
Interactive Spark

Distributed Memory Abstractions for Cluster Computing
Matei Zaharia, Mosharaf Chowdhury, Justin Ma, Michael J. Franklin, Scott Shenker, Ion Stoica

Architecture

• Modified Scala interpreter to enable

interactive use of Spark
• Bytecode analysis & modified class

generation strategy to capture

dependencies for each input line

• Remote class loading for workers

• Other memory abstractions that can

be efficiently supported in clusters

(e.g. updatable datasets, streams)

• More RDD storage options (e.g.

caching on disk, replication, control

over partitioning)

• Debugging tools that leverage lineage

to replay portions of jobs

Results

Future Work

0

1000

2000

3000

4000

5000

0 10 20 30 40

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Iterations

Hadoop

Spark

Logistic Regression Performance

Motivation

• MapReduce & Dryad have been very

successful, but use acyclic data flow

model that is not suitable for all apps

• Can we provide similarly powerful

abstractions for a broader class of apps?

• Support cluster applications that reuse

working sets of data, including:
 Iterative algorithms

 Interactive data mining

• Provide automatic fault tolerance and

load balancing similar to MapReduce

• Ease of programming through

integration into Scala language

Spark Goals

Programming Model

• Resilient Distributed Datasets (RDDs)
 Collections of objects stored across cluster

nodes that can be rebuilt on failure

 Created by applying transformations (e.g.

map) to data in stable storage

 Can be explicitly cached for reuse

• Parallel operations on RDDs (reduce, etc)

• Restricted shared variables (broadcast

variables and accumulators)

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

tasks

results

Cache 1

Cache 2

Cache 3

• Nodes cache slices of RDDs

when requested by user

• Fault tolerance achieved

through lineage
• RDD handles contain

enough info to rebuild

from source data

// Cache an RDD containing all the
// lines with “ERROR” in a log file
file = spark.textFile("hdfs://...”)
errs = file.filter(_.contains("ERROR"))
cachedErrs = errs.cache()

// Count errors using the cached RDD
ones = cachedErrs.map(_ => 1)
count = ones.reduce(_+_)

HdfsTextFile

path = hdfs://…
file:

FilteredDataset

func = _.contains(…)
errs:

CachedDataset cachedErrs:

MappedDataset

func = _ => 1
ones:

RDD and Lineage Example

Broadcast Variables

Alternating Least Squares Performance

2064.4

416.6
221.2

109.2 88.8 73.2
0

500

1000

1500

2000

2500

1 5 10 20 30 40

It
e

ra
ti

o
n

 T
im

e
 (

s)

Number of Nodes

First Iteration

Later Iterations

// Define a broadcast variable
bv = spark.broadcast(someBigObject)

// Use it in a parallel operation
dataset.foreach(element => {
 doStuff(bv.value)
})

// Use bv in a 2nd parallel operation;
// cached copy on each node is reused
dataset.foreach(element => {
 doOtherStuff(bv.value)
})

UC Berkeley

Accumulators
// Define accumulator initialized to 0
accum = spark.accumulator(0)

// Use it in a parallel operation
dataset.foreach(element => {
 accum += doStuff()
})

// Read value in driver program
println(accum.value)

0 5 10 15 20

Cached RDD

Non-Cached RDD

Response Time (s)

Interpreter Response Time

(Full-text search on 40 GB Wikipedia dataset)

