Toward Practical Federated Learning

Mosharaf Chowdhury
December 2021
Machine Learning is Ubiquitous Today

- Image processing
- Natural language processing
- Speech synthesis
- Intelligent assistants
- Autonomous vehicles
- Search
- Video analytics
Made Possible by Centralized Clouds
A Systems View of Training

Model_1 Model_2 ... Model_N

What to Run? Where?

When to Run? How?

Data
A Systems View of Learning and Analytics
Data Cannot Always Move
Data Gravity is Increasing

Privacy
- Medical/health records, location coordinates, typed passwords

Regulations
- Data residency requirements (GDPR, CCPA, PIPL)

Cost
- Data movement, storage, computation, and energy
Cloud ML/DL

Federated Learning

Centralized Aggregator

WAN-Distributed Workers
Network is King!

1. Low bandwidth
2. High latency
3. Asymmetric topology
4. Dynamic variations
Data

Application

Planning

Execution

Data

CellScope @ MobiCom’18
Fed-ensemble @ arXiv’21
 Auxo
QOOP @ OSDI’18
Oort @ OSDI’21
NOCS @ SPAA’19
Terra @ arXiv’19
Sol @ NSDI’20
Flamingo
FedScale @ arXiv’21
Pando @ NSDI’20

https://github.com/SymbioticLab
Application

Planning

Execution

Data

Oort: Cross-Device FL&A

Sol: Cross-Silo FL&A

FedScale.ai

https://github.com/SymbioticLab
Fast Distributed Computation Over Slow Networks

Sol

w/ Fan Lai, Jie You, and others
NSDI’20
Latency Impact on Short Computations

5X worse completion times for interactive analytics when running on 1ms vs 100ms networks
Bandwidth Impact on Long Computations

3X worse completion times for machine learning when running on 10Gbps vs 1 Gbps networks.
Low Bandwidth
High Latency

Compute Idling
Core Ideas

Reduce compute idleness in silos by redesigning both control and data planes of federated systems

1. **Sol** Control Plane

 Proactively push work to workers in remote sites before they ask for additional work

 Decouple computation and communication roles of tasks using serverless compute and disaggregated storage

2. **Sol** Data Plane
Sol in One Slide

Central Coordinator

Silo Manager

Serverless Workers

Tasks

Tasks

Launch

Launch

Complete

Complete

High latency
Low bandwidth

Low latency
High bandwidth

Busy
Challenges

1. How many tasks to push?
2. When to push?
3. How to handle dependencies?
4. How to handle failures?
5. …
Large Performance Improvements

Deployed across 10 silos
Baseline: Apache Spark
Workloads: TPC-DS/H and HiBench

• **4X-16X** improvement in cross-silo federated learning and analytics

• **1.8X** improvement in compute utilization
Performance Breakdown

16.4X improvement in cross-silo federated analytics
Cloud ML/DL

Cross-Silo FL

Cross-Device FL
1. Heterogeneous data
2. Heterogeneous devices
3. Enormous scale
4. Pervasive uncertainty
Oort
Efficient Federated Learning via Guided Participant Selection

w/ Fan Lai and others
OSDI’21 Distinguished Artifact
Random Client Selection Can be Suboptimal

Inefficient training when overlooking heterogeneity
- Non-IID data leads to more rounds, lower accuracy
- Heterogenous devices lead to longer rounds

No guarantees on what the sampled population is being tested
- Developer may want representative distribution
Random Selection Can be Suboptimal

OpenImage dataset with 1.6M images
14k clients; 100 per round (randomly selected)
Random Selection Can be Suboptimal

(a) # of Rounds

(b) Final Accuracy (%)

OpenImage dataset with 1.6M images
14k clients; 100 per round (randomly selected)
Time-to-Accuracy in Training

Avg. Round Duration vs. # of Rounds Taken for Target Accuracy

Centralized

FedYoGi + Random

MobileNet on OpenImage dataset
Oort in One Slide

1. Exploit high stat. utility clients
2. Prioritize high system utility clients

FedYoGi + Random

FedYoGi + Oort

Centralized

High Stats. Efficiency

Low Sys. Efficiency

Avg. Round Duration

of Rounds Taken for Target Accuracy

High Stats. Efficiency

Low Stats. Efficiency

MobileNet on OpenImage dataset
Challenges

1. How to jointly consider statistical and system efficiency?
2. How to identify high-utility clients at scale?
3. How to avoid stale information?
4. How to be robust against noise?
5. …
Scaling High-Utility Client Selection

Millions to select from
- Unpredictable availability
- Heterogeneous utilities
- Temporal changes

Explore-exploit
Scaling High-Utility Client Selection

Millions to select from
- Unpredictable availability
- Heterogeneous utilities
- Temporal changes

Explore-exploit
- Aging
- Bounded selection
Large Performance Improvements

<table>
<thead>
<tr>
<th></th>
<th>Stats.</th>
<th>Sys.</th>
<th>Overall</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenImage/MobileNet</td>
<td>2.3X</td>
<td>1.5X</td>
<td>3.3X</td>
<td>+9.8%</td>
</tr>
<tr>
<td>Reddit/Albert</td>
<td>1.5X</td>
<td>4.9X</td>
<td>7.3X</td>
<td>+4.4%</td>
</tr>
<tr>
<td>Google Speech/ResNet-34</td>
<td>1.2X</td>
<td>1.1X</td>
<td>1.3X</td>
<td>+2.2%</td>
</tr>
</tbody>
</table>

FedYoGi+ Oort over FedYoGi+ Random: Faster
Federated Testing Using Oort

1. Select subset with <X deviation from the global distribution

 \[
 \text{participants} = \text{oort.select_by_deviation}(\text{dev_target}, \text{range_of_capacity}, \text{total_num_clients})
 \]

2. Select \([N_1, N_2, \ldots, N_K]\) samples of categories \([C_1, C_2, \ldots, C_K]\)

 \[
 \text{participants} = \text{oort.select_by_category}(\text{request_list}, \text{testing_config})
 \]
FedScale.ai
Benchmarking Model and System Performance of Federated Learning at Scale

w/ Fan Lai and others
ResilientFL'21 Best Paper
arXiv'21 (2105.11367)
Missing Pieces in Existing Benchmarks

Systems details
• Network latency-bandwidth characteristics
• End device characteristics (compute resources, battery, connectivity etc.)
• Cloud resource characteristics

Scale
• Heterogeneity of client data
• Availability of clients
Heterogeneous computation & communication speed

Dynamics of client availability in the wild

Millions of Client Systems Traces
FedScale can support orders-of-magnitude more clients on the same underlying cluster.

<table>
<thead>
<tr>
<th>Category</th>
<th>Name</th>
<th>Data Type</th>
<th>#Clients</th>
<th>#Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>iNature</td>
<td>Image</td>
<td>2,295</td>
<td>193K</td>
</tr>
<tr>
<td></td>
<td>FEMNIST</td>
<td>Image</td>
<td>3,400</td>
<td>640K</td>
</tr>
<tr>
<td></td>
<td>OpenImage</td>
<td>Image</td>
<td>13,771</td>
<td>1.3M</td>
</tr>
<tr>
<td></td>
<td>Google Landmark</td>
<td>Image</td>
<td>43,484</td>
<td>3.6M</td>
</tr>
<tr>
<td></td>
<td>Charades</td>
<td>Video</td>
<td>266</td>
<td>10K</td>
</tr>
<tr>
<td></td>
<td>VLOG</td>
<td>Video</td>
<td>4,900</td>
<td>9.6K</td>
</tr>
<tr>
<td></td>
<td>Waymo Motion</td>
<td>Video</td>
<td>496,358</td>
<td>32.5M</td>
</tr>
<tr>
<td>NLP</td>
<td>Europarl</td>
<td>Text</td>
<td>27,835</td>
<td>1.2M</td>
</tr>
<tr>
<td></td>
<td>Blog Corpus</td>
<td>Text</td>
<td>19,320</td>
<td>137M</td>
</tr>
<tr>
<td></td>
<td>Stackoverflow</td>
<td>Text</td>
<td>342,477</td>
<td>135M</td>
</tr>
<tr>
<td></td>
<td>Reddit</td>
<td>Text</td>
<td>1,660,820</td>
<td>351M</td>
</tr>
<tr>
<td></td>
<td>Amazon Review</td>
<td>Text</td>
<td>1,822,925</td>
<td>166M</td>
</tr>
<tr>
<td></td>
<td>CoQA</td>
<td>Text</td>
<td>7,189</td>
<td>114K</td>
</tr>
<tr>
<td></td>
<td>LibriTTS</td>
<td>Text</td>
<td>2,456</td>
<td>37K</td>
</tr>
<tr>
<td></td>
<td>Google Speech</td>
<td>Audio</td>
<td>2,618</td>
<td>105K</td>
</tr>
<tr>
<td></td>
<td>Common Voice</td>
<td>Audio</td>
<td>12,976</td>
<td>1.1M</td>
</tr>
<tr>
<td>Misc ML</td>
<td>Taobao</td>
<td>Text</td>
<td>182,806</td>
<td>20.9M</td>
</tr>
<tr>
<td></td>
<td>Fox Go</td>
<td>Text</td>
<td>150,333</td>
<td>4.9M</td>
</tr>
</tbody>
</table>

ShuffleNet on OpenImage dataset
10 GPUs
FedScale Runtime

Flexible APIs to automatically integrate new plugins

• Little effort to customize/benchmark new designs

<table>
<thead>
<tr>
<th>Module</th>
<th>API Name</th>
<th>Example Use Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregator</td>
<td><code>round_completion_handler(*args)</code></td>
<td>Adaptive/secure model aggregation</td>
</tr>
<tr>
<td>Simulator</td>
<td><code>client_completion_handler(client_id, msg)</code></td>
<td>Straggler mitigation</td>
</tr>
<tr>
<td></td>
<td><code>push_msg_to_client(client_id, msg)</code></td>
<td>Model compression</td>
</tr>
<tr>
<td>Client Manager</td>
<td><code>select_clients(*args)</code></td>
<td>Client selection</td>
</tr>
<tr>
<td></td>
<td><code>select_model_for_client(client_id)</code></td>
<td>Adaptive model selection</td>
</tr>
<tr>
<td>Client Simulator</td>
<td><code>train(client_data, model, config)</code></td>
<td>Local SGD/malicious attack</td>
</tr>
<tr>
<td></td>
<td><code>push_msg_to_aggregator(msg)</code></td>
<td>Model compression</td>
</tr>
</tbody>
</table>

Some Example APIs
Cross-Silo

Federated Learning

Federated Analytics

Cross-Device

FedScale.ai

1. Data traces
2. System traces
3. Models
4. Scale factors
5. Scalable runtime
6. Diverse backends
7. Metrics
8. …
Application

Planning

Execution

Data

Research: Rethink software stacks
- Network-Aware
- Heterogeneity-Aware
- Adaptive

Service: Create evaluation platforms
- Faithful representation
- Easy to use
- Fast and scalable

CellScope@MobiCom’18
Fed-ensemble@arXiv’21
Auxo
QOOP@OSDI’18
Oort@OSDI’21
NOCS@SPAA’19
Terra@arXiv’19
Sol@NSDI’20
Flamingo
FedScale@arXiv’21
Pando@NSDI’20

https://github.com/SymbioticLab
Current PhD Students

Jae-Won Chung Insu Jang Fan Lai Jiachen Liu Hasan Al Maruf Sanjay Singapuram Jie You Peifeng Yu Yiwen Zhang

Undergraduate & Master’s

Zhezheng Chen Yinwei Dai Shuoren Fu Yash Gaitonde Songyuan Guan

Chuheng Hu Jack Kosaian Qinye Li Yang Liu Yuze Lou

Alexander Neben Yuqing Qiu Wenting Tan Yue Tan Kaiwei Tu

Yuchen Wang Yujia Xie Yilei Xu Jiaxing Yang Yiwei Zhang

Jiangchen Zhu Jingyuan Zhu Xiangfeng Zhu

Collaborators

Aditya Akella Ganesh Ananthanarayanan Wei Bai Vladimir Braverman Shuchi Chawla Kai Chen Li Chen Asaf Cidon Yanhui Geng Ali Ghodsi Ayush Goel

Li Erran Li Hongqiang Liu Zhenhua Liu

Harsha V. Madhyastha Khshitej Mahajan Barzan Mozafar Linh Nguyen Aurojit Panda Manish Purohit Junjie Qian Kannan Ramchandran

K.V. Rashmi Naichen Shi Kang G. Shin Scott Shenker Brent Stephens Ion Stoica Xiao Sun Mohammed Uluyol Shivaram Venkatasubramanian Carl Waldspurger Hongyi Wang

Jingfeng Wu Sheng Yang Bairen Yi Dong Young Yoon Zhuolong Yu Hong Zhang Junxue Zhang Yuhong Zhong Yibo Zhu

https://github.com/SymbioticLab
Comparison

<table>
<thead>
<tr>
<th></th>
<th>LEAF</th>
<th>FedEval</th>
<th>FedML</th>
<th>Flower</th>
<th>FedScale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heter. Client Dataset</td>
<td>⭕</td>
<td>✕</td>
<td>⭕</td>
<td>⭕</td>
<td>✓</td>
</tr>
<tr>
<td>Heter. System Speed</td>
<td>✕</td>
<td>✕</td>
<td>✕</td>
<td>✕</td>
<td>✓</td>
</tr>
<tr>
<td>Client Availability</td>
<td>✕</td>
<td>✕</td>
<td>✕</td>
<td>✕</td>
<td>✓</td>
</tr>
<tr>
<td>Scalable Platform</td>
<td>✕</td>
<td>⭕</td>
<td>⭕</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Flexible APIs</td>
<td>✕</td>
<td>✕</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Different scales of diverse tasks enable statistical system efficiency. Unified data formats support real-time communication, computation, and dynamics for fast-forward simulation. Flexible APIs and scalable evaluation support system behavior data and deployment. Privacy and efficient metrics are essential for FAR and unified service.
FAR: FedScale Automated Runtime

Scalable eval platform
- GPUs/CPUs
- High resource util.

Practical runtime
- Convergence
- System duration
A few lines are enough for benchmarking

```python
from fedscale.core.client import Client

class Customized_Client(Client):
    # Customize the training on each client
    def train(self, client_data, model, conf):
        # Get the training result from
        # the default training component
        training_result = super().train(
            client_data, model, conf)

        # Clip updates and add noise
        secure_result = secure_impl(
            training_result)
        return secure_result
```

FedScale can benchmark more realistic statistical/system performance

- Flexible APIs to automatically integrate new plugins
- Little effort to customize/benchmark new designs