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Architecture 

• Modified Scala interpreter to enable 

interactive use of Spark 
• Bytecode analysis & modified class 

generation strategy to capture 

dependencies for each input line 

• Remote class loading for workers 

 

• Other memory abstractions that can 

be efficiently supported in clusters 

(e.g. updatable datasets, streams) 

• More RDD storage options (e.g. 

caching on disk, replication, control 

over partitioning) 

• Debugging tools that leverage lineage 

to replay portions of jobs 

Results 

Future Work 
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Motivation 

• MapReduce & Dryad have been very 

successful, but use acyclic data flow 

model that is not suitable for all apps 

• Can we provide similarly powerful 

abstractions for a broader class of apps? 

• Support cluster applications that reuse 

working sets of data, including: 
 Iterative algorithms 

 Interactive data mining 

• Provide automatic fault tolerance and 

load balancing similar to MapReduce 

• Ease of programming through 

integration into Scala language 

Spark Goals 

Programming Model 

• Resilient Distributed Datasets (RDDs) 
 Collections of objects stored across cluster 

nodes that can be rebuilt on failure 

 Created by applying transformations (e.g. 

map) to data in stable storage 

 Can be explicitly cached for reuse 

• Parallel operations on RDDs (reduce, etc) 

• Restricted shared variables (broadcast 

variables and accumulators) 
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• Nodes cache slices of RDDs 

when requested by user 

• Fault tolerance achieved 

through lineage 
• RDD handles contain 

enough info to rebuild 

from source data 

// Cache an RDD containing all the 
// lines with “ERROR” in a log file 
file = spark.textFile("hdfs://...”) 
errs = file.filter(_.contains("ERROR")) 
cachedErrs = errs.cache() 
 
// Count errors using the cached RDD 
ones = cachedErrs.map(_ => 1) 
count = ones.reduce(_+_) 

HdfsTextFile 

path = hdfs://… 
file: 

FilteredDataset 

func = _.contains(…) 
errs: 

CachedDataset cachedErrs: 

MappedDataset 

func = _ => 1 
ones: 

RDD and Lineage Example 

Broadcast Variables 

Alternating Least Squares Performance 
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// Define a broadcast variable 
bv = spark.broadcast(someBigObject) 
 

// Use it in a parallel operation 
dataset.foreach(element => { 
  doStuff(bv.value) 
}) 
 

// Use bv in a 2nd parallel operation; 
// cached copy on each node is reused 
dataset.foreach(element => { 
  doOtherStuff(bv.value) 
}) 
 

UC Berkeley 

Accumulators 
// Define accumulator initialized to 0 
accum = spark.accumulator(0) 
 
// Use it in a parallel operation 
dataset.foreach(element => { 
  accum += doStuff() 
}) 
 
// Read value in driver program 
println(accum.value) 
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(Full-text search on 40 GB Wikipedia dataset) 


