Systems Support for Federated Computation

Mosharaf Chowdhury November 2021

A Systems View of Learning and Analytics

A Systems View of Learning and Analytics

Cloud L&A

Cross-Silo FL&A

Cross-Device FL&A

Network is King!

- I. Low bandwidth
- 2. High latency
- 3. Asymmetric topology
- 4. Dynamic variations

Oort: Cross-Device FL&A

Sol: Cross-Silo FL&A

FedScale.ai

Sol

Fast Distributed Computation Over Slow Networks

w/ Fan Lai, Jie You, and others NSDI'20

Latency Impact on Short Computations

5X worse

completion times for interactive analytics when running on I ms vs I 00ms networks

Bandwidth Impact on Long Computations

3X worse completion times for machine learning when running on 10Gbps vs 1 Gbps networks

Low Bandwidth High Latency

Compute Idling

Sol in One Slide

Challenges

- I. How many tasks to push?
- 2. When to push?
- 3. How to handle dependencies?
- 4. How to handle failures?
- 5. ...

Large Performance Improvements

Deployed across 10 silos

Baseline: Apache Spark

Workloads: TPC-DS/H and HiBench

- 4X-16X improvement in cross-silo federated learning and analytics
- 1.8X improvement in compute utilization

Cloud L&A

Cross-Silo FL&A

Cross-Device FL&A

- I. Heterogeneous data
- 2. Heterogeneous devices
- 3. Enormous scale
- 4. Pervasive uncertainty

Cross-Device FL&A

Oort

Efficient Federated Learning via Guided Participant Selection

w/ Fan Lai and othersOSDI'2 | Distinguished Artifact

Random Client Selection Can be Suboptimal

Inefficient training when overlooking heterogeneity

- Non-IID data leads to more rounds, lower accuracy
- Heterogenous devices lead to longer rounds

No guarantees on what the sampled population is being tested

Developer may want representative distribution

Random Selection Can be Suboptimal

OpenImage dataset with 1.6M images 14k clients; 100 per round (randomly selected)

Random Selection Can be Suboptimal

OpenImage dataset with 1.6M images 14k clients; 100 per round (randomly selected)

Time-to-Accuracy in Training

of Rounds Taken for Target Accuracy

Oort in One Slide

Challenges

- I. Which clients would improve statistical efficiency?
- 2. How to tradeoff statistical and system efficiency?
- 3. How to avoid stale information at scale?
- 4. How to be robust against noise?
- 5. ...

Large Performance Improvements

FedYoGi+ Oort over FedYoGi+Random	Stats.	Sys.	Overall	Accuracy
OpenImage/MobileNet	2.3X	1.5X	3.3X	+9.8%
Reddit/Albert	1.5X	4.9X	7.3X	+4.4%
Google Speech/ResNet-34	1.2X	1.1X	1.3X	+2.2%
		Y Faster		25

FedScale.ai

Benchmarking Model and System Performance of Federated Learning at Scale

w/ Fan Lai and others
ResilientFL'21 Best Paper
arXiv'21 (2105.11367)

Missing Pieces in Existing Benchmarks

Systems details

- Network latency-bandwidth characteristics
- End device characteristics (compute resources, battery, connectivity etc.)
- Cloud resource characteristics

Scale

- Heterogeneity of client data
- Availability of clients

Millions of Client Systems Traces

Timeline (h)

Heterogeneous computation & communication speed

Dynamics of client availability in the wild

Large Datasets and Scalable Runtime

Category	Name	Data Type	#Clients	#Instances
	iNature	Image	2,295	193K
	FEMNIST	Image	3,400	640K
	OpenImage	Image	13,771	1.3M
CV	Google Landmark	Image	43,484	3.6M
	Charades	Video	266	10K
	VLOG	Video	4,900	9.6K
	Waymo Motion	Video	496,358	32.5M
	Europarl	Text	27,835	1.2M
	Blog Corpus	Text	19,320	137M
	Stackoverflow	Text	342,477	135M
	Reddit	Text	1,660,820	351M
NLP	Amazon Review	Text	1,822,925	166M
	CoQA	Text	7,189	114K
	LibriTTS	Text	2,456	37K
	Google Speech	Audio	2,618	105K
	Common Voice	Audio	12,976	1.1M
Misc ML	Taobao	Text	182,806	20.9M
	Fox Go	Text	150,333	4.9M

FedScale can support ordersof-magnitude more clients on the same underlying cluster

ShuffleNet on OpenImage dataset 10 GPUs

Federated **Federated** Learning **Analytics** Cross-Silo FedScale.ai **Cross-Device**

- I. Data traces
- 2. System traces
- 3. Models
- 4. Scale factors
- 5. Scalable runtime
- 6. Diverse backends
- 7. Metrics
- 8. ...

Research: Rethink software stacks

- Network-Aware
- Heterogeneity-Aware
- Adaptive

Service: Create evaluation platforms

- Faithful representation
- Easy to use
- Fast and scalable

Current PhD Students

lae-Won Chung

Insu lang

Fan Lai

liachen Liu Hasan Al Maruf Sanjay Singapuram

lie You

Peifeng Yu Yiwen Zhang

Undergraduate & Master's

Collaborators

Zhezheng Chen Yinwei Dai Shuoren Fu Yash Gaitonde Songyuan Guan

Aditya Akella

Ganesh Ananthanarayanan Wei Bai Thomas M Braun Vladimir Braverman Shuchi Chawla Kai Chen Li Chen Asaf Cidon Sung Won Choi Yanhui Geng Ali Ghodsi

Chuheng Hu lack Kosaian Qinye Li Yang Liu Yuze Lou

Ayush Goel Robert Grandl Juncheng Gu* Chuanxiong Guo Vibhuti Gupta Anthony Huang Anand P. Iyer Myeongjae Jeon Xin lin Samir Khuller Raed Al Kontar Tan N. Le

Alexander Neben Yuqing Qiu Wenting Tan Yue Tan Kaiwei Tu

Youngmoon Lee Li Frran Li Hongqiang Liu Zhenhua Liu Harsha V. Madhyastha Kshiteej Mahajan

Barzan Mozafari Linh Nguyen Aurojit Panda Manish Purohit Iunjie Qian

Kannan Ramchandran

Yuchen Wang Yujia Xie Yilei Xu liaxing Yang Yiwei Zhang

K.V. Rashmi Naichen Shi Kang G. Shin Scott Shenker **Brent Stephens**

Ion Stoica Muneesh Tewari Xiao Sun Muhammed Uluyol Shiyaram Venkataraman Carl Waldspurger Hongyi Wang

liangchen Zhu lingyuan Zhu Xiangfeng Zhu

lingfeng Wu Sheng Yang Bairen Yi Dong Young Yoon Zhuolong Yu Hong Zhang lunxue Zhang Yuhong Zhong Yibo Zhu

Core Ideas

Reduce compute idleness in silos by redesigning both control and data planes of federated systems

1. Sol Control Plane

Proactively push work to workers in remote sites before they ask for additional work

2. Sol Data Plane

Decouple computation and communication roles of tasks using serverless compute and disaggregated storage

Performance Breakdown

16.4X improvement in cross-silo federated analytics

How to Use Oort?

1. Select subset with <X deviation from the global distribution

```
participants = oort.select_by_deviation(dev_target,
    range_of_capacity, total_num_clients)
```

2. Select $[N_1, N_2, ..., N_K]$ samples of categories $[C_1, C_2, ..., C_K]$

```
participants = oort.select_by_category(request_list,
    testing_config)
```

Comparison

	LEAF	FedEval	FedML	Flower	FedScale
Heter. Client Dataset	0	×	0	0	✓
Heter. System Speed	×	×	×	×	✓
Client Availability	×	×	×	×	✓
Scalable Platform	×	0	0	✓	✓
Flexible APIs	×	×	✓	✓	✓

FAR: FedScale Automated Runtime

Scalable eval platform

- GPUs/CPUs
- High resource util.

Practical runtime

- Convergence
- System duration

FAR: Easily-Deployable Benchmarking

- Flexible APIs to automatically integrate new plugins
 - Little effort to customize/benchmark new designs

Module	API Name	Example Use Case
Aggregator Simulator	<pre>round_completion_handler(*args) client_completion_handler(client_id, msg) push_msg_to_client(client_id, msg)</pre>	Adaptive/secure model aggregation Straggler mitigation Model compression
Client < Manager	<pre>select_clients(*args) select_model_for_client(client_id)</pre>	Client selection Oort [OSDI'21] Adaptive model selection
Client Simulator	<pre>train(client_data, model, config) push_msg_to_aggregator(msg)</pre>	Local SGD/malicious attack Model compression

Some Example APIs

FAR: Easily-Deployable Benchmarking

- Flexible APIs to automatically integrate new plugins
 - Little effort to customize/benchmark new designs

```
60
from fedscale.core.client import Client
                                                                        Accuracy (%)
class Customized Client(Client):
# Customize the training on each client
                                                                                                    \sigma = 0, K = 100
  def train(self,client_data,model,conf):
                                              Differential Private-SGD
                                                                                                    \sigma = 0.01, K = 100
      # Get the training result from
      # the default training component
                                                                                                    \sigma = 0, K = 30
      training_result = super().train(
                                                                                                    \sigma = 0.01, K = 30
            client_data, model, conf)
                                              \sigma (privacy target)
                                                                                          20
                                                                                                    40
                                                                                                              60
                                              K (# participants/round)
      # Clip updates and add noise
      secure_result = secure_impl(
                                                                                        FL Runtime (hours)
                 training_result)
                                                                        FedScale can benchmark more realistic
      return secure result
```

A few lines are enough for benchmarking

statistical/system performance