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ABSTRACT
Communication in data-parallel applications often involves a col-
lection of parallel flows. Traditional techniques to optimize flow-
level metrics do not perform well in optimizing such collections,
because the network is largely agnostic to application-level require-
ments. The recently proposed coflow abstraction bridges this gap
and creates new opportunities for network scheduling. In this pa-
per, we address inter-coflow scheduling for two different objec-
tives: decreasing communication time of data-intensive jobs and
guaranteeing predictable communication time. We introduce the
concurrent open shop scheduling with coupled resources problem,
analyze its complexity, and propose effective heuristics to opti-
mize either objective. We present Varys, a system that enables
data-intensive frameworks to use coflows and the proposed algo-
rithms while maintaining high network utilization and guarantee-
ing starvation freedom. EC2 deployments and trace-driven simula-
tions show that communication stages complete up to 3.16× faster
on average and up to 2× more coflows meet their deadlines us-
ing Varys in comparison to per-flow mechanisms. Moreover, Varys
outperforms non-preemptive coflow schedulers by more than 5×.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Distributed sys-
tems—Cloud computing
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1 Introduction
Although many data-intensive jobs are network-bound [7,9,15,23],
network-level optimizations [7, 8, 12, 25] remain agnostic to job-
specific communication requirements. This mismatch often hurts
application-level performance, even when network-oriented met-
rics like flow completion time (FCT) or fairness improve [15].

Despite the differences among data-intensive frameworks [3, 4,
18,26,29,37,41], their communication is structured and takes place
between groups of machines in successive computation stages [16].
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Often a communication stage cannot finish until all its flows have
completed [15, 19]. The recently proposed coflow abstraction [16]
represents such collections of parallel flows to convey job-specific
communication requirements – for example, minimizing comple-
tion time or meeting a deadline – to the network and enables
application-aware network scheduling (§2). Indeed, optimizing a
coflow’s completion time (CCT) decreases the completion time of
corresponding job [15].

However, jobs from one or more frameworks create multiple
coflows in a shared cluster. Analysis of production traces shows
wide variations in coflow characteristics in terms of total size, the
number of parallel flows, and the size of individual flows (§4).
Simple scheduling mechanisms like FIFO and its variants [15, 19],
which are attractive for the ease of decentralization, do not perform
well in such an environment – one large coflow can slow down
many smaller ones or result in many missed deadlines.

Simply applying a shortest- or smallest-first heuristic, the pre-
dominant way to solve most scheduling problems, is not sufficient
either (§5). Inter-coflow scheduling is different from scheduling in-
dividual flows [8, 25], because each coflow involves multiple par-
allel flows. It also differs from related problems like scheduling
parallel tasks [9, 40] or caching parallel blocks [10]; unlike CPU
or memory, the network involves coupled resources – each flow’s
progress depends on its rates at both source and destination. We
show that these coupled constraints make permutation schedules
– scheduling coflows one after another without interleaving their
flows – suboptimal. Consequently, centralized scheduling becomes
impractical, because the scheduler might need to preempt flows or
recalculate their rates at arbitrary points in time even when no new
flows start or complete.

In this paper, we study the inter-coflow scheduling problem
for arbitrary coflows and focus on two objectives: improving
application-level performance by minimizing CCTs and guarantee-
ing predictable completions within coflow deadlines. We prove this
problem to be strongly NP-hard for either objective and focus on
developing effective heuristics. We propose a coflow scheduling
heuristic that – together with a complementary flow-level rate allo-
cation algorithm – makes centralized coflow scheduling feasible by
rescheduling only on coflow arrivals and completions.

In the presence of coupled constraints, the bottleneck end-
points of a coflow determine its completion time. We propose the
Smallest-Effective-Bottleneck-First (SEBF) heuristic that greedily
schedules a coflow based on its bottleneck’s completion time. We
then use the Minimum-Allocation-for-Desired-Duration (MADD)
algorithm to allocate rates to its individual flows. The key idea be-
hind MADD is to slow down all the flows in a coflow to match the
completion time of the flow that will take the longest to finish. As a
result, other coexisting coflows can make progress and the average



CCT decreases. While the combination of SEBF and MADD is not
necessarily optimal, we have found it to work well in practice.

For guaranteed coflow completions, we use admission control;
i.e., we do not admit any coflow that cannot meet its deadline with-
out violating someone else’s. Once admitted, we use MADD to
complete all the flows of a coflow exactly at the coflow deadline for
guaranteed completion using the minimum amount of bandwidth.

We have implemented the proposed algorithms in a system
called Varys1 (§6), which provides a simple API that allows data-
parallel frameworks to express their communication requirements
as coflows with minimal changes to the framework. User-written
jobs can take advantage of coflows without any modifications.

We deployed Varys on a 100-machine EC2 cluster and evalu-
ated it (§7) by replaying production traces from Facebook. Varys
improved CCTs both on average (up to 3.16×) and at high per-
centiles (3.84× at the 95th percentile) in comparison to per-flow
fair sharing. Hence, end-to-end completion times of jobs, specially
the communication-heavy ones, decreased. The aggregate network
utilization remained the same, and there was no starvation. In trace-
driven simulations, we found Varys to be 3.66× better than fair
sharing, 5.53× better than per-flow prioritization, and 5.65× bet-
ter than FIFO schedulers Moreover, in EC2 experiments (simula-
tions), Varys allowed up to 2× (1.44×) more coflows to meet their
deadlines in comparison to per-flow schemes; it marginally outper-
formed resource reservation mechanisms [11] as well.

We discuss current limitations of Varys and relevant future re-
search in Section 8 and compare Varys to related work in Section 9.

2 Background and Motivation
This section overviews the coflow abstraction (§2.1) and our con-
ceptual model of the datacenter fabric (§2.2), and illustrates the
advantages of using coflows (§2.3).

2.1 The Coflow Abstraction
A coflow [16] is a collection of flows that share a common per-
formance goal, e.g., minimizing the completion time of the latest
flow or ensuring that flows meet a common deadline. We assume
that the amount of data each flow needs to transfer is known before
it starts [8, 15, 19, 25]. The flows of a coflow are independent in
that the input of a flow does not depend on the output of another in
the same coflow, and the endpoints of these flows can be in one or
more machines. Examples of coflows include the shuffle between
the mappers and the reducers in MapReduce [18] and the commu-
nication stage in the bulk-synchronous parallel (BSP) model [37].

Coflows can express most communication patterns between suc-
cessive computation stages of data-parallel applications (Table 1)
[16]. Note that traditional point-to-point communication is still a
coflow with a single flow.

2.2 Network Model
In our analysis, we consider a network model where the entire
datacenter fabric is abstracted out as one non-blocking switch
[8, 11, 27, 33] interconnecting all the machines (Figure 1), and we
focus only on its ingress and egress ports (e.g., machine NICs).
This abstraction is attractive because of its simplicity, yet it is prac-
tical because of recent advances in full bisection bandwidth topolo-
gies [22, 32] and techniques for enforcing edge constraints into the
network [11, 21]. Note that we use this abstraction to simplify our
analysis, but we do not enforce it in our experiments (§7).

In this model, each ingress port has some flows from one or more
coflows to various egress ports. For ease of exposition, we organize
them in Virtual Output Queues [31] at the ingress ports as shown

1Pronounced \'vä-ris\.

Communication in Data-Parallel Apps Coflow Structure
Comm. in dataflow pipelines [3, 4, 26, 41] Many-to-Many
Global communication barriers [29, 37] All-to-All
Broadcast [3, 26, 41] One-to-Many
Aggregation [3, 4, 18, 26, 41] Many-to-One
Parallel read/write on dist. storage [13, 14, 17] Many One-to-One

Table 1: Coflows in data-parallel cluster applications.
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Figure 1: Coflow scheduling over a 3 × 3 datacenter fabric with three
ingress/egress ports. Flows in ingress ports are organized by destinations
and color-coded by coflows – C1 in orange/light and C2 in blue/dark.

in Figure 1. In this case, there are two coflows C1 and C2; C1 has
three flows transferring 1, 2, and 4 units of data, while C2 has two
flows transferring 2 data units each.

2.3 Potential Benefits of Inter-Coflow Scheduling

While the network cares about flow-level metrics such as FCT
and per-flow fairness, they can be suboptimal for minimizing the
time applications spend in communication. Instead of improving
network-level metrics that can be at odds with application-level
goals, coflows improve performance through application-aware
management of network resources.

Consider Figure 1. Assuming both coflows to arrive at the same
time, Figure 2 compares four different schedules. Per-flow fairness
(Figure 2a) ensures max-min fairness among flows in each link.
However, fairness among flows of even the same coflow can in-
crease CCT [15]. WSS (Figure 2c) – the optimal algorithm in ho-
mogeneous networks – is up to 1.5× faster than per-flow fairness
for individual coflows [15]; but for multiple coflows, it minimizes
the completion time across all coflows and increases the average
CCT. Recently proposed shortest-flow-first prioritization mecha-
nisms [8, 25] (Figure 2b) decrease average FCT, but they increase
the average CCT by interleaving flows from different coflows. Fi-
nally, the optimal schedule (Figure 2d) minimizes the average CCT
by finishing flows in the coflow order (C2 followed by C1). The
FIFO schedule [15, 19] would have been as good as the optimal if
C2 arrived before C1, but it could be as bad as per-flow fair sharing
or WSS if C2 arrived later.

Deadline-Sensitive Communication Assume that C1 and C2

have the same deadline of 2 time units – C1 would never meet its
deadline as its minimum CCT is 4. Using per-flow fairness or WSS,
both C1 and C2 miss their deadlines. Using earliest-deadline-first
(EDF) across flows [25], C2 meets its deadline only 25% of the
time. However, the optimal coflow schedule does not admit C1,
and C2 always succeeds.

Note that egress ports do not experience any contention in these
examples; when they do, coflow-aware scheduling can be even
more effective.

3 Varys Overview
Varys is a coordinated coflow scheduler to optimize either the per-
formance or the predictability of communication in data-intensive
applications. In this section, we present a brief overview of Varys
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(d) The optimal schedule
Figure 2: Allocation of ingress port capacities (vertical axis) using different
mechanisms for the coflows in Figure 1. Each port can transfer one unit of
data in one time unit. The average FCT and CCT for (a) per-flow fairness
are 3.4 and 4 time units; (b) per-flow prioritization are 2.8 and 3.5 time
units; (c) Weighted Shuffle Scheduling (WSS) are 3.6 and 4 time units; and
(d) the optimal schedule are 3 and 3 time units.

to help the reader follow the measurements of coflows in produc-
tion clusters (§4), analysis and design of inter-coflow scheduling
algorithms (§5), and Varys’s design details (§6).

3.1 Problem Statement

When improving performance, given a coflow with information
about its individual flows, their size, and endpoints, Varys must
decide when to start its flows and at what rate to serve them to
minimize the average CCT of the cluster. It can preempt existing
coflows to avoid head-of-line blocking, but it must also avoid star-
vation. Information about a coflow is unknown prior to its arrival.

When optimizing predictability, Varys must admit a new coflow
if it can be completed within its deadline without violating deadline
guarantees of the already-admitted ones.

Irrespective of the objective, the inter-coflow scheduling prob-
lem is NP-hard (§5). Varys implements a scheduler that exploits
the variations in coflow characteristics (§4) to perform reasonably
well in realistic settings.

3.2 Architectural Overview

Varys master schedules coflows from different frameworks using
global coordination (Figure 3). It works in two modes: it either
tries to minimize CCT or to meet deadlines. For the latter, it uses
admission control, and rejected coflows must be resubmitted later.
Frameworks use a client library to interact with Varys to register
and define coflows (§6.1). The master aggregates all interactions to
create a global view of the network and determines rates of flows
in each coflow (§6.2) that are enforced by the client library.

Varys daemons, one on each machine, handle time-decoupled
coflows, where senders and receivers are not simultaneously ac-
tive. Instead of hogging the CPU, sender tasks (e.g., mappers) of
data-intensive applications often complete after writing their out-
put to the disk. Whenever corresponding receivers (e.g., reducers)
are ready, Varys daemons serve them by coordinating with the mas-
ter. Varys daemons use the same client library as other tasks. Addi-
tionally, these daemons send periodic measurements of the network
usage at each machine to Varys master. The master aggregates them
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Figure 3: Varys architecture. Computation frameworks interact with Varys
through a client library.

using existing techniques [17] to estimate current utilizations and
use remaining bandwidth (Rem(.)) during scheduling (§5.3).

We have implemented Varys in the application layer out of prac-
ticality – it can readily be deployed in the cloud, while providing
large improvements for both objectives we consider (§7).

Fault Tolerance Failures of Varys agents do not hamper job ex-
ecution, since data can be transferred using regular TCP flows
in their absence. Varys agents store soft states that can be re-
built quickly upon restart. In case of task failures and consequent
restarts, corresponding flows are restarted too; other flows of the
same coflow, however, are not paused.

Scalability Varys reschedules only on coflow arrival and comple-
tion events. We did not observe the typical number of concurrent
coflows (tens to hundreds [15, 33]) to limit its scalability. Varys
batches control messages at O(100) milliseconds intervals to re-
duce coordination overheads, which affect small coflows (§7.2).
Fortunately, most traffic in data-intensive clusters are from large
coflows (§4). Hence, we do not use Varys for coflows with bottle-
necks smaller than 25 MB in size.

4 Coflows in Production
The impact of coflows on job durations and their network foot-
print have received extensive attention [15, 17, 33, 35, 39]. We fo-
cus on understanding their structural characteristics by analyzing
traces from a 3000-machine, 150-rack Hive/MapReduce data ware-
house at Facebook [17]. We highlight two attributes – wide vari-
ety in coflow structures and disproportionate footprint of few large
coflows – that motivate and guide Varys’s design.

4.1 Diversity of Coflow Structures

Because a coflow consists of multiple parallel flows, it cannot be
characterized just by its size. We define the length of a coflow to
be the size of its largest flow in bytes, its width to be the number
of parallel flows, and its size to be the sum of all its flows in bytes.
Furthermore, we consider skew, i.e., the coefficient of variation of
its flows in terms of their size.

The key takeaway from the CDF plots in Figure 4 is that coflows
vary widely in all four characteristics. We observe that while
more than 40% coflows are short (≤1 MB in length), flows in
some coflows can be very large. Similarly, more than 60% nar-
row coflows (with at most 50 flows) reside with coflows that con-
sist of millions of flows. Furthermore, we see variations of flow
sizes within the same coflow (Figure 4c), which underpins the pos-
sible improvements from inter-coflow scheduling – e.g., the opti-
mal schedule in Figure 2 outperforms the rest, primarily because it
exploits the skew in C1. Note that we rounded up flow sizes to 1
MB to calculate skew in Figure 4c to ignore small variations.
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Figure 4: Coflows in production vary widely in (a) length, (b) width, (c)
skew of flow sizes, (c) bottleneck locations, and (e) total size. Moreover, (f)
numerous small coflows have tiny network footprint.

Identifying bottlenecks and exploiting them is the key to im-
provements. Figure 4d shows that the ratio of sender and receiver
ports/machines2 can be very different across coflows, and senders
can be bottlenecks in almost a third of the coflows.

We found that length and width of a coflow have little correla-
tion; a coflow can have many small flows as well as few large flows.
However, as Figure 4b and Figure 4c suggest, width and skew are
indeed correlated – as width increases, the probability of variations
among flows increases as well. We also observed large variation in
coflow size (Figure 4e).

4.2 Heavy-Tailed Distribution of Coflow Size

Data-intensive jobs in production clusters are known to follow
heavy-tailed distributions in terms of their number of tasks, size of
input, and output size [10,17]. We observe the same for coflow size
as well. Figure 4f presents the fraction of total coflows contributed
by coflows of different size. Comparing it with Figure 4e, we see
that almost all traffic are generated by a handful of large coflows –
98% (99.6%) of the relevant bytes belong to only 8% (15%) of the
coflows that are more than 10 GB (1 GB) in size. This allows Varys
to focus only on scheduling large coflows, where gains significantly
outweigh coordination overheads.

5 Coflow Scheduling: Analytical Results
The inter-coflow scheduling problem is NP-hard. In this section,
we provide insights into its complexity (§5.1) and discuss desir-
able properties of an ideal scheduler along with associated tradeoffs
(§5.2). Based on our understanding, we develop two inter-coflow
scheduling algorithms: one to minimize CCTs (§5.3) and another
to guarantee coflow completions within their deadlines (§5.4).

Detailed analysis and proofs can be found in the appendix.

2One machine can have multiple tasks of the same coflow.

5.1 Problem Formulation and Complexity

We consider two objectives for optimizing data-intensive commu-
nication: either minimizing the average CCT or improving pre-
dictability by maximizing the number of coflows that meet dead-
lines (§A). Achieving either objective is NP-hard, even when
1. all coflows can start at the same time,

2. information about their flows are known beforehand, and

3. ingress and egress ports have the same capacity.
We prove it by reducing the concurrent open-shop scheduling prob-
lem [34] to inter-coflow scheduling (Theorem A.1).

The online inter-coflow scheduling problem is even harder be-
cause of the following reasons:
1. Capacity constraints. Ingress and egress ports of the datacenter

fabric have finite, possibly heterogeneous, capacities. Hence,
the optimal solution must find the best ordering of flows to dis-
patch at each ingress port and simultaneously calculate the best
matching at the egress ports. Furthermore, when optimizing
predictability, it must decide whether or not to admit a coflow.

2. Lack of future knowledge. Arrival times and characteristics of
new coflows and their flows cannot be predicted.

Because the rate of any flow depends on its allocations at both
ingress and egress ports, we refer to the inter-coflow scheduling
problem as an instance of the concurrent open shop scheduling with
coupled resources (Remark A.2). To the best of our knowledge,
this variation of the problem – with ordering and matching require-
ments – has not appeared in the literature prior to this work.

5.2 Desirable Properties and Tradeoffs

Efficient scheduling (minimizing completion times) and pre-
dictable scheduling (guaranteeing coflow completions within their
deadlines) are inherently conflicting. The former requires preemp-
tive solutions to avoid head-of-line blocking. Shortest-remaining-
time-first (SRTF) for optimally scheduling flows on a single link is
an example [25]. Preemption, in the worst case, can lead to star-
vation; e.g., SRTF starves long flows. The latter, on the contrary,
requires admission control to provide guarantees.

We expect an ideal scheduler to satisfy the following goals in
addition to its primary objective.
1. Starvation freedom. Coflows, irrespective of their characteris-

tics, should not starve for arbitrarily long periods.

2. Work-conserving allocation. Available resources should be
used as much as possible.

The former ensures eventual completion of coflows irrespective
of system load. The latter avoids underutilization of the network,
which intuitively should result in lower CCTs and higher admis-
sions. However, both are at odds with our primary objectives (§B).

Predictable scheduling has an additional goal.
3. Guaranteed completion. If admitted, a coflow must complete

within its deadline.
In the following, we present algorithms that achieve high net-

work utilization, and ensure starvation freedom when minimizing
CCT (§5.3) and guarantees completion of admitted coflows when
maximizing predictability (§5.4).

5.3 Inter-Coflow Scheduling to Minimize CCT

Given the complexity, instead of finding an optimal algorithm, we
focus on understanding what an offline optimal schedule might
look like under simplifying assumptions. Next, we compute the
minimum time to complete a single coflow. We use this result as
a building block to devise a scheduling heuristic and an iterative
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Figure 5: Allocations of egress port capacities (vertical axis) for the coflows
in (a) on a 3× 3 fabric for different coflow scheduling heuristics (§5.3.2).

bandwidth allocation algorithm. We conclude by presenting the
necessary steps to transform our offline solution to an online one
with guarantees for starvation freedom and work conservation.

5.3.1 Solution Approach
Consider the offline problem of scheduling |C| coflows (C =
{C1, C2, . . . , C|C|}) that arrived at time 0. The optimality of the
shortest-processing-time-first (SPTF) heuristic on a single link sug-
gests that shortest- or smallest-first schedules are the most effective
in minimizing completion times [8, 25]. However, in the multi-link
scenario, links can have different schedules. This makes the search
space exponentially large – there are ((|C|P )!)P possible solutions
when scheduling |C| coflows with P 2 flows each on a P×P fabric!

If we remove the capacity constraints from either ingress or
egress ports, under the assumptions of Section 5.1, the coflow
scheduling problem simplifies to the traditional concurrent open
shop scheduling problem, which has optimal permutation sched-
ules [30]; meaning, scheduling coflows one after another is suffi-
cient, and searching within the |C|! possible schedules is enough.
Unfortunately, permutation schedules can be suboptimal for cou-
pled resources (Theorem C.1), which can lead to flow preemptions
at arbitrary points in time – not just at coflow arrivals and comple-
tions (Remark C.2). To avoid incessant rescheduling, we restrict
ourselves to permutation schedules.

5.3.2 The Smallest-Effective-Bottleneck-First Heuristic
Once scheduled, a coflow can impact the completion times of all
other coflows scheduled after it. Our primary goal is to minimize
the opportunity lost in scheduling each coflow.

Given the optimality of the shortest- or smallest-first policy in
minimizing the average FCT [8, 25], a natural choice for schedul-
ing coflows would be to approximate that with a Shortest-Coflow-
First (SCF) heuristic. However, SCF does not take into account
the width of a coflow. A width-based alternative to SCF is the
Narrowest-Coflow-First (NCF) heuristic, but NCF cannot differen-
tiate between a short coflow from a long one. A smallesT-Coflow-
First (TCF) heuristic is a better alternative than the two – while SCF
can be influenced just by a single long flow (i.e., coflow length) and
NCF relies only on coflow width, TCF responds to both.

However, the completion time of coflow actually depends on
its bottleneck. A coflow C must transfer

∑
j dij amount of data

through each ingress port i (P in
i ) and

∑
i dij through each egress

port j (Pout
j ), where dij is the amount of data to transfer from P in

i

to Pout
j at rate rij . The minimum CCT (Γ) becomes

Γ = max
(
max

i

∑
j dij

Rem(P in
i )

,max
j

∑
i dij

Rem(Pout
j )

)
(1)

where Rem(.) denotes the remaining bandwidth of an ingress
or egress port estimated by Varys measurements. The former ar-
gument of Equation (1) represents the minimum time to transfer

Pseudocode 1 Coflow Scheduling to Minimize CCT
1: procedure ALLOCBANDWIDTH(Coflows C, Rem(.), Bool cct)
2: for all C ∈ C do
3: τ = ΓC (Calculated using Equation (1))
4: if not cct then
5: τ = DC

6: end if
7: for all dij ∈ C do ▷ MADD
8: rij = dij/τ

9: Update Rem(P in
i ) and Rem(Pout

j )

10: end for
11: end for
12: end procedure

13: procedure MINCCTOFFLINE(Coflows C, C, Rem(.))
14: C′ = SORT_ASC (C ∪ C) using SEBF
15: allocBandwidth(C′, Rem(.), true)
16: Distribute unused bandwidth to C ∈ C′ ▷ Work conserv. (§5.3.4)
17: return C′

18: end procedure

19: procedure MINCCTONLINE(Coflows C, C, Rem(.))
20: if timeSinceLastDelta() < T then ▷ T -interval: Decrease CCT
21: C′ = minCCTOffline(C, C, Rem(.))
22: Update Czero, the set of starved coflows
23: else ▷ δ-interval: Starvation freedom
24: C∗ =

∪
C for all C ∈ Czero

25: Apply MADD on C∗

26: Schedule a call to minCCTOnline(.) after δ interval
27: end if
28: end procedure

∑
ij dij (= Size(C)) amount of data through the input ports, and

the latter is for the output ports.
We propose the Smallest-Effective-Bottleneck-First (SEBF)

heuristic that considers a coflow’s length, width, size, and skew to
schedule it in the smallest-Γ-first order. Figure 5 shows an exam-
ple: although C2 (orange/light) is bigger than C1 in length, width,
and size, SEBF schedules it first to reduce the average CCT to 5
time units from 5.5. While no heuristic is perfect, we found SEBF
to be 1.14×, 1.36×, and 1.66× faster than TCF, SCF, and NCF,
respectively, in trace-driven simulations and even more in syn-
thetic ones. Additionally, SEBF performs ≥5× better than non-
preemptive coflow schedulers (§7.4).

5.3.3 Minimum-Allocation-for-Desired-Duration

Given a schedule of coflows C′ = (C1, C2, . . . , C|C|), the next
step is to determine the rates of individual flows. While single-link
optimal heuristics would allocate the entire bandwidth of the link
to the scheduled flow, we observe that completing a flow faster than
the bottleneck does not impact the CCT in coflow scheduling.

Given Γ, the minimum completion time of a coflow can be at-
tained as long as all flows finish at time Γ. We can ensure that
by setting the rates (rij) of each flow to dij/Γ. We refer to this
algorithm (lines 7–10 in Pseudocode 1) as MADD; this general-
izes WSS [15], which works only for homogeneous links. MADD
allocates the least amount of bandwidth to complete a coflow in
minimum possible time.

We use MADD as a building block to allocate rates for the
given schedule. We apply MADD to each coflow Ci ∈ C′ to en-
sure its fastest completion using minimum bandwidth, and we it-
eratively distribute (line 15) its unused bandwidth to coflows Cj

(i < j ≤ |C|). Once Ci completes, the iterative procedure is re-
peated to complete Ci+1 and to distribute its unused bandwidth.
We stop after C|C| completes.



Pseudocode 2 Coflow Scheduling to Guarantee Completion
1: procedure MEETDEADLINE(Coflows C, C, Rem(.))
2: allocBandwidth(C, Rem(.), false) ▷ Recalc. min rates for C ∈ C
3: if ΓC ≤ DC then ▷ Admission control
4: C′ = Enqueue C to C ▷ Add C in the arrival order
5: allocBandwidth(C′, Rem(.), false)
6: Distribute unused bandwidth to C ∈ C′ ▷ Work conservation
7: return true
8: end if
9: Distribute unused bandwidth to C ∈ C

10: return false
11: end procedure

5.3.4 From Offline to Online

Work-Conserving Allocation Letting resources idle – as the of-
fline iterative MADD might do – can hurt performance in the online
case. We introduce the following backfilling pass in MINCCTOF-
FLINE (line 16 of Pseudocode 1) to utilize the unallocated band-
width throughout the fabric as much as possible. For each ingress
port P in

i , we allocate its remaining bandwidth to the coflows in C′;
for each active coflow C in P in

i , Rem(P in
i ) is allocated to C’s

flows in their current rij ratios, subject to capacity constraints in
corresponding Pout

j .

Avoiding Perpetual Starvation Preemption to maintain an SEBF
schedule while optimizing CCT may lead to starvation. To avoid
perpetual starvation, we introduce the following simple adjustment
to the offline algorithm.

We fix tunable parameters T and δ (T ≫ δ) and alternate
the overall algorithm (MINCCTONLINE) between time intervals of
length T and δ. For a time period of length T , we use MINCCTOF-
FLINE to minimize CCT. At the end of time T , we consider all
coflows in the system which have not received any service during
the last T -interval (Czero). We treat all of them as one collective
coflow, and apply MADD for a time period of length δ (lines 24–
26 in Pseudocode 1). All coflows that were served during the last
T -interval do not receive any service during this δ-interval. At the
end of the δ-interval, we revert back, and repeat.

The adjustments ensure that all coflows receive non-zero service
in every (T + δ) interval and eventually complete. This is similar
to ensuring at least one ticket for each process in lottery scheduling
[38]. Avoiding starvation comes at the cost of an increased average
CCT. At every (T + δ) interval, the total CCT increases by at most
|C|δ, and it depends on the ratio of T and δ (§6.2).

5.4 Inter-Coflow Scheduling to Guarantee Deadline

To guarantee a coflow’s completion within deadline (DC ), com-
pleting its bottlenecks as fast as possible has no benefits. A coflow
can meet its deadline using minimum bandwidth as long as all
flows finish exactly at the deadline. We can achieve that by setting
rij = dij/D

C using MADD.
To provide guarantees in the online scenario, we introduce ad-

mission control (line 3 in Pseudocode 2). We admit a coflow C, if
and only if it can meet its deadline without violating that of any
existing coflow. Specifically, we recalculate the minimum band-
width required to complete all existing coflows within their dead-
lines (line 2 in Pseudocode 2) and check if the minimum CCT of C,
ΓC ≤ DC . Otherwise, C is rejected. An admitted coflow is never
preempted, and a coflow is never rejected if it can safely be ad-
mitted. Hence, there is no risk of starvation. We use the backfilling
procedure from before for work conservation.

VarysClientMethods Caller

register(numFlows, [options]) =⇒ coflowId Driver
put(coflowId, dataId, content, [options]) Sender
get(coflowId, dataId) =⇒ content Receiver
unregister(coflowId) Driver

Table 2: The Coflow API

6 Design Details
We have implemented Varys in about 5, 000 lines of Scala with
extensive use of Akka [1] for messaging and the Kryo serialization
library [5]. This section illustrates how frameworks interact with
Varys (§6.1) and discusses how Varys schedules coflows (§6.2).

6.1 Varys Client Library: The Coflow API
Varys client library provides an API similar to DOT [36] to abstract
away the underlying scheduling and communication mechanisms.
Cluster frameworks (e.g., Spark, Hadoop, or Dryad) must create
VarysClient objects to invoke the API and interact with Varys.
User jobs, however, do not require any modifications.

The coflow API has four primary methods (Table 2). Framework
drivers initialize a coflow through register(), which returns a
unique coflowId from Varys master. numFlows is a hint for the
scheduler on when to consider the coflow READY to be scheduled.
Additional information or hints (e.g., coflow deadline or dependen-
cies) can be given through options – an optional list of key-value
pairs. The matching unregister() signals coflow completion.

A sender initiates the transfer of a content with an identifier
dataId using put(). A content can be a file on disk or an object
in memory. For example, a mapper would put() r pieces of con-
tent for r reducers in a MapReduce job, and the Spark driver would
put() a common piece of data to be broadcasted from memory to
its workers (we omit corresponding put() signatures for brevity).
The dataId of a content is unique within a coflow. Any flow created
to transfer dataId belongs to the coflow with the specified coflowId.

A receiver indicates its interest in a content using its dataId
through get(). Only after receiving a get() request, the sched-
uler can create and consider a flow for scheduling. Receiver tasks
learn the dataIds of interest from respective framework drivers.
Varys scheduler determines when, from where, and at what rate to
retrieve each requested dataId. VarysClient enforces scheduler-
determined rates at the application layer and notifies the master
upon completion of get().

Usage Example Consider shuffle – the predominant communica-
tion pattern in cluster frameworks. Shuffle transfers the output of
each task (mapper) in one computation stage to the tasks (reducers)
in the next. The following example shows how to enable a 3 × 2
shuffle (with 3 mappers and 2 reducers) to take advantage of inter-
coflow scheduling. Assume that all entities interacting with Varys
have their own instances of VarysClient objects named client.

First, the driver registers the shuffle indicating that Varys should
consider it READY after receiving get() for all six flows.

val cId = client.register(6)

When scheduling each task, the driver passes along the cId for
the shuffle. Each mapper m uses cId when calling put() for each
reducer r.

// Read from DFS, run user-written map method,
// and write intermediate data to disk.
// Now, invoke the coflow API.
for (r <- reducers)
client.put(cId, dId-m-r, content-m-r)



Pseudocode 3 Message Handlers in Varys Scheduler
1: procedure ONCOFLOWREGISTER(Coflow C)
2: Mark C as UNREADY
3: Ccur = Ccur ∪ {C} ▷ Ccur is the set of all coflows
4: end procedure

5: procedure ONCOFLOWUNREGISTER(Coflow C)
6: Ccur = Ccur \ {C}
7: Cready = C.filter(READY)
8: Call appropriate scheduler from Section 5
9: end procedure

10: procedure ONFLOWPUT(Flow f , Coflow C)
11: Update Size(C) and relevant data structures
12: end procedure

13: procedure ONFLOWGET(Flow f , Coflow C)
14: Update relevant data structures
15: Mark C as READY after get() is called numFlows times
16: if C is READY then
17: Cready = C.filter(READY)
18: Call appropriate scheduler from Section 5
19: end if
20: end procedure

In the snippet above, dId-m-r is an application-defined unique
identifier for individual pieces of data and content-m-r is the
corresponding path to disk. This is an example of time-decoupled
communication.

Reducers use cId to retrieve the shuffled pieces of content by the
mappers (served by Varys daemons).

// Shuffle using the coflow API.
for (m <- mappers)
content-m-r = client.get(cId, dId-m-r)

// Now, sort, combine, and write to DFS.

Once all reducers are done, the driver terminates the coflow.

client.unregister(cId)

Note that the example abstracts away some details – e.g., the
pipelining between shuffle and sort phases in reducers, which can
be handled by providing a VarysInputStream implementation.

Replacing the communication layer of a data-intensive frame-
work with just the aforementioned changes can enable all its user
jobs to take advantage of inter-coflow scheduling.

6.2 Inter-Coflow Scheduling in Varys

Varys implements the algorithms in Section 5 for inter-coflow
scheduling, which are called upon coflow arrival and comple-
tion events. Rem(.) is calculated from the aggregated measure-
ments collected by Varys daemons. Pseudocode 3 lists the key
event handlers in Varys. Initially, all coflows are marked UN-
READY (ONCOFLOWREGISTER). The size of a coflow is up-
dated as VarysClient instances periodically notify flow-related
events using ONFLOWPUT and ONFLOWGET. A coflow is con-
sidered READY to be scheduled after numFlows get() calls
(ONFLOWGET). Varys master groups the new allocations calcu-
lated by the scheduler by respective VarysClients and sends the
changes asynchronously.

Choice of T and δ Values A smaller δ in Pseudocode 1 ensures a
lower impact on the average CCT. However, too small a δ can cause
the underlying transport protocol (e.g., TCP) to behave erratically
due to significant variation of available bandwidth over short time
intervals. We suggest δ to be O(100) milliseconds and T to be
O(1) seconds.

Shuffle Dur. < 25% 25–49% 50–74% ≥ 75%

% of Jobs 61% 13% 14% 12%

Table 3: Jobs binned by time spent in communication.

Coflow Bin 1 (SN) 2 (LN) 3 (SW) 4 (LW)

Length Short Long Short Long
Width Narrow Narrow Wide Wide
% of Coflows 52% 16% 15% 17%

% of Bytes 0.01% 0.67% 0.22% 99.10%

Table 4: Coflows binned by width and length.

7 Evaluation
We evaluated Varys through a set of experiments on 100-machine
EC2 [2] clusters using a Hive/MapReduce trace collected from a
large production cluster at Facebook. For a larger scale evaluation,
we used a trace-driven simulator that performs a detailed replay of
task logs from the same trace. The highlights are:
• For communication-dominated jobs, Varys improves the aver-

age (95th percentile) CCT and job completion time by up to
3.16× (3.84×) and 2.5× (2.94×), respectively, over per-flow
fairness. Across all jobs, the improvements are 1.85× (1.74×)
and 1.25× (1.15×) (§7.2).

• Simulations show that Varys improves the average (95th per-
centile) CCT by 5.53× (5.8×) over per-flow prioritization
mechanisms (§7.2).

• Varys enables almost 2× more coflows to meet their deadlines
in EC2 experiments (§7.3).

• All coflows eventually complete using Varys without starva-
tion, and simulations show Varys to be 5.65× faster than a non-
preemptive solution (7.7× at the 95th percentile) (§7.4).

7.1 Methodology

Workload Our workload is based on a Hive/MapReduce trace at
Facebook that was collected on a 3000-machine cluster with 150
racks. The original cluster had a 10 : 1 core-to-rack oversubscrip-
tion ratio with a total bisection bandwidth of 300 Gbps. We scale
down jobs accordingly to match the maximum possible 100 Gbps
bisection bandwidth of our deployment. During the derivation, we
preserve the original workload’s communication characteristics.

We consider jobs with non-zero shuffle and divide them into bins
(Table 3) based on the fraction of their durations spent in shuffle.
Table 4 divides the coflows in these jobs into four categories based
on their characteristics. Based on the distributions of coflow lengths
and widths (Figure 4), we consider a coflow to be short if its longest
flow is less than 5 MB and narrow if it involves at most 50 flows.

For deadline-constrained experiments, we set the deadline of a
coflow to be its minimum completion time in an empty network
(Γempty) multiplied by

(
1 + U(0, x)

)
, where U(0, x) is a uni-

formly random number between 0 and x. Unless otherwise speci-
fied, x = 1. The minimum deadline is 200 milliseconds.

Cluster Our experiments use extra large high-memory EC2 in-
stances, which appear to occupy entire physical machines and have
enough memory to perform all experiments without introducing
disk overheads. We observed bandwidths close to 800 Mbps per
machine on clusters of 100 machines. We use a compute engine
similar to Spark [41] that uses the coflow API. We use δ = 200
milliseconds and T = 2 seconds as defaults.

Simulator We use a trace-driven simulator to gain more insights
into Varys’s performance at a larger scale. The simulator performs a
detailed task-level replay of the Facebook trace. It preserves input-
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(b) Improvements in time spent in communication
Figure 6: [EC2] Average and 95th percentile improvements in job and com-
munication completion times over per-flow fairness using Varys.

to-output ratios of tasks, locality constraints, and inter-arrival times
between jobs. It runs at 10s decision intervals for faster completion.

Metrics Our primary metric for comparison is the improvement
in average completion times of coflows and jobs (when its last task
finished) in the workload, where

Factor of Improvement =
Current Duration

Modified Duration
For deadline-sensitive coflows, the primary metric is the percent-

age of coflows that meet their deadlines.
The baseline for our deployment is TCP fair-sharing. We com-

pare the trace-driven simulator against per-flow fairness as well.
Due to the lack of implementations of per-flow prioritization mech-
anisms [8, 25], we compare against them only in simulation.

7.2 Varys’s Performance in Minimizing CCT
Figure 6a shows that inter-coflow scheduling reduced the average
and 95th percentile completion times of communication-dominated
jobs by up to 2.5× and 2.94×, respectively, in EC2 experiments.
Corresponding average and 95th percentile improvements in the
average CCT (CommTime) were up to 3.16× and 3.84× (Fig-
ure 6b). Note that varying improvements in the average CCT in dif-
ferent bins are not correlated, because it depends more on coflow
characteristics than that of jobs. However, as expected, jobs be-
come increasingly faster as the communication represent a higher
fraction of their completion times. Across all bins, the average end-
to-end completion times improved by 1.25× and the average CCT
improved by 1.85×; corresponding 95th percentile improvements
were 1.15× and 1.74×.

Figure 7 shows that Varys improves CCT for diverse coflow char-
acteristics. Because bottlenecks are not directly correlated with a
coflow’s length or width, pairwise comparisons across bins – spe-
cially those involving bin-2 and bin-3 – are harder. We do observe
more improvements for coflows in bin-1 than bin-4 in terms of av-
erage CCT, even though their 95th percentile improvements con-
tradict. This is due to coordination overheads in Varys – recall that
Varys does not handle small coflows to avoid fixed overheads.

Figure 8a presents comparative CDFs of CCTs for all coflows.
Per-flow fairness performs better – 1.08× on average and 1.25× at
the 95th percentile – only for some of the tiny, sub-second (<500
milliseconds) coflows, which still use TCP fair sharing. As coflows
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Figure 7: [EC2] Improvements in the average and 95th percentile CCTs
using coflows w.r.t. the default per-flow fairness mechanism.
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Figure 8: CCT distributions for Varys, per-flow fairness, and per-flow pri-
oritization schemes (a) in EC2 deployment and (b) in simulation. Note that
the X-axes are in logarithmic scale.
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Figure 9: [Simulation] Improvements in the average and 95th percentile
CCTs using inter-coflow scheduling.

become larger, the advantages of coflow scheduling becomes more
prominent. We elaborate on Varys’s overheads next; later, we show
simulation results that shed more light on the performance of small
coflows in the absence of coordination overheads.

Overheads Control plane messages to and from the Varys master
are the primary sources of overheads. Multiple messages from the
same endpoint are batched whenever possible. At peak load, we ob-
served a throughput of 4000+ messages/second at the master. The
scheduling algorithm took 17 milliseconds on average to calculate
new schedules on coflow arrival or departure. The average time to
distribute new schedules across the cluster was 30 milliseconds.

An additional source of overhead is the synchronization time be-
fore a coflow becomes READY for scheduling. Recall that a coflow
waits for numFlows get() calls; hence, a single belated get() can
block the entire coflow. In our experiments, the average duration to
receive all get() calls was 44 milliseconds with 151 milliseconds
being the 95th percentile.

A large fraction of these overheads could be avoided in the pres-
ence of in-network isolation of control plane messages [21].

Trace-Driven Simulation We compared the performance of inter-
coflow scheduling against per-flow fairness and prioritization
schemes in simulations. Without coordination overheads, the im-
provements are noticeably larger (Figure 9) – the average and 95th
percentile CCTs improved by 3.66× and 2.77× over per-flow fair-
ness and by 5.53× and 5.8× over per-flow prioritization.
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Figure 10: [EC2] Percentage of coflows that meet deadline using Varys in
comparison to per-flow fairness. Increased deadlines improve performance.

Note that comparative improvements for bin-1 w.r.t. other bins
are significantly larger than that in experiments because of the ab-
sence of scheduler coordination overheads. We observe larger ab-
solute values of improvements in Figure 9 in comparison to the
ones in Figure 7. Primary factors for this phenomenon include in-
stant scheduling, zero-latency setup/cleanup/update of coflows, and
perfectly timed flow arrivals (i.e., coflows are READY to be sched-
uled upon arrival) in the simulation. In the absence of these over-
heads, we see in Figure 8b that Varys can indeed outperform per-
flow schemes even for sub-second coflows.

What About Per-Flow Prioritization? Figure 9 highlights that
per-flow prioritization mechanisms are even worse (by 1.52×)
than per-flow fairness provided by TCP when optimizing CCTs.
The primary reason is indiscriminate interleaving across coflows –
while all flows make some progress using flow-level fairness, per-
flow prioritization favors only the small flows irrespective of the
progress of their parent coflows. However, as expected, flow-level
prioritization is still 1.08× faster than per-flow fairness in terms of
the average FCT. Figure 8b presents the distribution of CCTs using
per-flow prioritization in comparison to other approaches.

How Far are We From the Optimal? While finding the opti-
mal schedule is infeasible, we tried to find an optimistic estima-
tion of possible improvements by comparing against an offline 2-
approximation combinatorial ordering heuristic for coflows with-
out coupled resources [30]. We found that the average CCT did not
change using the combinatorial approach. For bin-1 to bin-4, the
changes were 1.14×, 0.96×, 1.46×, and 0.92×, respectively.

7.3 Varys’s Performance for Deadline-Sensitive Coflows

Inter-coflow scheduling allowed almost 2× more coflows to com-
plete within corresponding deadlines in EC2 experiments (Fig-
ure 10) – 57% coflows met their deadlines using Varys as opposed
to 30% using the default mechanism. Coflows across different bins
experienced similar results, which is expected because Varys does
not differentiate between coflows when optimizing for deadlines.

Recall that because the original trace did not contain coflow-
specific deadlines, we introduced them based on the minimum CCT
of coflows (§7.1). Hence, we did not expect 100% admission rate.
However, a quarter of the admitted coflows failed to meet their
deadlines. This goes back to the lack of network support in es-
timating utilizations and enforcing Varys-determined allocations:
Varys admitted more coflows than it should have had, which them-
selves missed their deadlines and caused some others to miss as
well. Trace-driven simulations later shed more light on this.

To understand how far off the failed coflows were, we analyzed if
they could complete with slightly longer deadlines. After doubling
the deadlines, we found that almost 94% of the admitted coflows
succeeded using Varys.

Trace-Driven Simulation In trace-driven simulations, for the de-
fault case (x=1), Varys admitted 75% of the coflows and all of
them met their deadlines (Figure 11). Note that the admission rate
is lower than that in our experiments. Prioritization schemes fared
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Figure 11: [Simulation] More coflows meet deadline using inter-coflow
scheduling than using per-flow fairness and prioritization schemes.

# Coflows %SN %LN %SW %LW

Mix-N 800 48% 40% 2% 10%

Mix-W 369 22% 15% 24% 39%

Mix-S 526 50% 17% 10% 23%

Mix-L 272 39% 27% 3% 31%

Table 5: Four extreme coflow mixes from the Facebook trace.

better than per-flow fairness unlike when the objective was min-
imizing CCT: 59% coflows completed within their deadlines in
comparison to 52% using fair sharing.

As we changed the deadlines of all coflows by varying x from
0.1 to 10, comparative performance of all the approaches remained
almost the same. Performance across bins were consistent as well.

What About Reservation Schemes? Because the impact of ad-
mission control is similar to reserving resources, we compared our
performance with that of the Virtual Cluster (VC) abstraction [11],
where all machines can communicate at the same maximum rate
through a virtual non-blocking switch. The VC abstraction admit-
ted and completed slightly fewer coflows (73%) than Varys (75%),
because reservation using VCs is more conservative.

7.4 Impact of Preemption

While minimizing CCT, preemption-based mechanisms can starve
certain coflows when the system is overloaded. Varys takes precau-
tions (§5.3.4) to avoid such scenarios. As expected, we did not ob-
serve any perpetual starvation during experiments or simulations.

What About a Non-Preemptive Scheduler? Processing coflows
in their arrival order (i.e., FIFO) avoids starvation [15]. However,
simulations confirmed that head-of-line blocking significantly hurts
performance – specially, the short coflows in bin-1 and bin-3.

We found that processing coflows in the FIFO order can result
in 24.64×, 5.44×, 34.2×, and 5.03× slower completion times for
bin-1 to bin-4. The average (95th percentile) CCT became 5.65×
(7.7×) slower than that using Varys.

7.5 Impact on Network Utilization

To understand Varys’s impact on network utilization, we compared
the ratios of makespans in the original workload as well as the ones
in Table 5. Given a fixed workload, a change in makespan means a
change in aggregate network utilization.

We did not observe significant changes in makespan in our EC2
experiments – the exact factors of improvements were 1.02×,
1.06×, 1.01×, 0.97×, and 1.03× for the five workloads. This is
expected because while Varys is not work-conserving at every point
in time, its overall utilization is the same as non-coflow approaches.

Makespans for both per-flow fairness and coflow-enabled sched-
ules were the same in the trace-driven simulation.

7.6 Impact of Coflow Mix

To explore the impact of changes in the coflow mix, we selected
four extreme hours (Table 5) from the trace and performed hour-
long experiments on EC2. These hours were chosen based on the
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Figure 12: [EC2] Improvements in the average CCT using coflows for dif-
ferent coflow mixes from Table 5.
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Figure 13: [Simulation] Improvements in the average CCT for varying
numbers of concurrent coflows.
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Figure 14: [Simulation] Changes in the percentage of coflows that meet
deadlines for varying numbers of concurrent coflows.

high percentage of certain types of coflows (e.g., narrow ones in
Mix-N) during those periods.

Figure 12 shows that the average CCT improves irrespective of
the mix, albeit in varying degrees. Observations made earlier (§7.2)
still hold for each mix. However, identifying the exact reason(s) for
different levels of improvements is difficult. This is due to the on-
line nature of the experiments – the overall degree of improvement
depends on the instantaneous interplay of concurrent coflows. We
also did not observe any clear correlation between the number of
coflows or workload size and corresponding improvements.

7.7 Impact of Cluster/Network Load

So far we have evaluated Varys’s improvements in online set-
tings, where the number of concurrent coflows varied over time.
To better understand the impact of network load, we used the same
coflow mix as the original trace but varied the number of concurrent
coflows in an offline setting. We see in Figure 13 that Varys’s im-
provements increase with increased concurrency: per-flow mecha-
nisms fall increasingly further behind as they ignore the structures
of more coflows. Also, flow-level fairness consistently outperforms
per-flow prioritization mechanisms in terms of the average CCT.

Deadline-Sensitive Coflows We performed a similar analysis for
deadline-sensitive coflows. Because in this case Varys’s perfor-
mance depends on the arrival order, we randomized the coflow
order across runs and present their average in Figure 14. We ob-
serve that as the number of coexisting coflows increases, a large
number of coflows (37% for 100 concurrent coflows) meet their
deadlines using Varys; per-flow mechanisms completely stop work-
ing even before. Also, per-flow prioritization outperforms (however
marginally) flow-level fairness for coflows with deadlines.

8 Discussion
Scheduling With Unknown Flow Sizes Knowing or estimating
exact flow sizes is difficult in frameworks that push data to the next
stage as soon as possible [26], and without known flow sizes, pre-
emption becomes impractical. FIFO scheduling can solve this prob-
lem, but it suffers from head-of-line blocking (§7.4). We believe
that coflow-level fairness can be a nice compromise between these
two extremes. However, the definition and associated properties of
fairness at the coflow level is an open problem.

Decentralized SEBF+MADD Varys’s centralized design makes
it less useful for small coflows (§3); however, small coflows
contribute less than 1% of the traffic in data-intensive clusters
(§4). Furthermore, in-network isolation of control plane messages
[21] or faster signaling channels like RDMA [20] can reduce
Varys’s application-layer signaling overheads (§7.2) to support
even smaller coflows. We see a decentralized approximation of our
algorithms as the most viable way to make Varys useful for low-
latency coflows. This requires new algorithms and possible changes
to network devices, unlike our application-layer design.

Handling Coflow Dependencies While most jobs require only a
single coflow, dataflow pipelines (e.g., Dryad, Spark) can create
multiple coflows with dependencies between them [16]. A simple
approach to support coflow dependencies would be to order first by
ancestry and then breaking ties using SEBF. Some variation of the
Critical-Path Method [28] might perform even better. We leave it as
a topic of future work. Note that dependencies can be passed along
to the scheduler through options in the register() method.

Multi-Wave Coflows Large jobs often schedule mappers in mul-
tiple waves [10]. A job can create separate coflows for each wave.
Alternatively, if the job uses its wave-width (i.e., the number of
parallel mappers) as numFlows in register(), Varys can handle
each wave separately. Applications can convey information about
wave-induced coflows to the scheduler as dependencies.

In-Network Bottlenecks Varys performs well even when the net-
work is not a non-blocking switch (§7). If likely bottleneck lo-
cations are known, e.g., rack-to-core links are typically oversub-
scribed [17], Varys can be extended to allocate rack-to-core band-
width instead of NIC bandwidth. When bottlenecks are unknown,
e.g., due to in-network failures, routing, or load imbalance, Varys
can react based on bandwidth estimations collected by its daemons.
Nonetheless, designing and deploying coflow-aware routing proto-
cols and load balancing techniques remain an open challenge.

9 Related Work
Coflow Schedulers Varys improves over Orchestra [15] in four
major ways. First, Orchestra primarily optimizes individual coflows
and uses FIFO among them; whereas, Varys uses an efficient coflow
scheduler to significantly outperform FIFO. Second, Varys supports
deadlines and ensures guaranteed coflow completion. Third, Varys
uses a rate-based approach instead of manipulating the number of
TCP flows, which breaks if all coflows do not share the same end-
points. Finally, Varys supports coflows from multiple frameworks
like Mesos [24] handles non-network resources.

Baraat [19] is a FIFO-based decentralized coflow scheduler fo-
cusing on small coflows. It uses fair sharing to avoid head-of-line
blocking and does not support deadlines. Furthermore, we formu-
late the coflow scheduling problem and analyze its characteristics.

Datacenter Traffic Management Hedera [7] manages flows us-
ing a centralized scheduler to increase network throughput, and
MicroTE [12] adapts to traffic variations by leveraging their short-
term predictability. However, both work with flows and are unsuit-



able for optimizing CCTs. Sinbad [17] uses endpoint flexible trans-
fers for load balancing. Once it makes network-aware placement
decisions, Varys can optimize cross-rack write coflows.

High Capacity Networks Full bisection bandwidth topologies
[22,32] do not imply contention freedom. In the presence of skewed
data and hotspot distributions [17], managing edge bandwidth is
still necessary. Inter-coflow scheduling improves performance and
predictability even in these high capacity networks.

Traffic Reduction Techniques Data locality [18], both disk [9,40]
and memory [10], reduces network usage only during reads. The
amount of network usage due to intermediate data communication
can be reduced by pushing filters toward the sources [6, 23]. Our
approach is complementary; i.e., it can be applied to whatever data
traverses the network after applying those techniques.

Network Sharing Among Tenants Fair sharing of network re-
sources between multiple tenants has received considerable atten-
tion [11, 33, 35, 39]. Our work is complementary; we focus on op-
timizing performance of concurrent coflows within a single admin-
istrative domain, instead of achieving fairness among competing
entities. Moreover, we focus on performance and predictability as
opposed to the more debated notion of fairness.

Concurrent Open Shop Scheduling Inter-coflow scheduling has
its roots in the concurrent open shop scheduling problem [34],
which is strongly NP-hard for even two machines. Even in the of-
fline scenario, the best known result is a 2-approximation algorithm
[30], and it is inapproximable within a factor strictly less than 6/5
if P ̸=NP [30]. Our setting is different as follows. First, machines
are not independent; i.e., links are coupled because each flow in-
volves a source and a destination. Second, jobs are not known a
priori; i.e., coflows arrive in an online fashion.

10 Concluding Remarks
The coflow abstraction [16] effectively enables application-aware
network scheduling. We have implemented coflows in a system
called Varys and introduced the concurrent open shop scheduling
with coupled resources problem. To minimize coflow completion
times (CCT), we proposed the SEBF heuristic to schedule coflows
and the MADD algorithm to allocate bandwidth to their flows. To-
gether, they decrease the average CCT without starving any coflow
and maintain high network utilization. Through EC2 deployments
and trace-driven simulations, we showed that Varys outperforms
per-flow mechanisms by up to 3.16× and non-preemptive coflow
schedulers by more than 5×. Furthermore, by applying MADD in
conjunction with admission control, Varys allowed up to 2× more
coflows to meet their deadlines in comparison to per-flow schemes.

In conclusion, this paper is only a first step in understanding the
intricacies of inter-coflow scheduling and opens up a variety of ex-
citing research problems, which include scheduling without know-
ing flow sizes, exploring the notion of coflow fairness, decentraliz-
ing the proposed algorithms, and handling coflow dependencies.
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[20] A. Dragojević et al. FaRM: Fast remote memory. In NSDI. 2014.
[21] A. D. Ferguson et al. Participatory networking: An API for

application control of SDNs. In SIGCOMM. 2013.
[22] A. Greenberg et al. VL2: A scalable and flexible data center network.

In SIGCOMM. 2009.
[23] Z. Guo et al. Spotting code optimizations in data-parallel pipelines

through PeriSCOPE. In OSDI. 2012.
[24] B. Hindman et al. Mesos: A Platform for Fine-Grained Resource

Sharing in the Data Center. In NSDI. 2011.
[25] C.-Y. Hong et al. Finishing flows quickly with preemptive

scheduling. In SIGCOMM. 2012.
[26] M. Isard et al. Dryad: Distributed data-parallel programs from

sequential building blocks. In EuroSys, pages 59–72. 2007.
[27] N. Kang et al. Optimizing the “One Big Switch” abstraction in

Software-Defined Networks. In CoNEXT. 2013.
[28] J. E. Kelley. Critical-path planning and scheduling: Mathematical

basis. Operations Research, 9(3):296–320, 1961.
[29] G. Malewicz et al. Pregel: A system for large-scale graph processing.

In SIGMOD. 2010.
[30] M. Mastrolilli et al. Minimizing the sum of weighted completion

times in a concurrent open shop. Operations Research Letters,
38(5):390–395, 2010.

[31] N. McKeown et al. Achieving 100% throughput in an input-queued
switch. IEEE Transactions on Communications, 47(8), 1999.

[32] R. N. Mysore et al. PortLand: A scalable fault-tolerant layer 2 data
center network fabric. In SIGCOMM, pages 39–50. 2009.

[33] L. Popa et al. FairCloud: Sharing the network in cloud computing. In
SIGCOMM. 2012.

[34] T. A. Roemer. A note on the complexity of the concurrent open shop
problem. Journal of Scheduling, 9(4):389–396, 2006.

[35] A. Shieh et al. Sharing the data center network. In NSDI. 2011.
[36] N. Tolia et al. An architecture for internet data transfer. In NSDI’06.
[37] L. G. Valiant. A bridging model for parallel computation.

Communications of the ACM, 33(8):103–111, 1990.
[38] C. A. Waldspurger et al. Lottery scheduling: Flexible

proportional-share resource management. In OSDI. 1994.

http://akka.io
http://aws.amazon.com/ec2
http://hadoop.apache.org
http://hive.apache.org
https://code.google.com/p/kryo


[39] D. Xie et al. The only constant is change: Incorporating time-varying
network reservations in data centers. In SIGCOMM. 2012.

[40] M. Zaharia et al. Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling. In EuroSys. 2010.

[41] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In NSDI. 2012.

APPENDIX
A Problem Formulation and Complexity
Each coflow C(D) is a collection of flows over the datacenter back-
plane with P ingress and P egress ports, where the P × P matrix
D = [dij ]P×P represents the structure of C. For each non-zero
element dij ∈ D, a flow fij transfers dij amount of data from the
ith ingress port (P in

i ) to the jth egress port (Pout
j ) across the back-

plane at rate rij , which is determined by the scheduling algorithm.
If Ck represents the time for all flows of the kth coflow to finish

and rkij(t) the bandwidth allocated to fij of the kth coflow at time
t, the objective of minimizing CCT (O(.)) in the offline case can be
represented as follows.

Minimize
K∑

k=1

Ck (2)

Subject to
∑
j′,k

rkij′(t) ≤ 1 ∀t,∀i; (3)

∑
i′,k

rki′j(t) ≤ 1 ∀t,∀j; (4)

Ck∑
t=1

rkij(t) ≥ dkij ∀i, j, k. (5)

The first two inequalities are the capacity constraints on ingress and
egress ports. The third inequality ensures that all flows of the kth
coflow finish by time Ck.

By introducing a binary variable Uk to denote whether a coflow
finished within its deadline Dk, we can express the objective of
maximizing the number of coflows that meet their deadlines (Z(.))
in the offline case as follows.

Maximize
K∑

k=1

Uk (6)

Subject to inequalities (3), (4), and (5);

Where Uk =

{
1 Ck ≤ Dk

0 Ck > Dk

Optimizing either objective (O or Z) is NP-hard.
Theorem A.1 Even under the assumptions of Section 5.1, optimiz-
ing O or Z in the offline case is NP-hard for all P ≥ 2.
Proof Sketch We reduce the NP-hard concurrent open shop
scheduling problem [34] to the coflow scheduling problem. Con-
sider a network fabric with only 2 ingress and egress ports (P = 2)
and all links have the same capacity (without loss of generality, we
can let this capacity be 1). Since there are only 2 ports, all coflows
are of the form C(D), where D = (dij)

2
i,j=1 is a 2×2 data matrix.

Suppose that n coflows arrive at time 0, and let Dk = (dkij)
2
i,j=1 be

the matrix of the kth coflow. Moreover, assume for all k, dkij = 0
if i = j. In other words, every coflow only consists of 2 flows, one
sending data from ingress port P in

1 to egress port Pout
2 , and the

other sending from ingress port P in
2 to egress port Pout

1 .
Consider now an equivalent concurrent open shop scheduling

problem with 2 identical machines (hence the same capacity). Sup-
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Figure 15: Allocation of ingress port capacities (vertical axis) for the
coflows in (a) on a 2 × 2 datacenter fabric for (b) a work-conserving and
(c) a CCT-optimized schedule. While the former is work-conserving and
achieves higher utilization, the latter has a lower average CCT.
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Figure 16: Flow-interleaved allocation of egress port capacities (vertical
axis) for the coflows in (a) for CCT-optimality (b).

pose n jobs arrive at time 0, and the kth job has dk12 amount of work
for machine 1 and dk21 for machine 2. Since this is NP-hard [34], the
coflow scheduling problem described above is NP-hard as well. ■
Remark A.2 Given the close relation between concurrent open
shop scheduling and coflow scheduling, it is natural to expect that
techniques to express concurrent open shop scheduling as a mixed-
integer program and using standard LP relaxation techniques to de-
rive approximation algorithms [30,34] would readily extend to our
case. However, they do not, because the coupled constraints (3) and
(4) make permutation schedules sub-optimal (Theorem C.1). We
leave the investigation of these topics as future work.

B Tradeoffs in Optimizing CCT
With Work Conservation Consider Figure 15a. Coflows C1 and
C2 arrive at time 0 with one and two flows, respectively. Each flow
transfers unit data. C3 arrives one time unit later and uses a single
flow to send 0.5 data unit. Figure 15b shows the work-conserving
solution, which finishes in 2 time units for an average CCT of 1.67
time units. The optimal solution (Figure 15c), however, takes 2.5
time units for the same amount of data (i.e., it lowers utilization);
still, it has a 1.11× lower average CCT (1.5 time units).

With Avoiding Starvation The tradeoff between minimum com-
pletion time and starvation is well-known for flows (tasks) on in-
dividual links (machines) – longer flows starve if a continuous
stream of short flows keep arriving. The same tradeoff holds for
coflows, because the datacenter fabric and coflows generalize links
and flows, respectively.

C Ordering Properties of Coflow Schedules
Theorem C.1 Permutation schedule is not optimal for minimizing
the average CCT.
Proof Sketch Both permutation schedules – C1 before C2 and C2

before C1 – would be suboptimal for the example in Figure 16a.■
Remark C.2 In Varys, SEBF would schedule C1 before C2 (arbi-
trarily breaking the tie), and iterative MADD will allocate the min-
imum bandwidth to quickly finish C1 and then give the remaining
bandwidth to C2 (Figure 16c). The average CCT will be the same
as the optimal for this example.
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