
INFO256 Project Report
Implementation and Evaluation of Xtract in WordSeer

Mosharaf Chowdhury
(21020039)

mosharaf@cs.berkeley.edu

December 15, 2013

1 Introduction

Natural languages are full of word collocations that frequently co-occur and correspond to arbitrary word
usages. They appear in both technical and non-technical textual corpora and often have specific signifi-

cance in individual contexts. Accurately retrieving and identifying collocations from a given corpus in an
unsupervised manner is imperative to understanding and automatically generating text related to that corpus.

Identifying collocations, however, is not an easy problem. They vary widely in length, in the words
that are involved, and in the relations between the involved words. Moreover, words in a collocation can be

adjacent or they can be separated by unrelated words. One straightforward way to retrieve collocations is
to find the most frequent N -grams in a corpora. This approach is attractive because many collocations are

just adjacent words that frequently appear together. WordSeer [1], a text analysis environment for literary
corpora from UC Berkeley, uses a variation of the N -gram approach to identify collocations. Consequently,

it faces the same shortcomings as any N -gram-based approach would, namely, it cannot identify collocations
with non-adjacent words, it has very high recall (and low precision), and it does not provide any functional

information about the identified collocations. Xtract [2] is a statistical tool (i.e., a collection of algorithms)

developed for identifying collocations with high precision and for statistically justifying their significance.
It extends the N -gram approach with some statistical filters for better effectiveness.

In this project, we have successfully implemented the Xtract toolkit in WordSeer and compared its per-
formance with the default N -gram-based collocation retrieval mechanism. Furthermore, we have evaluated

and compared the performance of both approaches on two large text corpora: Shakespeare and Abstracts.
The former is a literary collection of writings by William Shakespeare, and the latter is a technical corpora

with abstracts collected from top HCI conferences. The key findings are the following:

1. Xtract is more precise than the N -gram approach.

2. In a show-of-hands poll over a group of 30 experts, Xtract outputs were preferred three out of four

times. However, in all cases, a sizable fraction of the participants were undecided.

1



3. Xtract is sensitive to its tuning parameters. Identifying the best set of parameters remains an open
challenge.

The rest of this report is organized as follows. Section 2 provides a background on collocations as well

as the basic N -gram and Xtract algorithms that we compare in this report. We discuss the details of our
implementation along with the modifications we have made to the algorithms in Section 3. In Section 4, we

evaluate the comparative performance and discuss the outcomes of micro-benchmarks. Finally, we conclude
in Section 5.

2 Background

In this section, we discuss the characteristics and types of collocations, provide an overview of both the

N -gram and Xtract algorithms, and characterize these algorithms by the types of collocations they can
support.

2.1 Collocations

Collocations are frequent word combinations with the following four properties [2]. They are (i) arbitrary,

(ii) domain-dependent, (iii) recurrent, and (iv) cohesive lexical clusters. In addition to the characteristics,
Smadja identified three different types of collocations.

1. Predictive relations that are pairs of word used together in similar syntactic relations. The two words

may not be adjacent.

2. Rigid noun phrases that are uninterrupted sequences of words that cannot be broken into smaller frag-
ments.

3. Phrasal templates that consist of idiomatic phrases containing zero or more empty slots.

In the rest of this section, we will discuss why the N -gram approach is best suited only for rigid noun

phrases (§2.2), whereas Xtract can handle all three types of collocations (§2.3).

2.2 The Most Frequent N-Gram Algorithm

The basic N -gram-based collocation identification algorithm is straightforward frequency counting. It has
only two steps.

• Step 1. Find all N -grams for any N ≥ 1 consecutive words for the given query.

• Step 2. Sort the N -grams in the descending order of their frequency.

As a result, the N -gram approach identifies a large number of collocations and the frequency distribution
tends to have a long tail. The WordSeer implementation performs two additional optimizations.

1. It subsumes the smaller N -grams into larger ones.

2. It reports back only the K topmost N -grams to users. Because of the long tail of the frequency distribu-

tion, a small K is often enough. Currently, it uses K = 100.

2



Workflow 

Collocation 
Retrieval 

Algorithm!

Ordered List of 
Collocations for 

‘Query’ !

Figure 1: Basic workflow of our implementation. Users provide the query, select the corpora they are
interested in, and pick the algorithm to use from the GUI. We use the selected algorithm to find the most
important collocations and return the results ordered by frequency as a web page.

2.3 The Xtract Lexicographical Tool

Smadja’s Xtract tool starts with the basic N -gram approach as well. However, to support different colloca-

tion types, especially the ones with non-adjacent words, it performs a sequence of statistics filtering in three
stages. We provide an overview of the three stages of Xtract in the following and refer the reader to the

original article [2] for more details.

• Stage 1: Extracting significant bigrams. In this stage, Xtract identifies adjacent or non-adjacent pairs

of bigrams with one word being the given query. Xtract considers a bigram to be significant if it passes
three statistical tests (thresholds) in the following order.

1. k0: Keep only the most frequent bigrams. Specifically, words that appear around query at least

standard deviation more frequently than the average are kept.

2. U0: Prefer bigrams that have syntactic preference. The bigram-forming word should be more likely
to appear at specific distances (within ±5) from query, i.e., it should have specific syntactic rela-

tionship with query.

3. k1: Choose most likely locations for a bigram. If a bigram-forming word can appear at multiple
distances, pick the one with the highest likelihood.

• Stage 2: From bigrams to N -grams. In this stage, Xtract produces the largest N -word collocations

(including wildcards) from bigrams that subsumes all M -word collocations (M < N ). A word is kept
at a certain location of the N -gram (i.e., not converted to wildcard) if its probability of appearing in that

location is more than the threshold T .

• Stage 3: Adding syntax to collocations. In the final stage, Xtract attaches POS tags to the collocations
for further subsuming.

3 Implementation Details

We have implemented the N -gram approach as well as Xtract in WordSeer using python, mysql, and
apache web server. The N -gram implementation is less than 200 SLOC in python, whereas Xtract
is implemented in 400 SLOC of python (located at python/wordseer/cluster/xtract.py).

3



Characteristics Shakespeare Abstracts

Number of Documents 37 6939

Number of Sentences 60219 41109

Number of Words 781720 940006

Number of Unique Words 25282 28737

Number of Unique Lemmas 19824 24360

Table 1: Characteristics of workload.

We have also updated the UI (python/top phrases.py) to accommodate our changes. Please find

the updated codebase attached to this submission (Details in Appendix A). Both the Shakespeare and
Abstracts corpora had been preloaded into separate mysql databases and came with WordSeer. We also

the lemmatization support from WordSeer and POS-tagging features of NLTK.
The basic workflow is quite simple (Figure 1). Users must provide a query in the web interface, select

one of the two corpora, and pick either of the compared approaches. We lemmatize the given query and
find all lemmatized sentences in the selected corpora that contains the query lemma. Note that the query

must be a single word in the current version; we do not support multi-word query because Xtract’s behavior
is not well-defined in that case.

Next, we apply the selected algorithm as described in §2.2 and §2.3, subsume results, remove results
with all stop words, order them by frequency, and send back the results as an webpage to the user. Recall that

the query and the relevant sentences were lemmatized early on the process; hence, our output collocations
appear in lemmatized form as well. Wildcards in Xtract output are represented by asterisks.

4 Evaluation

We evaluated the performance of Xtract and compared it with the N -gram approach using two large text

corpora. In the following, we describe our methodology of evaluation followed by the results from macro-
and micro-experiments.

4.1 Methodology

Workload We used two large text corpora, Shakespeare and Abstracts, for evaluation. The former
is the complete literary collection of William Shakespeare, and the latter is collection of article abstracts

collected from top HCI conferences. Table 1 summarizes some characteristics of the two corpora.

Stop Words We used the default set of stop words defined in WordSeer, which include prepositions,
pronouns, determiners, conjunctions, modal and primary verbs, adverbs, and punctuations as stop words in

our system.

Queries Unless otherwise specified, we use the words in Table 2 as queries during our evaluation. The
words are ordered by their frequencies in each row.

4



Corpora Queries

Shakespeare good, lord, well, man, sir, enter, go, love, king, make

Abstracts user, paper, information, system, result, design, use, retrieval, study, base

Table 2: Top 10 most frequent words (except stop words) in Shakespeare and Abstracts corpora.

29
!

11
! 17
!

9!

32
!

19
!

19
!

6! 4!

8!

12
77
!

10
95
!

61
6! 80
0!

94
8!

70
9!

64
6!

43
9!

46
6! 61
2!

1!

10!

100!

1000!

10000!

good! lord! well! man! sir! enter! go! love! king!make!

N
um

be
r 

of
 C

ol
lo

ca
tio

ns
!

Xtract! N-gram!

12
.5
!

11
.7
!

8.
1! 12

.0
!

8.
2!

5.
6!

11
.2
!

10
.3
!

7.
4!

12
.7
!

35
.4
!

31
.8
!

26
.1
! 54

.6
!

21
.8
!

7.
8!

28
.3
! 43
.7
!

33
.2
! 64

.1
!

1!

10!

100!

good! lord! well! man! sir! enter! go! love! king!make!

R
un

 ti
m

e 
(s

ec
on

ds
)!

Xtract! N-gram!

(a) Number of collocations found in Shakespeare

29
!

11
! 17
!

9!

32
!

19
!

19
!

6! 4!

8!

12
77
!

10
95
!

61
6! 80
0!

94
8!

70
9!

64
6!

43
9!

46
6! 61
2!

1!

10!

100!

1000!

10000!

good! lord! well! man! sir! enter! go! love! king!make!

N
um

be
r 

of
 C

ol
lo

ca
tio

ns
!

Xtract! N-gram!

12
.5
!

11
.7
!

8.
1! 12

.0
!

8.
2!

5.
6!

11
.2
!

10
.3
!

7.
4!

12
.7
!

35
.4
!

31
.8
!

26
.1
! 54

.6
!

21
.8
!

7.
8!

28
.3
! 43
.7
!

33
.2
! 64

.1
!

1!

10!

100!

good! lord! well! man! sir! enter! go! love! king!make!

R
un

 ti
m

e 
(s

ec
on

ds
)!

Xtract! N-gram!

(b) Time taken for Shakespeare

48
33
!

11
56
!

22
61
!

30
69
!

17
08
!

22
68
!

33
90
!

13
74
!

17
97
!

10
92
!

52
!

27
! 39
! 55
!

33
! 47
! 72
!

36
!

34
!

31
!

1!

10!

100!

1000!

10000!

N
um

be
r 

of
 C

ol
lo

ca
tio

ns
!

Xtract! N-gram!

39
.0
!

22
.2
!

17
.5
!

26
.6
!

16
.3
!

17
.3
! 36

.9
!

9.
8! 14

.0
!

11
.4
!

81
.9
!

31
.2
!

36
.7
!

52
.7
!

30
.5
!

34
.4
! 67

.3
!

18
.6
!

25
.9
!

20
.1
!

1!

10!

100!

R
un

 ti
m

e 
(s

ec
on

ds
)!

Xtract! N-gram!

(c) Number of collocations found in Abstracts

48
33
!

11
56
!

22
61
!

30
69
!

17
08
!

22
68
!

33
90
!

13
74
!

17
97
!

10
92
!

52
!

27
! 39
! 55
!

33
! 47
! 72
!

36
!

34
!

31
!

1!

10!

100!

1000!

10000!

N
um

be
r 

of
 C

ol
lo

ca
tio

ns
!

Xtract! N-gram!

39
.0
!

22
.2
!

17
.5
!

26
.6
!

16
.3
!

17
.3
! 36

.9
!

9.
8! 14

.0
!

11
.4
!

81
.9
!

31
.2
!

36
.7
!

52
.7
!

30
.5
!

34
.4
! 67

.3
!

18
.6
!

25
.9
!

20
.1
!

1!

10!

100!

R
un

 ti
m

e 
(s

ec
on

ds
)!

Xtract! N-gram!

(d) Time taken for Abstracts

Figure 2: Comparative evaluation of the number of collocations found and corresponding run time for the
N -gram approach and Xtract.

Parameters We set k0 = k1 = 1, U0 = 10, and T = 0.75 for Xtract in our experiments. These are
default values specified by Smadja [2].

4.2 Collocations Found and Time Taken

We start by discussing the raw characteristics of the two approaches. Figure 2 presents the number of
collocations found and the time taken to find them in the two corpora for the query words in Table 2.

We observe that Xtract finds much fewer number of collocations than the N -gram approach (Figure 2a
and Figure 2c). This is expected because the N -gram approach recalls every collocation for a given query

and has an extremely long tail, whereas Xtract actively filters out infrequent/uninteresting collocations.
For the N -gram approach, the number of collocations found decreases as the query words become less

frequent in corresponding corpus (i.e., moving from left to right in the X-axis in Figure 2a and Figure 2c).

5



0!
1!
2!
3!
4!
5!

Va
lid

 C
ol

lo
ca

tio
n 

in
 T

op
 5
!

Xtract! N-gram!

(a) Shakespeare corpora

0!
1!
2!
3!
4!
5!

Va
lid

 C
ol

lo
ca

tio
ns

 in
 T

op
 5
!

Xtract! N-gram!

(b) Abstracts corpora

Figure 3: Precisions of the top 5 collocations found by the N -gram approach and Xtract.

POS Count Xtract Better N -gram Better Inconclusive

Noun 11 7 2 3

Verb 7 3 2 1

Adjective 2 1 1 0

ALL 20 11 5 4

Table 3: Comparative performance of Xtract and the N -gram approach in terms of precision based on the
POS tag of the query. This table summarizes Figure 3.

This, however, is not always true for Xtract. In the Abstracts corpus, the number of collocations found

remains in the same ballpark even though query words become less and less frequent.
For either approach, there is no correlation between the time taken to find the collocations vs. the

frequency of query words. In general, our Xtract implementation is faster than the default N -gram imple-
mentation in WordSeer.

4.3 Precision and Recall

While we can easily calculate the number of collocations found and the time taken, it is much harder to

calculate the precision and recall of the compared approaches. This is specially harder for the N -gram
approach, because of the large number of results returned; manual inspection is almost impossible. Even for

the smaller number of results returned by Xtract this is not easy.
To keep the problem tractable, we make a couple of compromises. First, we do not try to compute recall

and instead focus on precision. Note that the original Xtract paper also presented only the precision scores.
Second, we find the precision of the top 5 collocations found by each of the approaches.

Figure 3 presents the results. We see that most of the time Xtract has a higher precision. This is
specially true for the Abstracts corpora (Figure 3b). To better understand the outcomes, we looked at the

POS tags of the query words. We see in Table 3 that Xtract performs significantly better when query words
are nouns. For verbs and adjective query words, Xtract is as good or better than the N -gram approach.

6



query Word Corpora Xtract Better N -gram Better Undecided

sword Shakespeare 70% 20% 10%

sweet Shakespeare 30% 10% 60%

design Abstracts 50% 30% 20%

information Abstracts 20% 40% 40%

Table 4: Outcome of show-of-hands poll over 30-odd experts. Note that the numbers were guesstimated on
the spot; hence, the relative differences are more important than the actual values.

4.4 Show-of-Hands Poll

In addition to performing manual inspection, we also performed four show-of-hands poll among 30-odd

experts. We selected two query words from each corpora: sword and sweet from Shakespeare, and
design and information from Abstracts. By showing the top 10 collocations identified by the compared

algorithms, we asked the experts which one they prefer.
Table 4 presents the outcome. We see that three out of four times they selected Xtract outcomes.

We found that Xtract was preferred more in presence non-adjacent collocations; recall that the N -gram
approach can only identify collocations with adjacent words.

4.5 Sensitivity of Xtract

All four parameters of Xtract – k0, k1, U0, and T – are for filtering out uninteresting collocations. For the

best performance, given a corpus, the key is to find the suitable region in the four-dimensional parameter
space of Xtract. Setting them too low will be too permissive, while setting them too high can be excessively

prohibitive. In our evaluation, we did see quite good precision results for Xtract using Smadja-suggested
threshold values, at least among the top 5 collocations. As a result, we were lucky in not having to manually

tune these parameters. There is, however, a non-zero probability that we could further improve our results
with a better set of parameter values. We consider the problem of auto-tuning for the best parameter set out

of the scope of this project, but we suggest this a possible avenue of future research.

5 Conclusion

Collocations play an important role in understanding as well as generating text in natural language. In this
project, we have implemented a statistics-based collocation retrieval tool Xtract in WordSeer and compared

its performance and precision with that of the most-frequent-N -grams approach. We have found that Xtract
performs well in most cases; however, given its simplicity, the N -gram approach perform reasonably well

too. A minor issue in using Xtract could be its parameter sensitivity. We recommend further work toward

auto-tuning Xtract parameters.

7



Acknowledgements

We would like to specially thank Aditi Muralidharan, the primary author of WordSeer, for her continued

support on various aspects of this project.

References

[1] Aditi Muralidharan and Marti Hearst. WordSeer: Exploring language use in literary text. In HCIR,

2011.

[2] Frank Smadja. Retrieving collocations from text: Xtract. Computational linguistics, 19(1):143–177,
1993.

A Layout of the Code Directory

- api/

- python/

- cluster.py

- top_phrases.py // UI

- wordseer/

- __init__.py

- cluster

- __init__.py

- k_means.py

- top_phrases.py // N-gram implementation

- xtract.py // Xtract implementation

- search.py

- sentence.py

- setup.py

- util.py

+ xmlparse

+ search-with-phrases

+ theme-finder

8


	Introduction
	Background
	Collocations
	The Most Frequent N-Gram Algorithm
	The Xtract Lexicographical Tool

	Implementation Details
	Evaluation
	Methodology
	Collocations Found and Time Taken
	Precision and Recall
	Show-of-Hands Poll
	Sensitivity of Xtract

	Conclusion
	Layout of the Code Directory

