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Architecture 

• Modified Scala interpreter to enable 

interactive use of Spark 
• Bytecode analysis & modified class 

generation strategy to capture 

dependencies for each input line 

• Remote class loading for workers 

 

• Other memory abstractions that can 

be efficiently supported in clusters 

(e.g. updatable datasets, streams) 

• More RDD storage options (e.g. 

caching on disk, replication, control 

over partitioning) 

• Debugging tools that leverage lineage 

to replay portions of jobs 

Results 

Future Work 
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Motivation 

• MapReduce & Dryad have been very 

successful, but use acyclic data flow 

model that is not suitable for all apps 

• Can we provide similarly powerful 

abstractions for a broader class of apps? 

• Support cluster applications that reuse 

working sets of data, including: 
 Iterative algorithms 

 Interactive data mining 

• Provide automatic fault tolerance and 

load balancing similar to MapReduce 

• Ease of programming through 

integration into Scala language 

Spark Goals 

Programming Model 

• Resilient Distributed Datasets (RDDs) 
 Collections of objects stored across cluster 

nodes that can be rebuilt on failure 

 Created by applying transformations (e.g. 

map) to data in stable storage 

 Can be explicitly cached for reuse 

• Parallel operations on RDDs (reduce, etc) 

• Restricted shared variables (broadcast 

variables and accumulators) 
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• Nodes cache slices of RDDs 

when requested by user 

• Fault tolerance achieved 

through lineage 
• RDD handles contain 

enough info to rebuild 

from source data 

// Cache an RDD containing all the 
// lines with “ERROR” in a log file 
file = spark.textFile("hdfs://...”) 
errs = file.filter(_.contains("ERROR")) 
cachedErrs = errs.cache() 
 
// Count errors using the cached RDD 
ones = cachedErrs.map(_ => 1) 
count = ones.reduce(_+_) 

HdfsTextFile 

path = hdfs://… 
file: 

FilteredDataset 

func = _.contains(…) 
errs: 

CachedDataset cachedErrs: 

MappedDataset 

func = _ => 1 
ones: 

RDD and Lineage Example 

Broadcast Variables 

Alternating Least Squares Performance 
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// Define a broadcast variable 
bv = spark.broadcast(someBigObject) 
 

// Use it in a parallel operation 
dataset.foreach(element => { 
  doStuff(bv.value) 
}) 
 

// Use bv in a 2nd parallel operation; 
// cached copy on each node is reused 
dataset.foreach(element => { 
  doOtherStuff(bv.value) 
}) 
 

UC Berkeley 

Accumulators 
// Define accumulator initialized to 0 
accum = spark.accumulator(0) 
 
// Use it in a parallel operation 
dataset.foreach(element => { 
  accum += doStuff() 
}) 
 
// Read value in driver program 
println(accum.value) 
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(Full-text search on 40 GB Wikipedia dataset) 


