
Spark: Cluster Computing with Working Sets

Matei Zaharia, Mosharaf Chowdhury, Justin Ma, Michael J. Franklin, Scott Shenker, Ion Stoica
University of California, Berkeley

MapReduce and its variants have been highly success-
ful in implementing large-scale data-intensive cluster ap-
plications. However, most of these systems are built
around an acyclic data flow model that does not capture
many important use cases. We present Spark, a new clus-
ter computing framework motivated by one such class of
use cases: applications that reuse a working set of data
across multiple parallel operations. This includes many
iterative machine learning algorithms, as well as interac-
tive data analysis tools. Spark provides a set of distributed
memory abstractions that allow it to efficiently support
applications with working sets, while retaining the scal-
ability and fault tolerance of MapReduce. We show that
Spark can outperform Hadoop by 10x in iterative machine
learning jobs, and can be used to interactively query a 40
GB dataset with sub-second response time. We propose
to present both a poster about Spark and a demo of the
system being used interactively to search Wikipedia.

The main abstraction in Spark is a resilient distributed
dataset (RDD), which represents a read-only collection of
objects partitioned across a set of machines that can be re-
built if a partition is lost. Users define RDDs by starting
with an on-disk dataset (e.g., a file in the Hadoop Dis-
tributed Filesystem) and transforming it. Users can ex-
plicitly control the persistence of each RDD, e.g., ask for
it to be cached in memory across the nodes in the cluster.
They can then reuse RDDs across MapReduce-like paral-
lel operations. RDDs achieve fault tolerance by maintain-
ing information about lineage: if a partition of an RDD is
lost, the RDD has enough information about how it was
derived from other RDDs to be able to rebuild just that
partition. Although RDDs are not a general distributed
memory abstraction, they represent a sweet-spot between
expressivity on the one hand and scalability and reliabil-
ity on the other hand, and we have found them well-suited
for a variety of applications.

By providing RDDs, Spark is a better fit than MapRe-
duce and Dryad for two classes of datacenter applications:

• Iterative jobs: Many common machine learning algo-
rithms apply a function repeatedly to the same dataset
to optimize a parameter (e.g., through gradient de-
scent). While each iteration can be expressed as a
MapReduce/Dryad job, each job must reload the data
from disk, incurring a significant performance penalty.

In contrast, in Spark, the application can represent the
data as an RDD and ask that it be cached in memory
across the nodes of the cluster.

• Interactive analytics: Hadoop is often used to run
ad-hoc exploratory queries on large datasets, through
SQL interfaces such as Pig and Hive. With Hadoop-
based tools, each query incurs significant latency (tens
of seconds) because it runs as a separate MapReduce
job and reads data from disk. With Spark, a user can
load a dataset of interest into memory across a number
of machines and then query it repeatedly.

Spark is implemented in Scala, a statically typed
high-level programming language for the Java VM, and
exposes a functional programming interface similar to
DryadLINQ. In addition, Spark can be used interactively
from a modified version of the Scala interpreter, which
allows the user to define RDDs, functions, variables and
classes and use them in parallel operations on a cluster.
We believe that Spark is the first system to allow an effi-
cient, general-purpose programming language to be used
interactively to process large datasets on a cluster.

Although our implementation of Spark is at an early
stage, experience with the system is encouraging. Spark
can outperform Hadoop by 10x in iterative machine learn-
ing workloads and can be used interactively to scan a
40 GB dataset with sub-second latency. Several machine
learning researchers in our lab have used Spark implement
a number of algorithms, including logistic regression, ex-
pectation maximization, and bootstrap sampling.

At OSDI, we propose to present both a poster and a
demo of Spark being used interactively to search through
Wikipedia. In the demo, we show that searching through
Wikipedia (a 40 GB dataset) by reading it from disk (as
in a standard MapReduce environment) takes about 20
seconds per query on a 20-node cluster. We then load
Wikipedia as a cached RDD, where each machine in the
cluster holds a portion of the data in memory, and show
that the query time falls to 0.5-1 seconds, even for full
scans of the data. This leads to a nearly realtime experi-
ence where users can enter new queries at the Scala in-
terpreter interactively and explore the data as if they were
working with a small dataset on a single machine. We also
plan to present future directions for Spark, such as other
distributed memory abstractions for cluster computing.

1


