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Machine Learning is Ubiquitous Today

Image processing
Natural language processing
Speech synthesis
Intelligent assistants
Autonomous vehicles
Search
Video analytics
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Made Possible by Centralized Clouds

3



A Systems View of Training
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Model1

Data

What to Run? Where?

When to Run? How?

Model2 ModelN…



A Systems View of Learning and Analytics
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Data Cannot Always Move
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Data Gravity is Increasing
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Privacy
• Medical/health records, location coordinates, typed passwords

Regulations
• Data residency requirements (GDPR, CCPA, PIPL)

Cost
• Data movement, storage, computation, and energy
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Network is King!
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1. Low bandwidth
2. High latency
3. Asymmetric topology
4. Dynamic variations
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Terra@arXiv’19
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Oort: Cross-Device FL&A

Sol:     Cross-Silo FL&A
FedScale.ai

https://github.com/



Sol

w/ Fan Lai, Jie You, and others
NSDI’20

Fast Distributed Computation Over Slow Networks

13



Latency Impact on Short Computations
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Bandwidth Impact on Long Computations
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Low Bandwidth
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Core Ideas
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1. Sol Control Plane Proactively push work to workers in remote 
sites before they ask for additional work

2. Sol Data Plane
Decouple computation and 
communication roles of tasks using 
serverless compute and disaggregated storage

Reduce compute idleness in silos by redesigning both control and 
data planes of federated systems



Worker

Sol in One Slide
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Challenges
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1. How many tasks to push?
2. When to push?
3. How to handle dependencies?
4. How to handle failures?
5. …



Large Performance Improvements
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Deployed across 10 silos
Baseline: Apache Spark
Workloads: TPC-DS/H and HiBench

• 4X-16X improvement in 
cross-silo federated 
learning and analytics

• 1.8X improvement in 
compute utilization



Performance Breakdown
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Control plane benefits 

Data plane benefits

16.4X improvement in cross-silo federated analytics
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1. Heterogeneous data
2. Heterogeneous devices
3. Enormous scale
4. Pervasive uncertainty

Cross-Device  
FL



Oort

w/ Fan Lai and others
OSDI’21Distinguished Artifact

Efficient Federated Learning via Guided Participant Selection
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Random Client Selection Can be Suboptimal

25

Inefficient training when overlooking heterogeneity
• Non-IID data leads to more rounds, lower accuracy
• Heterogenous devices lead to longer rounds

No guarantees on what the sampled population is being tested
• Developer may want representative distribution



Random Selection Can be Suboptimal
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OpenImage dataset with 1.6M images
14k clients; 100 per round (randomly selected)



Random Selection Can be Suboptimal
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OpenImage dataset with 1.6M images
14k clients; 100 per round (randomly selected)



Time-to-Accuracy in Training
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Oort in One Slide
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Challenges
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1. How to jointly consider statistical and system efficiency?
2. How to identify high-utility clients at scale?
3. How to avoid stale information?
4. How to be robust against noise?
5. …



Scaling High-Utility Client Selection
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Millions to select from
• Unpredictable availability
• Heterogeneous utilities
• Temporal changes 

Explore-exploit

Oort

Client Pool

Not explored

Already explored



Scaling High-Utility Client Selection
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Millions to select from
• Unpredictable availability
• Heterogeneous utilities
• Temporal changes 

Explore-exploit
• Aging
• Bounded selection

Oort

Client Pool

Selected too 
many times

Aged out

X



Large Performance Improvements
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Stats. Sys. Overall

OpenImage/MobileNet

Reddit/Albert

Google Speech/ResNet-34

2.3X 1.5X 3.3X

1.5X 4.9X 7.3X

1.2X 1.1X 1.3X

FedYoGi+Oort over 
FedYoGi+Random

Accuracy

+9.8%

+4.4%

+2.2%

Faster



Federated Testing Using Oort
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1. Select subset with <X deviation from the global distribution
participants = oort.select_by_deviation(dev_target,

range_of_capacity, total_num_clients) 

2. Select [N1, N2, …, NK] samples of categories [C1, C2, …, CK]
participants = oort.select_by_category(request_list,   

testing_config) 



FedScale.ai

w/ Fan Lai and others
ResilientFL’21 Best Paper 
arXiv’21 (2105.11367)

Benchmarking Model and System Performance 
of Federated Learning at Scale
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Missing Pieces in Existing Benchmarks
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Systems details
• Network latency-bandwidth characteristics
• End device characteristics (compute resources, battery, 

connectivity etc.)
• Cloud resource characteristics

Scale
• Heterogeneity of client data
• Availability of clients
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Heterogeneous computation &
communication speed

Dynamics of client availability
in the wild

Millions of Client Systems Traces



Large Datasets and Scalable Runtime
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FedScale

FedScale can support orders-
of-magnitude more clients on 
the same underlying cluster

ShuffleNet on OpenImage dataset
10 GPUs

State-of-the-Art



FedScale Runtime
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Flexible APIs to automatically integrate new plugins
• Little effort to customize/benchmark new designs

Some Example APIs

Oort

DPSGD
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Cross-Silo

Cross-Device

Federated
Learning

Federated
Analytics

FedScale.ai

1. Data traces
2. System traces
3. Models
4. Scale factors
5. Scalable runtime
6. Diverse backends
7. Metrics
8. …
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Data

Planning

Execution

Application Research: Rethink software stacks
• Network-Aware
• Heterogeneity-Aware
• Adaptive

Service: Create evaluation platforms
• Faithful representation
• Easy to use
• Fast and scalable

https://github.com/
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Comparison
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LEAF FedEval FedML Flower FedScale

Heter. Client Dataset ⭕ ✕ ⭕ ⭕ ✓
Heter. System Speed ✕ ✕ ✕ ✕ ✓
Client Availability ✕ ✕ ✕ ✕ ✓
Scalable Platform ✕ ⭕ ⭕ ✓ ✓
Flexible APIs ✕ ✕ ✓ ✓ ✓
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FAR: FedScale Automated Runtime
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Scalable eval platform
• GPUs/CPUs
• High resource util.

Aggregator Simulator

Client Manager
Event Monitor

Client Selector
Communicator

Aggregation Handler

GPU 2

FAR Platform

① Submit config

Model Config

② Simulation of Practical FL

Practical runtime
• Convergence
• System duration

Metrics

Round to Acc.

Comm. Cost

Time to Acc. ③ Output

Comp. Cost

…

Accuracy/loss

FedScale Data Loader

Client Simulator
Device Monitor

GPU 1

Communicator

Compute Engine (e.g., PyTorch)

Resource Manager

Client 
Simulator

Client 
Simulator

Client 
Simulator



FAR: Easily-Deployable Benchmarking

47A few lines are enough for benchmarking

Differential Private-SGD

𝜎 (privacy target)
K (# participants/round)

FedScale can benchmark more realistic
statistical/system performance

• Flexible APIs to automatically integrate new plugins
• Little effort to customize/benchmark new designs


