
Varys

Efficient Coflow Scheduling	

Mosharaf Chowdhury, 	

Yuan Zhong, Ion Stoica	

 UC	
 Berkeley	

Performance
Facebook analytics jobs spend 33% of their runtime in communication1	

As in-memory systems proliferate,	

the network is likely to become the primary bottleneck	

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011	

Communication is Crucial	

Optimizing
Communication

Performance:
Networking

Approach
	

“Let systems figure it out”	

Flow

A sequence of packets 	

between two endpoints	

Independent unit of allocation,
sharing, load balancing, and/or	

prioritization	

Spark 1.0.1 6	

# Comm. 	

Params*	

10	

20	

Hadoop 1.0.4

YARN2.3.0

Optimizing
Communication

Performance:
Systems

Approach
	

“Let users figure it out”	

*Lower bound. Does not include many parameters that can 	

 indirectly impact communication; e.g., number of reducers etc. 	

 Also excludes control-plane communication/RPC parameters.	

Optimizing
Communication

Performance:
Networking

Approach
	

“Let systems figure it out”	

Optimizing
Communication

Performance:
Systems

Approach
	

“Let users figure it out”	

Optimizing
Communication

Performance:
Networking

Approach
	

“Let systems figure it out”	

Optimizing
Communication

Performance:
Systems

Approach
	

“Let users figure it out”	

Optimizing
Communication

Performance:
Networking

Approach
	

“Let systems figure it out”	

Optimizing
Communication

Performance:
Systems

Approach
	

“Let users figure it out”	

A collection of parallel flows	

Distributed endpoints	

Each flow is independent	

Completion time depends
on the last flow to complete	

Coflow1	

1. Coflow: A Networking Abstraction for Cluster Applications, HotNets’2012	

A collection of parallel flows	

Distributed endpoints	

Each flow is independent	

Completion time depends
on the last flow to complete	

Coflow1	

1. Coflow: A Networking Abstraction for Cluster Applications, HotNets’2012	

1	

2	

N	

1	

2	

N	

.	

.	

.	

.	

.	

.	

How to
schedule
coflows …
	

	

	

	

 … for faster
#1 completion
 of coflows?

 … to meet
#2 more
 deadlines?

	

	

	

DC Fabric	

Varys Enables coflows in
data-intensive clusters	

1.  Simpler Frameworks	

 Zero user-side configuration using a
simple coflow API	

2.  Better performance	

 Faster and more predictable transfers
through coflow scheduling	

Benefits of	

time	

2	

 4	

 6	

 time	

2	

 4	

 6	

 time	

2	

 4	

 6	

Coflow1 comp. time = 6	

Coflow2 comp. time = 6	

Coflow1 comp. time = 6	

Coflow2 comp. time = 6	

Fair Sharing	

 Flow-level Prioritization1,2	

 The Optimal	

Coflow1 comp. time = 3	

Coflow2 comp. time = 6	

L1	

L2	

L1	

L2	

L1	

L2	

1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.	

2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.	

 Link 1	

 Link 2	

3 Units	

Coflow 1	

6 Units	

Coflow 2	

3-ε Units	

Inter-Coflow Scheduling	

time	

2	

 4	

 6	

Coflow1 comp. time = 6	

Coflow2 comp. time = 6	

Fair Sharing	

L1	

L2	

time	

2	

 4	

 6	

Coflow1 comp. time = 6	

Coflow2 comp. time = 6	

Flow-level Prioritization1	

L1	

L2	

time	

2	

 4	

 6	

The Optimal	

Coflow1 comp. time = 3	

Coflow2 comp. time = 6	

L1	

L2	

Inter-Coflow Scheduling	

Concurrent Open Shop Scheduling1	

•  Tasks on independent machines	

•  Examples include job scheduling and

caching blocks	

•  Use a ordering heuristic	

 Link 1	

 Link 2	

3 Units	

Coflow 1	

6 Units	

Coflow 2	

3-ε Units	

1. A note on the complexity of the concurrent open shop problem, Journal of Scheduling, 9(4):389–396, 2006	

Inter-Coflow Scheduling	

3	

2	

1	

3	

2	

1	

Ingress Ports	

(Machine Uplinks)	

Egress Ports	

(Machine Downlinks)	

DC Fabric	

Concurrent Open Shop Scheduling	

•  Flows on dependent links	

•  Consider ordering and matching

constraints	

^	

with coupled resources	

 Link 1	

 Link 2	

3 Units	

Coflow 1	

6 Units	

Coflow 2	

3-ε Units	

3	

6	

3-ε	

is NP-Hard

Characterized COSS-CR	

Proved that list scheduling might not
result in optimal solution	

Varys Employs a two-step
algorithm to minimize
coflow completion times	

1.  Ordering heuristic	

 Keeps an ordered list of coflows to be
scheduled, preempting if needed	

2.  Allocation algorithm	

 Allocates minimum required resources to
each coflow to finish in minimum time	

Ordering Heuristic	

1	

2	

3	

1	

2	

3	

4	

2	

3	

4	

4	

9	

P3	

P2	

Time	

P1	

C2 ends	

C1 ends	

5	

 9	

P3	

P2	

Time	

P1	

C1 ends	

C2 ends	

4	

C1	

 C2	

Length	

 3	

 4	

Width	

 2	

 3	

Size	

 5	

 12	

Bottleneck	

 5	

 4	

Shortest-First	

Narrowest-First	

Smallest-First	

Smallest-	

Effective-	

Bottleneck-	

First	

: SEBF

Allocation Algorithm	

A coflow
cannot finish
before its
very last flow	

Finishing flows
faster than the
bottleneck cannot
decrease a coflow’s
completion time	

	

	

	

	

Ensure minimum
allocation to each

flow for it to 	

finish at the 	

desired duration;	

	

for example, 	

at bottleneck’s completion, or	

at the deadline.	

	

MADD

Varys Enables frameworks
to take advantage of
coflow scheduling	

1.  Exposes the coflow API	

2.  Enforces through a centralized scheduler	

1.  Does it improve performance?	

2.  Can it beat non-preemptive solutions?	

 YES

Evaluation
A 3000-node trace-driven
simulation matched against a
100-node EC2 deployment	

Faster Jobs	

95th 	

Avg.	

 1.85X 1.25X

1.74X 1.15X

Comm. Improv.	

 Job Improv.	

Faster Jobs	

95th 	

Avg.	

 1.85X 1.25X

1.74X 1.15X

Comm. Improv.	

 Job Improv.	

2.50X 3.16X

2.94X 3.84X

Comm. Heavy1	

1. 26% jobs spend at least 50% of their duration in communication stages.	

Better than Non-Preemptive Solutions	

95th 	

Avg.	

 5.65X

7.70X

w.r.t. FIFO1	

What	

About	

Perpetual	

Starvation	

NO
?	

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011	

Four

Challenges

#3
Decentralized

Varys
	

	

	

Master failure	

Low-latency analytics	

#1
Coflow

Dependencies
	

	

	

Multi-stage jobs	

Multi-wave stages	

	

	

#2
Unknown Flow

Information
	

	

	

Pipelining between stages	

Task failures and restarts	

	

in the Context of Multipoint-to-Multipoint Coflows

#4 Theory Behind
“Concurrent Open Shop Scheduling

with Coupled Resources”

• Consolidates network optimization of data-intensive frameworks	

•  Improves job performance by addressing the COSS-CR problem	

•  Increases predictability through informed admission control	

Varys Greedily schedules
coflows without worrying
about flow-level metrics	

	

http://varys.net/	

Mosharaf Chowdhury - @mosharaf	

