1.
11
	

1.
08
	

 1.
13
	

 1.

22
	

1.
20
	

1.
31
	

1.
15
	

1.
44
	

1.
23
	

1	

1.25	

1.5	

1.75	

[0, 10)	

 [10, 100)	

 [100, 1E3)	

[1E3, 1E4)	

[1E4, 1E5)	

Fa
ct

or
 o

f I
m

pr
ov

em
en

t	

Job Write Size (MB)	

End-to-End	

WriteTime	

Breakdown [Bytes Written]	

Jobs write varying amounts to
HDFS as well	

•  Ingestion and pre-processing jobs

write the most	

No clear correlation	

•  We do not use file characteristics

while selecting destinations	

Balanced Storage [Simulation]	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	

 26	

 51	

 76	

 101	

 126	

 151	

%
 o

f B
yt

es
	

Rank of Racks	

NetworkAware	

Default	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

1	

 26	

 51	

 76	

 101	

 126	

 151	

%
 o

f B
lo

ck
s	

Rank of Racks	

NetworkAware	

Default	

Byte Distribution	

 Block Distribution	

Reacting to the imbalance
isn’t always perfect!	

Balanced Storage [EC2]	

An hour-long 100-node EC2 experiment	

•  Wrote ~10TB of data	

•  Calculated standard deviation of disk usage across all machines	

6.7	

15.8	

1600	

1	

10	

100	

1000	

10000	

Default	

 Network-Aware	

 Capacity	

G
B	

Imbalance is less than 1% of the
storage capacity of each machine	

