
Interactive Spark

Distributed Memory Abstractions for Cluster Computing
Matei Zaharia, Mosharaf Chowdhury, Justin Ma, Michael J. Franklin, Scott Shenker, Ion Stoica

Architecture

• Modified Scala interpreter to enable

interactive use of Spark
• Bytecode analysis & modified class

generation strategy to capture

dependencies for each input line

• Remote class loading for workers

• Other memory abstractions that can

be efficiently supported in clusters

(e.g. updatable datasets, streams)

• More RDD storage options (e.g.

caching on disk, replication, control

over partitioning)

• Debugging tools that leverage lineage

to replay portions of jobs

Results

Future Work

0

1000

2000

3000

4000

5000

0 10 20 30 40

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Iterations

Hadoop

Spark

Logistic Regression Performance

Motivation

• MapReduce & Dryad have been very

successful, but use acyclic data flow

model that is not suitable for all apps

• Can we provide similarly powerful

abstractions for a broader class of apps?

• Support cluster applications that reuse

working sets of data, including:
 Iterative algorithms

 Interactive data mining

• Provide automatic fault tolerance and

load balancing similar to MapReduce

• Ease of programming through

integration into Scala language

Spark Goals

Programming Model

• Resilient Distributed Datasets (RDDs)
 Collections of objects stored across cluster

nodes that can be rebuilt on failure

 Created by applying transformations (e.g.

map) to data in stable storage

 Can be explicitly cached for reuse

• Parallel operations on RDDs (reduce, etc)

• Restricted shared variables (broadcast

variables and accumulators)

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

tasks

results

Cache 1

Cache 2

Cache 3

• Nodes cache slices of RDDs

when requested by user

• Fault tolerance achieved

through lineage
• RDD handles contain

enough info to rebuild

from source data

// Cache an RDD containing all the
// lines with “ERROR” in a log file
file = spark.textFile("hdfs://...”)
errs = file.filter(_.contains("ERROR"))
cachedErrs = errs.cache()

// Count errors using the cached RDD
ones = cachedErrs.map(_ => 1)
count = ones.reduce(_+_)

HdfsTextFile

path = hdfs://…
file:

FilteredDataset

func = _.contains(…)
errs:

CachedDataset cachedErrs:

MappedDataset

func = _ => 1
ones:

RDD and Lineage Example

Broadcast Variables

Alternating Least Squares Performance

2064.4

416.6
221.2

109.2 88.8 73.2
0

500

1000

1500

2000

2500

1 5 10 20 30 40

It
e

ra
ti

o
n

 T
im

e
 (

s)

Number of Nodes

First Iteration

Later Iterations

// Define a broadcast variable
bv = spark.broadcast(someBigObject)

// Use it in a parallel operation
dataset.foreach(element => {
 doStuff(bv.value)
})

// Use bv in a 2nd parallel operation;
// cached copy on each node is reused
dataset.foreach(element => {
 doOtherStuff(bv.value)
})

UC Berkeley

Accumulators
// Define accumulator initialized to 0
accum = spark.accumulator(0)

// Use it in a parallel operation
dataset.foreach(element => {
 accum += doStuff()
})

// Read value in driver program
println(accum.value)

0 5 10 15 20

Cached RDD

Non-Cached RDD

Response Time (s)

Interpreter Response Time

(Full-text search on 40 GB Wikipedia dataset)

