
Efficient Memory Disaggregation with INFINISWAP

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, Kang G. Shin
University of Michigan

Abstract
Memory-intensive applications suffer large performance
loss when their working sets do not fully fit in memory.
Yet, they cannot leverage otherwise unused remote mem-
ory when paging out to disks even in the presence of large
imbalance in memory utilizations across a cluster. Exist-
ing proposals for memory disaggregation call for new ar-
chitectures, new hardware designs, and/or new program-
ming models, making them infeasible.

This paper describes the design and implementation of
INFINISWAP, a remote memory paging system designed
specifically for an RDMA network. INFINISWAP oppor-
tunistically harvests and transparently exposes unused
memory to unmodified applications by dividing the swap
space of each machine into many slabs and distributing
them across many machines’ remote memory. Because
one-sided RDMA operations bypass remote CPUs, IN-
FINISWAP leverages the power of many choices to per-
form decentralized slab placements and evictions.

We have implemented and deployed INFINISWAP on
an RDMA cluster without any modifications to user ap-
plications or the OS and evaluated its effectiveness us-
ing multiple workloads running on unmodified VoltDB,
Memcached, PowerGraph, GraphX, and Apache Spark.
Using INFINISWAP, throughputs of these applications
improve between 4× (0.94×) to 15.4× (7.8×) over disk
(Mellanox nbdX), and median and tail latencies between
5.4× (2×) and 61× (2.3×). INFINISWAP achieves these
with negligible remote CPU usage, whereas nbdX be-
comes CPU-bound. INFINISWAP increases the overall
memory utilization of a cluster and works well at scale.

1 Introduction
Memory-intensive applications [18, 20, 23, 77] are
widely used today for low-latency services and data-
intensive analytics alike. The main reason for their popu-
larity is simple: as long as requests are served from mem-
ory and disk accesses are minimized, latency decreases
and throughput increases. However, these applications
experience rapid performance deteriorations when their
working sets do not fully fit in memory (§2.2).

There are two primary ways of mitigating this issue:
(i) rightsizing memory allocation and (ii) increasing the
effective memory capacity of each machine. Rightsizing

is difficult because applications often overestimate their
requirements [71] or attempt to allocate for peak usage
[28], resulting in severe underutilization and unbalanced
memory usage across the cluster. Our analysis of two
large production clusters shows that more than 70% of
the time there exists severe imbalance in memory utiliza-
tions across their machines (§2.3).

Proposals for memory disaggregation [42, 49, 53, 70]
acknowledge this imbalance and aim to expose a global
memory bank to all machines to increase their effective
memory capacities. Recent studies suggest that modern
RDMA networks can meet the latency requirements of
memory disaggregation architectures for numerous in-
memory workloads [42, 70]. However, existing propos-
als for memory disaggregation call for new architectures
[11, 12, 49], new hardware designs [56, 57], and new pro-
gramming models [63, 69], rendering them infeasible.

In this paper, we present INFINISWAP, a new scal-
able, decentralized remote memory paging solution that
enables efficient memory disaggregation. It is designed
specifically for RDMA networks to perform remote
memory paging when applications cannot fit their work-
ing sets in local memory. It does so without requiring
any coordination or modifications to the underlying in-
frastructure, operating systems, and applications (§3).

INFINISWAP is not the first to exploit memory imbal-
ance and disk-network latency gap for remote memory
paging [2, 25, 31, 37, 40, 41, 55, 58, 64]. However, un-
like existing solutions, it does not incur high remote CPU
overheads, scalability concerns from central coordina-
tion to find machines with free memory, and large perfor-
mance loss due to evictions from, and failures of, remote
memory.

INFINISWAP addresses these challenges via two pri-
mary components: a block device that is used as the
swap space and a daemon that manages remotely ac-
cessible memory. Both are present in every machine and
work together without any central coordination. The IN-
FINISWAP block device writes synchronously to remote
memory for low latency and asynchronously to disk for
fault-tolerance (§4). To mitigate high recovery overheads
of disks in the presence of remote evictions and failures,
we divide its address space into fixed-size slabs and place
them across many machines’ remote memory. As a re-
sult, remote evictions and failures only affect the perfor-

1

ETC SYS
100% 95.83 93.87
75% 44.92 12.37
50% 23.76 5.37

Memcached

0

100

200

300

400

500

100% 75% 50%

C
om

pl
et

io
n

Ti
m

e
(s

)

In-Memory Working Set

36.18

6.619
1.542

0
5

10
15
20
25
30
35
40

100% 75% 50%

TP
S

(T
ho

us
an

ds
)

In-Memory Working Set

95
.8

44
.9

23
.8

93
.9

12
.4

5.
4

0
20
40
60
80

100
120

100% 75% 50%

O
ps

 (T
ho

us
an

ds
)

In-Memory Working Set

ETC
SYS

Median 99th Median 99th
100% 148 329.00 148 363
75% 149 7511 169 14120
50% 165 11560 160 23026

ETC SYS
Memcached

1

10

100

1000

10000

100000

100% 75% 50%
La

te
nc

y
(m

s)
In-Memory Working Set

Median
99th

1

10

100

1000

10000

100000

100% 75% 50%

La
te

nc
y

(n
s)

In-Memory Working Set

ETC Median
ETC 99th
SYS Median
SYS 99th

(a) TPC-C on VoltDB

ETC SYS
100% 95.83 93.87
75% 44.92 12.37
50% 23.76 5.37

Memcached

0

100

200

300

400

500

100% 75% 50%

C
om

pl
et

io
n

Ti
m

e
(s

)

In-Memory Working Set

36.18

6.619
1.542

0
5

10
15
20
25
30
35
40

100% 75% 50%

TP
S

(T
ho

us
an

ds
)

In-Memory Working Set

95
.8

44
.9

23
.8

93
.9

12
.4

5.
4

0
20
40
60
80

100
120

100% 75% 50%

O
ps

 (T
ho

us
an

ds
)

In-Memory Working Set

ETC
SYS

1

10

100

1000

10000

100000

100% 75% 50%

La
te

nc
y

(u
s)

In-Memory Working Set

ETC Median
ETC 99th
SYS Median
SYS 99th

(b) Facebook workloads [26] on Memcached

1

10

100

1000

10000

100% 75% 50%

C
om

pl
et

io
n

Ti
m

e
(s

)

In-Memory Working Set

PowerGraph
GraphX

(c) Analytics

Figure 1: For modern in-memory applications, a decrease in the percentage of the working set that fits in memory often results
in a disproportionately larger loss of performance. This effect is further amplified for tail latencies. All plots show single-machine
performance and the median value of five runs. Lower is better for the latency-related plots (lines) and the opposite holds for the
throughout-related ones (bars). Note the logarithmic Y-axes in the latency/completion time plots.

mance of a fraction of its entire address space. To avoid
coordination, we leverage power of two choices [62] to
find remote machines with available free memory. All re-
mote I/O happens via RDMA operations.

The INFINISWAP daemon in each machine monitors
and preallocates slabs to avoid memory allocation over-
heads when a new slab is mapped (§5). It also monitors
and proactively evicts slabs to minimize performance im-
pact on local applications. Because swap activities on the
hosted slabs are transparent to the daemon, we leverage
power of many choices [68] to perform batch eviction
without any central coordination.

We have implemented INFINISWAP on Linux ker-
nel 3.13.0 (§6) and deployed it on a 56 Gbps, 32-
machine RDMA cluster on CloudLab [5]. We evaluated
it using multiple unmodified memory-intensive applica-
tions: VoltDB, Memcached, PowerGraph, GraphX, and
Apache Spark using industrial benchmarks and produc-
tion workloads (§7). Using INFINISWAP, throughputs im-
prove between 4× (0.94×) and 15.4× (7.8×) over disk
(Mellanox nbdX [2]), and median and tail latencies by
up to 5.4× (2×) and 61× (2.3×), respectively. Memory-
heavy workloads experience limited performance differ-
ence during paging, while CPU-heavy workloads experi-
ence some degradation. In comparison to nbdX, INFIN-
ISWAP does not use any remote CPU and provides a 2×–
4× higher read/write bandwidth. INFINISWAP can re-
cover from remote evictions and failures while still pro-
viding higher application-level performance in compari-
son to disks. Finally, its benefits hold in the presence of
high concurrency and at scale, with a negligible increase
in network bandwidth usage.

Despite its effectiveness, INFINISWAP cannot trans-
parently emulate memory disaggregation for CPU-heavy
workloads such as Spark and VoltDB (unlike memory-
intensive Memcached and PowerGraph) due to the in-
herent overheads of paging (e.g., context switching). We

still consider it useful because of its other tangible bene-
fits. For example, when working sets do not fit in mem-
ory, VoltDB’s performance degrades linearly using IN-
FINISWAP instead of experiencing a super-linear drop.

We discuss related work in Section 9.

2 Motivation
This section overviews necessary background (§2.1) and
discusses potential benefits from paging to remote mem-
ory in memory-intensive workloads (§2.2) as well as op-
portunities for doing so in production clusters (§2.3).

2.1 Background

Paging. Modern operating systems (OSes) support vir-
tual memory to provide applications with larger address
spaces than physically possible, using fixed-size pages
(typically 4KB) as the unit of memory management.
Usually, there are many more virtual pages than physi-
cal ones. Page faults occur whenever an application ad-
dresses a virtual address, whose corresponding page does
not reside in physical memory. Subsequently, the virtual
memory manager (VMM) consults with the page table to
bring that page into memory; this is known as paging in.
To make space for the new page, the VMM may need to
page out one or more already existing pages to a block
device, which is known as the swap space.

Any block device that implements an expected inter-
face can be used as a swap space. INFINISWAP is written
as a virtual block device to perform this role.

See [14] for a detailed description of memory manage-
ment and its many optimizations in a modern OS.

Application Deployment Model. We consider a
container-based application deployment model, which is
common in production datacenters [28, 71, 76] as well
as in container-as-a-service (CaaS) models [4, 8, 13, 50].
These clusters use resource allocation or scheduling al-
gorithms [28, 43, 47, 73] to determine resource shares of
different applications and deploy application processes

2

0

0.25

0.5

0.75

1

0 1 2 3 4 5 6

Fr
ac

tio
n

of
 T

im
e

99th-to-Median Memory Usage Across Machines

Facebook

Google

Figure 2: Imbalance in 10s-averaged memory usage in two
large production clusters at Facebook and Google.

in containers to ensure resource isolation. Applications
start paging when they require more memory than the
memory limits of their containers.

Network Model. INFINISWAP requires a low-latency,
RDMA network, but we do not make any assumptions
about specific RDMA technologies (e.g., Infiniband vs.
RoCE) or network diameters. Although we evaluate IN-
FINISWAP in a small-scale environment, recent results
suggest that deploying RDMA (thus INFINISWAP) on
large datacenters may indeed be feasible [48, 61, 79].

2.2 Potential Benefits

To illustrate the adverse effects of paging, we consider
four application types: (i) a standard TPC-C benchmark
[22] running on the VoltDB [23] in-memory database;
(ii) two Facebook-like workloads [26] running on the
Memcached [18] key-value store; (iii) PowerGraph [45]
running the TunkRank algorithm [1] on a Twitter dataset
[52]; and (iv) PageRank running on Apache Spark [77]
and GraphX [46] on the Twitter dataset. We found that
Spark starts thrashing during paging and does not com-
plete in many cases. We defer discussion of Spark to Sec-
tion 7.2.4 and consider the rest here.

To avoid externalities, we only focus on single-server
performance. Peak memory usage of each of these
runs were around 10GB, significantly smaller than the
server’s total physical memory. We run each application
inside containers of different memory capacities: x% in
the X-axes of Figure 1 refers to a run inside a container
that can hold at most x% of the application’s working set
in memory, and x < 100 forces paging. Section 7.2 has
more details on the experimental setups.

We highlight two observations that show large poten-
tial benefits from INFINISWAP. First, paging has signif-
icant, non-linear impact on performance (Figure 1). For
example, a 25% reduction in in-memory working set re-
sults in a 5.5× and 2.1× throughput loss for VoltDB
and Memcached; in contrast, PowerGraph and GraphX
worsen marginally. However, another 25% reduction
makes VoltDB, Memcached, PowerGraph, and GraphX
up to 24×, 17×, 8×, and 23× worse, respectively.

Second, paging implications are highlighed particu-

larly at the tail latencies. As working sets do not fit
into memory, the 99th-percentile latencies of VoltDB and
Memcached worsen by up to 71.5× and 21.5×, respec-
tively. In contrast, their median latencies worsens by up
to 5.7× and 1.1×, respectively.

These gigantic performance gaps suggest that a the-
oretical, 100%-efficient memory disaggregation solution
can result in huge benefits, assuming that everything such
solutions may require is ensured. It also shows that bridg-
ing some of these gaps by a practical, deployable solution
can be worthwhile.

2.3 Characteristics of Memory Imbalance

To understand the presence of memory imbalance in
modern clusters and corresponding opportunities, we an-
alyzed traces from two production clusters: (i) a 3000-
machine data analytics cluster (Facebook) and (ii) a
12500-machine cluster (Google) running a mix of di-
verse short- and long-running applications.

We highlight two key observations – the presence of
memory imbalance and its temporal variabilities – that
guide INFINISWAP’s design decisions.

Presence of Imbalance. We found that the memory
usage across machines can be substantially unbalanced
in the short term (e.g., tens of seconds). Causes of im-
balance include placement and scheduling constraints
[28, 44] and resource fragmentation during packing
[47, 76], among others. We measured memory utiliza-
tion imbalance by calculating the 99th-percentile to the
median usage ratio over 10-second intervals (Figure 2).
With a perfect balance, these values would be 1. How-
ever, we found this ratio to be 2.4 in Facebook and 3.35
in Google more than half the time; meaning, most of the
time, more than a half of the cluster aggregate memory
remains unutilized.

Temporal Variabilities. Although skewed, memory
utilizations remained stable over short intervals, which
is useful for predictable decision-making when select-
ing remote machines. To analyze the stability of memory
utilizations, we adopted the methodology described by
Chowdhury et al. [32, §4.3]. Specifically, we consider a
machine’s memory utilization Ut(m) at time t to be sta-
ble for the duration T if the difference between Ut(m)
and the average value ofUt(m) over the interval [t, t+T)
remains within 10% of Ut(m). We observed that aver-
age memory utilizations of a machine remained stable
for smaller durations with very high probabilities. For
the most unpredictable machine in the Facebook clus-
ter, the probabilities that its current memory utilization
from any instant will not change by more than 10% for
the next 10, 20, and 40 seconds were 0.74, 0.58, and
0.42, respectively. For Google, the corresponding num-
bers were 0.97, 0.94, and 0.89, respectively. We believe

3

Container 1 Container N
Infiniswap
Daemon

…

User Space
Kernel Space

Virtual Memory Manager (VMM)

Local Disk

Infiniswap Block Device
Async Sync

RNIC

User Space
Kernel Space

Infiniswap
DaemonContainer A

3 2 3 23

Machine-1

Machine-2

I
Slab whose pages are mapped to
remote memory of Machine-I

Slab whose pages are
located only on local disk

Individual page

Page fault

Figure 3: INFINISWAP architecture. Each machine loads a
block device as a kernel module (set as swap device) and runs
an INFINISWAP daemon. The block device divides its address
space into slabs and transparently maps them across many ma-
chines’ remote memory; paging happens at page granularity via
RDMA.

that the higher probabilities in the Google cluster are due
to its long-running services, whereas the Facebook clus-
ter runs data analytics with many short tasks [24].

3 INFINISWAP Overview
INFINISWAP is a decentralized memory disaggregation
solution for RDMA clusters that opportunistically uses
remote memory for paging. In this section, we present
a high-level overview of INFINISWAP to help the reader
follow how INFINISWAP performs efficient and fault-
tolerant memory disaggregation (§4), how it enables fast
and transparent memory reclamation (§5), and its imple-
mentation details (§6).

3.1 Problem Statement

The main goal of INFINISWAP is to efficiently expose all
of a cluster’s memory to user applications without any
modifications to those applications or the OSes of indi-
vidual machines. It must also be scalable, fault-tolerant,
and transparent so that application performance on re-
mote machines remains unaffected.

3.2 Architectural Overview

INFINISWAP consists of two primary components – IN-
FINISWAP block device and INFINISWAP daemon – that
are present in every machine and work together without
any central coordination (Figure 3).

The INFINISWAP block device exposes a conventional
block device I/O interface to the virtual memory man-
ager (VMM), which treats it as a fixed-size swap parti-
tion. The entire address space of this device is logically
partitioned into fixed-size slabs (SlabSize). A slab is the
unit of remote mapping and load balancing in INFIN-
ISWAP. Slabs from the same device can be mapped to
multiple remote machines’ memory for performance and

load balancing (§4.2). All pages belonging to the same
slab are mapped to the same remote machine. On the
INFINISWAP daemon side, a slab is a physical memory
chunk of SlabSize that is mapped to and used by an IN-
FINISWAP block device as remote memory.

If a slab is mapped to remote memory, INFINISWAP
synchronously writes a page-out request for that slab to
remote memory using RDMA WRITE, while writing it
asynchronously to the local disk. If it is not mapped,
INFINISWAP synchronously writes the page only to the
local disk. For page-in requests or reads, INFINISWAP
consults the slab mapping to read from the appropriate
source; it uses RDMA READ for remote memory.

The INFINISWAP daemon runs in the user space and
only participates in control plane activities. Specifically,
it responds to slab-mapping requests from INFINISWAP
block devices, preallocates its local memory when pos-
sible to minimize time overheads in slab-mapping ini-
tialization, and proactively evicts slabs, when neces-
sary, to ensure minimal impact on local applications. All
control plane communications take place using RDMA
SEND/RECV.

We have implemented INFINISWAP as a loadable ker-
nel module for Linux 3.13.0 and deployed it in a 32-
machine RDMA cluster. It performs well for a large va-
riety of memory-intensive workloads (§7.2).

Scalability. INFINISWAP leverages the well-known
power-of-choices techniques [62, 68] during both slab
placement in block devices (§4.2) and eviction in dae-
mons (§5.2). The reliance on decentralized techniques
makes INFINISWAP more scalable by avoiding the need
for constant coordination, while still achieving low-
latency mapping and eviction.

Fault-tolerance. Because INFINISWAP does not have
a central coordinator, it does not have a single point of
failure. If a remote machine fails or becomes unreach-
able, INFINISWAP relies on the remaining remote mem-
ory and the local backup disk (§4.5). If the local disk also
fails, INFINISWAP provides the same failure semantic as
of today.

4 Efficient Memory Disaggregation
via INFINISWAP Block Device

In this section, we describe how INFINISWAP block de-
vices manage their address spaces (§4.1), perform de-
centralized slab placement to ensure better performance
and load balancing (§4.2), handle I/O requests (§4.3), and
minimize the impacts of slab evictions (§4.4) and remote
failures (§4.5).

4.1 Slab Management

An INFINISWAP block device logically divides its entire
address space into multiple slabs of fixed size (SlabSize).

4

Infiniswap Block Device
3 2 3 2S3

Infiniswap
Daemon

Infiniswap
Daemon

Infiniswap
Daemon

Infiniswap
Daemon

Select the least-loaded of the
two machines to map slab S

Figure 4: INFINISWAP block device uses power of two choices
to select machines with the most available memory. It prefers
machines without any of its slabs to those who have to dis-
tribute slabs across as many machines as possible.

Using a fixed size throughout the cluster simplifies slab
placement and eviction algorithms and their analyses.

Each slab starts in the unmapped state. INFINISWAP
monitors the page activity rates of each slab using an ex-
ponentially weighted moving average (EWMA) with one
second period:

Acurrent(s) = α Ameasured(s) + (1− α) Aold(s)

where α is the smoothing factor (α = 0.2 by default)
and A(s) refers to total page-in and page-out activities
for slab s (initialized to zero).

When Acurrent(s) crosses a threshold (HotSlab), IN-
FINISWAP initiates remote placement (§4.2) to map the
slab to a remote machine’s memory. This late binding
helps INFINISWAP avoid unnecessary slab mapping and
potential memory inefficiency. We set HotSlab to 20 page
I/O requests/second. In our current design, pages are not
proactively moved to remote memory. Instead, they are
written to remote memory via RDMA WRITE on subse-
quent page-out operations.

To keep track of whether a page can be found in re-
mote memory, INFINISWAP maintains a bitmap of all
pages. All bits are initialized to zero. After a page is writ-
ten out to remote memory, its corresponding bit is set.
Upon failure of a remote machine where a slab is mapped
or when a slab is evicted by the remote INFINISWAP dae-
mon, all the bits pertaining to that slab are reset.

In addition to being evicted by the remote machine or
due to remote failure, INFINISWAP block devices may
preemptively remove a slab from remote memory if
Acurrent(s) goes below a threshold (ColdSlab). Our cur-
rent implementation does not use this optimization.

4.2 Remote Slab Placement

When the paging activity of an unmapped slab crosses
the HotSlab threshold, INFINISWAP attempts to map that
slab to a remote machine’s memory.

The slab placement algorithm has multiple goals.
First, it must distribute slabs from the same block de-
vice across as many remote machines as possible in order

Request Router

…

Per Core
Software
Queues

Disk
Dispatch
Queues

Paging Requests

Local Disk

Original(blk_mq figure

RNIC

Slab
Mapping

Submit IO

RDMA
Dispatch
Queues

…

Async Sync

3 2 3 23

…

Page
Bitmap

Figure 5: INFINISWAP block device overview. Each machine
uses one block device as its swap partition.

to minimize the impacts of future evictions from (fail-
ures of) remote machines. Second, it attempts to balance
memory utilization across all the machines to minimize
the probability of future evictions. Finally, it must be de-
centralized to provide low-latency mapping without cen-
tral coordination.

One can select an INFINISWAP daemon uniformly ran-
domly without central coordination. However, this is
known to cause load imbalance [62, 68].

Instead, we leverage power of two choices [62] to min-
imize memory imbalance across machines. First, INFIN-
ISWAP divides all the machines (M) into two sets: those
who already have any slab of this block device (Mold)
and those who do not (Mnew). Next, it contacts two IN-
FINISWAP daemons and selects the one with the lowest
memory usage. It first selects from Mnew and then, if re-
quired, from Mold. The two-step combination distributes
slabs across many machines while decreasing load im-
balance in a decentralized manner.

4.3 I/O Pipelines

The VMM submits page write and read requests to IN-
FINISWAP block device using the block I/O interface
(Figure 5). We use the multi-queue block IO queuing
mechanism [15] in INFINISWAP. Each CPU core is con-
figured with an individual software staging queue, where
block (page) requests are staged. The request router con-
sults the slab mapping and the page bitmap to determine
how to forward them to disk and/or remote memory.

5

Each RDMA dispatch queue has a limited number of
entries, each of which has a registered buffer for RDMA
communication. Although the number of RDMA dis-
patch queues is the same as that of CPU cores, they do
not follow one-to-one mapping. Each request from a core
is assigned to a random RDMA dispatch queue by hash-
ing its address parameter to avoid load imbalance.

Page Writes. For a page write, if the corresponding
slab is mapped, a write request is duplicated and put into
both RDMA and disk dispatch queues. The content of the
page is copied into the buffer of RDMA dispatch entry,
and the buffer is shared between the duplicated requests.
Once the RDMA WRITE operation completes, the page
write is completed and its corresponding physical mem-
ory can be reclaimed by the kernel without waiting for
the disk write. However, the RDMA dispatch entry – and
its buffer – will not be released until the completion of
the disk write operation. When INFINISWAP cannot get
a free entry from all RDMA dispatch queues, it blocks
until one is released.

For unmapped slabs, a write request is only put into
the disk dispatch queue; in this case, INFINISWAP blocks
until the completion of the write operation.

Page Reads. For a page read, if the corresponding slab
is mapped and the page bitmap is set, an RDMA READ
operation is put into the RDMA dispatch queue. When
the READ completes, INFINISWAP responds back. Oth-
erwise, INFINISWAP reads it from the disk.

Multi-Page Requests. To optimize I/O requests, the
VMM often batches multiple page requests together and
sends one multi-page (batched) request. The maximum
batch size in the current implementation of INFINISWAP
is 128 KB (i.e., 32 4 KB pages). The challenge in han-
dling multi-page requests arises in cases where pages
cross slab boundaries, especially when some slabs are
mapped and others are unmapped. In these cases, INFIN-
ISWAP waits until operations on all the pages in that batch
have completed in different sources; then, it completes
the multi-page I/O request.

4.4 Handling Slab Evictions

The decision to evict a slab (§5.2) is communicated to
a block device via the EVICT message from the corre-
sponding INFINISWAP daemon. Upon receiving this mes-
sage, the block device marks the slab as unmapped and
resets the corresponding portion of the bitmap. All future
requests will go to disk.

Next, it waits for all the in-flight requests in the corre-
sponding RDMA dispatch queue(s) to complete, polling
every 10 microseconds. Once everything is settled, IN-
FINISWAP responds back with a DONE message.

Note that if A(s) is above the HotSlab threshold, IN-
FINISWAP will start remapping the slab right away. Oth-

Machine-3

Machine-1

Memory in Use

Free Memory Monitor

3 1 1 3

I Mapped slab of Machine-I Allocated but not mapped slab

Control Channel - 1

Control Channel - 3

Machine-2

Infiniswap Daemon

Figure 6: INFINISWAP daemon periodically monitors the avail-
able free memory to pre-allocate slabs and to perform fast evic-
tions. Each machine runs one daemon.

erwise, it will wait until A(s) crosses HotSlab again.

4.5 Handling Remote Failures

INFINISWAP uses reliable connections for all commu-
nication and considers unreachability of remote INFIN-
ISWAP daemons (e.g., due to machine failure, daemon
process crashes, etc.) as the primary failure scenario.
Upon detecting a failure, the workflow is similar to that
of eviction: the block device marks the slab(s) on that
machine as unmapped and resets the corresponding por-
tion(s) of the bitmap.

The key difference and a possible concern is handling
in-flight requests, especially read-after-write scenarios.
In such a case, the remote machine fails after a page (P)
has been written to remote memory but before it is writ-
ten to disk (i.e., P is still in the disk dispatch queue). If
the VMM attempts to page P in, the bitmap will point to
disk, and a disk read request will be added to the disk dis-
patch queue. Because all I/O requests for the same slab
go to the same disk dispatch queue, such read requests
will be served by the on-disk data written by the previ-
ous write operation.

In the current implementation, INFINISWAP does not
handle transient failures separately. A possible optimiza-
tion would be to use a timeout before marking the corre-
sponding slabs unmapped.

5 Transparent Remote Memory
Reclamation via INFINISWAP Daemon

In this section, we describe how INFINISWAP daemons
(Figure 6) monitor and manage memory (§5.1) and per-
form slab evictions to minimize remote and local perfor-
mance impacts (§5.2).

5.1 Memory Management

The core functionality of each INFINISWAP daemon is
to claim memory on behalf of remote INFINISWAP block
devices as well as reclaiming them on behalf of local ap-
plications. To achieve this, the daemon monitors the total

6

Infiniswap Block Device
Infiniswap

DaemonInfiniswap Block Device

Infiniswap Block Device

Infiniswap Block Device Contact up to E+E’
machines to evict E slabs

Figure 7: INFINISWAP daemon employs batch eviction (i.e.,
contacting E′ more slabs to evict E slabs) for fast eviction of
E lightly active slabs.

memory usage of everything else running on the machine
using an EWMA with one second period:

Ucurrent = β Umeasured + (1− β) Uold

where β is the smoothing factor (β = 0.2 by default) and
U refers to total memory usage (initialized to 0).

Given the total memory usage, INFINISWAP daemon
focuses on maintaining a HeadRoom amount of free
memory in the machine by controlling its own total mem-
ory allocation at that point. The optimal value of Head-
Room should be dynamically determined based on the
amount of memory and the applications running in each
machine. Our current implementation does not include
this optimization and uses 8 GB HeadRoom by default
on 64 GB machines.

When the amount of free memory grows above Head-
Room, INFINISWAP proactively allocates slabs of size
SlabSize and marks them as unmapped. Proactive alloca-
tion of slabs makes the initialization process faster when
an INFINISWAP block device attempts to map to that slab;
the slab is marked mapped at that point.

5.2 Decentralized Slab Eviction

When free memory shrinks below HeadRoom, INFIN-
ISWAP daemon proactively releases slabs in two stages.
It starts by releasing unmapped slabs. Then, if necessary,
it evicts E mapped slabs as described below.

Because applications running on the local machine do
not care which slabs are evicted, when INFINISWAP must
evict, it focuses on minimizing the performance impact
on the machines that are remotely paging. The key chal-
lenge arises from the fact that remote INFINISWAP block
devices directly interact with their allocated slab(s) via
RDMA READ/WRITE operations without any involve-
ment of INFINISWAP daemons. While this avoids CPU
involvements, it also prevents INFINISWAP from making
any educated guess about performance impact of evict-
ing one or more slabs without first communicating with
the corresponding block devices.

This problem can be stated formally as follows. Given
S mapped slabs, how to release the E least-active ones
to leave more than HeadRoom free memory?

At one extreme, the solution is simple with global

0
0.2
0.4
0.6
0.8

1

0 0.2 0.4 0.6 0.8 1P(
E

Le
as

t-A
ct

iv
e

Sl
ab

s)

Fraction of Slabs with High Activity

Random
E' = 1
E' = 5
E' = 10

Figure 8: Analytical eviction performance for evicting E(=
10) slabs for varying values of E′. Random refers to evicting
E slabs one-by-one uniformly randomly.

knowledge. INFINISWAP daemon can contact all block
devices in the cluster to determine the least-used E slabs
and evict them. This is prohibitive when E is signif-
icantly smaller than the total number of slabs in the
cluster. Having a centralized controller would not have
helped either, because this would require all INFINISWAP
block devices to frequently report their slab activities.

At the other extreme, one can randomly pick one slab
at a time without any communication. However, in this
case, the likelihood of evicting a busy slab is very high.
Consider a parameter pb ∈ [0, 1], and assume that a slab
is busy (i.e., it is experiencing paging activities beyond
a fixed threshold) with probability pb. If we now refor-
mulate the problem to finding E lightly active slabs in-
stead of the least-active ones, the probability would be
(1− pb)E . As the cluster becomes busier (pb increases),
this probability plummets (Figure 8).

Batch Eviction. Instead of randomly evicting slabs
without any communication, we perform bounded com-
munication to leverage generalized power of choices
[68]. Similar techniques had been used before for task
scheduling and input selection [67, 75].

For E slabs to evict, INFINISWAP daemon considers
E+E′ slabs, whereE′ ≤ E. Upon communicating with
the machines hosting thoseE+E′ slabs, it evictsE least-
active ones (i.e., the E slabs of E + E′ with the lowest
A(.) values). The probability of finding E lightly active
slabs in this case is

∑E+E′

E (1− pb)ipbE+E′−i(E+E′

i

)
.

Figure 8 plots the effectiveness of batch eviction for
different values of E′ for E = 10. Even for moder-
ate cluster load, the probability of evicting lightly active
slabs are significantly higher using batch eviction.

The actual act of eviction is initiated when the daemon
sends EVICT messages to corresponding block devices.
Once a block device completes necessary bookkeeping
(§4.4), it responds with a DONE message. Only then IN-
FINISWAP daemon releases the slab.

6 Implementation
INFINISWAP is a virtual block device that can be used
as a swap partition, for example, /dev/infiniswap0.

7

We have implemented INFINISWAP as a loadable kernel
module for Linux 3.13.0 and beyond in about 3500 lines
of C code. Our block device implementation is based on
nbdX, a network block device over Accelio framework,
developed by Mellanox[2]. We also rely on stackbd [21]
to redirect page I/O requests to the disk to handle possi-
ble remote failures and evictions. INFINISWAP daemons
are implemented and run as user-space programs.

Control Messages. INFINISWAP components use mes-
sage passing to transfer memory information and mem-
ory service agreements. There are eight message types.
Four of them are used for placement and the rest (e.g.,
EVICT, DONE) are used for eviction.

A detailed list of messages, along with how they are
used during placement and eviction, and corresponding
sequence diagrams can be found in Appendix B.1.

Connection Management. INFINISWAP uses reliable
connections for all communications. It uses one-sided
RDMA READ/WRITE operations for data plane activ-
ities; both types of messages are posted by the block
device. All control plane messages are transferred using
RDMA SEND/RECV operations.

INFINISWAP daemon maintains individual connec-
tions for each block device connected to it instead of
one for each slab. Similarly, INFINISWAP block devices
maintain one connection for each daemon instead of per-
slab connections. Overall, for each active block device-
daemon pair, there is one RDMA connection shared be-
tween the data plane and the control plane.

7 Evaluation
We evaluated INFINISWAP on a 32-machine, 56 Gbps In-
finiband cluster on CloudLab [5] and highlight the results
as follows:
• INFINISWAP provides 2×–4× higher I/O bandwidth

than Mellanox nbdX [2]. While nbdX saturates 6 re-
mote virtual cores, INFINISWAP uses none (§7.1).

• INFINISWAP improves throughputs of unmodified
VoltDB, Memcached, PowerGraph, GraphX, and
Apache Spark by up to 4× (0.94×) to 15.4× (7.8×)
over disk (nbdX) and tail latencies by up to 61×
(2.3×) (§7.2).

• INFINISWAP ensures fast recovery from remote fail-
ures and evictions with little impact on applications;
it does not impact remote applications either (§7.3).

• INFINISWAP benefits hold in a distributed setting; it
increases cluster memory utilization by 1.47× using
a small amount of network bandwidth (§7.4).

Experimental Setup. Unless otherwise specified, we
use SlabSize = 1 GB, HeadRoom = 8 GB, HotSlab = 20
paging activities per second, and α = β = 0.2 in all the
experiments. For comparison, nbdX also utilizes remote

0
1000
2000
3000
4000
5000
6000
7000

4K 8k 16K 32k 64K 128k

Ba
nd

w
id

th
 (M

B/
s)

Block Size

Infiniswap Write
Infiniswap Read
nbdX Write
nbdX Read

(a) Bandwidth

0

5

10

15

20

4K 8k 16K 32k 64K 128k

%
 C

PU
 U

sa
ge

 o
f 3

2
vC

PU
s

Block Size

Infiniswap
nbdX

(b) Remote CPU Usage

Figure 9: INFINISWAP provides higher read and write band-
widths without remote CPU usage, whereas Mellanox nbdX
suffers from high CPU overheads and lower bandwidth.

memory for storing data.
Each of the 32 machines had 32 virtual cores and 64

GB of physical memory.

7.1 INFINISWAP Performance as a Block Device

Before focusing on INFINISWAP’ effectiveness as a de-
centralized remote paging system, we focus on its raw
performance as a block device. We compare it against
nbdX and do not include disk because of its significantly
lower performance. We used fio [6] – a well-known disk
benchmarking tool – for these benchmarks.

For both INFINISWAP and nbdX, we performed pa-
rameter sweeps by varying the number of threads in fio
from 1 to 32 and I/O depth from 2 to 64. Figure 9a
shows the highest average bandwidth observed for differ-
ent block sizes across all these parameter combinations
for both block devices. In terms of bandwidth, INFIN-
ISWAP performs between 2× and 4× better than nbdX
and saturates the 56 Gbps network at larger block sizes.

More importantly, we observe that due to nbdX’s in-
volvement in copying data to and from RAMdisk at the
remote side, it has excessive CPU overheads (Figure 9b)
and becomes CPU-bound for smaller block sizes. It of-
ten saturates the 6 virtual cores it runs on. In contrast,
INFINISWAP bypasses remote CPU in the data plane and
has close to zero CPU overheads in the remote machine.

7.2 INFINISWAP’s Impact on Applications

In this section, we focus on INFINISWAP’s performance
on multiple memory-intensive applications with a variety
of workloads (Figure 10) and compare it to that of disk
(Figure 1) and nbdX (Figure 11).

Workloads. We used four memory-intensive applica-
tion and workload combinations:
1. TPC-C benchmark [22] on VoltDB [23];
2. Facebook workloads [26] on Memcached [18];
3. Twitter graph [52] on PowerGraph [45]; and
4. Twitter data on GraphX [46] and Apache Spark [77].

8

35.89

28.91
23.80

0
5

10
15
20
25
30
35
40

100% 75% 50%

TP
S

(T
ho

us
an

ds
)

In-Memory Working Set

1

10

100

1000

100% 75% 50%
La

te
nc

y
(m

s)
In-Memory Working Set

Median
99th

(a) TPC-C on VoltDB

10
0.

9

91
.9 97
.310
6.

1

77
.5

81
.4

0
20
40
60
80

100
120
140
160

100% 75% 50%

O
ps

 (T
ho

us
an

ds
)

In-Memory Working Set

ETC
SYS

1

10

100

1000

100% 75% 50%

La
te

nc
y

(u
s)

In-Memory Working Set

ETC Median
ETC 99th
SYS Median
SYS 99th

(b) Facebook workloads [26] on Memcached

1

10

100

1000

10000

100% 75% 50%

C
om

pl
et

io
n

Ti
m

e (
s)

In-Memory Working Set

PowerGraph
GraphX

(c) Analytics

Figure 10: INFINISWAP performance for the same applications in Figure 1 for the same configurations. All plots show single-
machine, server-side performance, and the median value of five runs. Lower is better for the latency-related plots (lines) and the
opposite is true for the throughout-related ones (bars). Note the logarithmic Y-axes in the latency/completion time plots.

ETC SYS
100% 102.7 95.77
75% 97.55 10
50% 78.34 33.2

Memcached

0

100

200

300

400

500

100% 75% 50%

C
om

pl
et

io
n

Ti
m

e
(s

)

In-Memory Working Set

36.22

26.84

19.79

0
5

10
15
20
25
30
35
40

100% 75% 50%

TP
S

(T
ho

us
an

ds
)

In-Memory Working Set

10
2.

7

97
.6

78
.395

.8

10
.0 33

.2

0
20
40
60
80

100
120
140
160

100% 75% 50%

O
ps

 (T
ho

us
an

ds
)

In-Memory Working Set

ETC
SYS

Didn't
complete
at 50%

1

10

100

1000

100% 75% 50%

La
te

nc
y

(m
s)

In-Memory Working Set

Median
99th

(a) TPC-C on VoltDB

ETC SYS
100% 102.7 95.77
75% 97.55 10
50% 78.34 33.2

Memcached

0

100

200

300

400

500

100% 75% 50%

C
om

pl
et

io
n

Ti
m

e
(s

)
In-Memory Working Set

36.22

26.84

19.79

0
5

10
15
20
25
30
35
40

100% 75% 50%

TP
S

(T
ho

us
an

ds
)

In-Memory Working Set

10
2.

7

97
.6

78
.395

.8

10
.0 33

.2

0
20
40
60
80

100
120
140
160

100% 75% 50%

O
ps

 (T
ho

us
an

ds
)

In-Memory Working Set

ETC
SYS

Didn't
complete
at 50%

1

10

100

1000

100% 75% 50%

La
te

nc
y

(u
s)

In-Memory Working Set

ETC Median
ETC 99th
SYS Median
SYS 99th

(b) Facebook workloads [26] on Memcached

1

10

100

1000

10000

100% 75% 50%

C
om

pl
et

io
n

Ti
m

e
(s

)

In-Memory Working Set

PowerGraph
GraphX

Didn't
complete

(c) Analytics

Figure 11: nbdX performance for comparison. All plots show single-machine, server-side performance, and the median value of
five runs. Lower is better for the latency-related plots (lines) and the opposite is true for the throughout-related ones (bars). Note
the logarithmic Y-axes in the latency/completion time plots.

Methodology. We focused on single-machine perfor-
mance and considered three configurations – 100%,
75%, and 50% – for each application. We started with the
100% configuration by creating an lxc container with
large enough memory to fit the entire workload in mem-
ory. We measured the peak memory usage, and then ran
75% and 50% configurations by creating containers with
enough memory to fit those fractions of the peak usage.
For INFINISWAP and nbdX, we use a single remote ma-
chine as the remote swap space.

7.2.1 VoltDB

VoltDB is an in-memory, transactional database that can
import, operate on, and export large amounts of data at
high speed, providing ACID reliability and scalability.
We use its community version available on Github.

We use TPC-C to create transactional workloads on
VoltDB. TPC-C performs 5 different types of transac-
tions either executed on-line or queued for deferred ex-
ecution to simulate an order-entry environment. We set
256 warehouses and 8 sites in VoltDB to achieve a rea-
sonable single-container workload of 11.5 GB and run 2
million transactions.

We observe in Figure 10a that, unlike disk (Figure 1a),
performance using INFINISWAP drops linearly instead of
super-linearly when smaller amounts of workloads fit in

memory. Using INFINISWAP, VoltDB experiences only a
1.5× reduction in throughput instead of 24× using disk
in the 50% case. In particular, INFINISWAP improves
VoltDB throughput by 15.4× and 99th-percentile latency
by 19.7× in comparison to paging to disk. nbdX’s per-
formance is similar to that of INFINISWAP (Figure 11a).

Overheads of Paging. To understand why INFIN-
ISWAP’s performance drops significantly when the work-
load does not fit into memory even though it is never
paging to disk, we analyzed and compared its CPU and
memory usage with all other considered applications (see
Appendix A). We believe that because VoltDB is more
CPU-intensive than most other memory-intensive work-
loads we considered, the overheads of paging (e.g., con-
text switches) have a larger impact on its performance.

We note that paging-aware data structure placement
(by modifying VoltDB) can help in mitigating this issue
[36, 74]. We consider this a possible area of future work.

7.2.2 Memcached

Memcached is an in-memory object caching system that
provides a simple key-value interface.

We use memaslap, a load generation and benchmark-
ing tool for Memcached, to measure performance using
recent data published by Facebook [26]. We pick ETC
and SYS to explore the performance of INFINISWAP on

9

workloads with different rates of SET operations. Our
experiments start with an initial phase, where we use 10
million SET operations to populate a Memcached server.
We then perform another set of 10 million queries in the
second phase to simulate the behavior of a given work-
load. ETC has 5% SETs and 95% GETs. The key size is
fixed at 16 bytes and 90% of the values are evenly dis-
tributed between 16 and 512 bytes [26]. The workload
size is measured to be around 9 GB. SYS, on the other
hand, is SET-heavy, with 25% SET and 75% GET oper-
ations. 40% of the keys have length from 16 to 20 bytes,
and the rest range from 20 to 45 bytes. Values of size be-
tween 320 and 500 bytes take up 80% of the entire data,
8% of them are smaller, and 12% sit between 500 and
10000 bytes. The workload size is measured to be 14.5
GB. We set the memory limit in Memcached configura-
tions to ensure that for 75% and 50% configurations it
will respond using the swap space.

First, we observe in Figure 10b that, unlike disk
(Figure 1b), performance using INFINISWAP remains
steady instead of facing linear or super-linear drops when
smaller amounts of workloads fit in memory. Using IN-
FINISWAP, Memcached experiences only 1.03× (1.3×)
reduction in throughput instead of 4× (17.4×) using disk
for the 50% case for the GET-dominated ETC (SET-
heavy SYS) workload. In particular, INFINISWAP im-
proves Memcached throughput by 4.08× (15.1×) and
99th-percentile latency by 36.3× (61.4×) in comparison
to paging to disk.

Second, nbdX does not perform as well as it does
for VoltDB. Using nbdX, Memcached experiences 1.3×
(3×) throughput reduction for the 50% case for the
GET-dominated ETC (SET-heavy SYS) workload. IN-
FINISWAP improves Memcached throughput by 1.24×
(2.45×) and 99th-percentile latency by 1.8× (2.29×) in
comparison to paging to nbdX. nbdX’s performance is
not very stable either (Figure 11b).

Pitfalls of Remote CPU Usage by nbdX. When the
application itself is not CPU-intensive, the differences
between INFINISWAP and nbdX designs become clearer.
As paging activities increase (i.e., for the SYS work-
load), nbdX becomes CPU-bound in the remote machine;
its performance drops and becomes unpredictable.

7.2.3 PowerGraph

PowerGraph is a framework for large-scale machine
learning and graph computation. It provides parallel
computation on large-scale natural graphs, which usually
have highly skewed power-law degree distributions.

We run TunkRank [1], an algorithm to measure the
influence of a Twitter user based on the number of that
user’s followers, on PowerGraph. TunkRank’s imple-
mentation on PowerGraph was obtained from [9]. We use
a Twitter dataset of 11 million vertices as the input. The

54
5 66
8

54
8 63
3

55
0 63
7

0
200
400
600
800

100% 75% 50%C
om

pl
. T

im
e

(s
)

In-Memory Working Set

Disk
Infiniswap
nbdX

Figure 12: Comparative performance for PageRank using
Apache Spark. The 50% configuration fails for all alternatives
because Spark starts thrashing.

dataset size is 1.3 GB. We use the asynchronous engine
of PowerGraph and tsv input format with the number of
CPU cores set to 2, resulting in a 9 GB workload.

Figure 10c shows that, unlike disk (Figure 1c), per-
formance using INFINISWAP remains stable. Using IN-
FINISWAP, PowerGraph experiences only 1.24× higher
completion time instead of 8× using disk in the 50%
case. In particular, INFINISWAP improves PowerGraph’s
completion by 6.5× in comparison to paging to disk.

nbdX did not even complete at 50% (Figure 11c).

7.2.4 GraphX and Apache Spark

GraphX is a specialized graph processing system built on
top of the Apache Spark in-memory analytics engine. We
used Apache Spark 2.0.0 to run PageRank on the same
Twitter user graph using both GraphX and vanilla Spark.
For the same workload, GraphX could run using 12 GB
maximum heap, but Spark needed 16 GB.

Figure 10c shows that INFINISWAP makes a 2× per-
formance improvement over the case of paging to disk
for the 50% configuration for GraphX. However, for
Spark, all three of them fail to complete for the 50%
configuration (Figure 12). In both cases, the underlying
engine (i.e., Spark) starts thrashing – applications oscil-
late between paging out and paging in making little or
no progress. In general, GraphX has smaller completion
times than Spark for our workload.

7.3 Performance of INFINISWAP Components

So far we have considered INFINISWAP’s performance
without any eviction or failures. In this section, we ana-
lyze from both block device and daemon perspectives.

7.3.1 INFINISWAP Block Device

For these experiments, we present results for the 75%
VoltDB configuration. We select VoltDB because it ex-
perienced one of the lowest performance benefits using
INFINISWAP. We run it in one machine and distribute its
slabs across 6 machines’ remote memory. We then in-
troduce different failure and eviction events to measure
VoltDB’s throughput loss (Figure 13).

Handling Remote Failures. First, we randomly turned
off one of the 6 machines in 10 different runs; the failed
(turned-off) machine did not join back. The average

10

2.3
34.5

58.3
77.1

0 20 40 60 80 100

Eviction
Random Failure
Critical Failure
w/o Infiniswap

Average Throughput Loss w.r.t. Infiniswap (%)

Figure 13: Average throughput loss of VoltDB with 75% in-
memory working set w.r.t. INFINISWAP from different failure
and eviction events. Lower is better.

0
20
40
60
80

100

0 50 100 150 200 250 300

M
em

or
y

U
til

iz
at

io
n

(%
)

Time (s)

Local Memory Remote Memory

Figure 14: INFINISWAP daemon proactively evicts slabs to
ensure that a local Memcached server runs smoothly. The
white/empty region toward the top represents HeadRoom.

throughput loss was about 34.5% in comparison to IN-
FINISWAP without any failures. However, we observed
that the timing of failure has a large impact (e.g., during
high paging activity or not). So, to create an adversarial
scenario, we turned off one of the 6 machines again, but
in this case, we failed the highest-activity machine dur-
ing its peak activity period. The average throughout loss
increased to 58.3%.

Handling Evictions. In this experiment, we evicted 1
slab from one of the remote machines every second and
measured the average throughput loss to be about 2.3%,
on average, for each eviction event (of 7–29 eviction-
and-remapping events). As before, eviction of a high-
activity slab had a slightly larger impact than that of one
with lower activity.

Time to Map a Slab. We also measured the time IN-
FINISWAP takes to map (for the first time) or remap
(due to eviction or failure) a slab. The median time was
54.25 milliseconds, out of which 53.99 went to Infini-
band memory registration. Memory registration is essen-
tial and incurs the most interfering overhead in Infini-
band communication [59]; it includes address transla-
tion, and pinning pages in memory to prevent swapping.
Note that preallocation of slabs by INFINISWAP daemons
mask close to 400 milliseconds, which would otherwise
have been added on top of the 54.25 milliseconds. De-
tailed breakdown is given in Appendix B.2.

7.3.2 INFINISWAP Daemon

Now, we focus on INFINISWAP daemon’s reaction time
to increase in memory demands of local applications.
For this experiment, we set HeadRoom to be 1 GB and

ETC SYS
W/o With W/o With

Ops (Thousands) 95.9 94.1 96.0 93.5

Median Latency (us) 152.0 152.0 152.0 156.0

99th Latency (us) 319.0 318.0 327.0 343.0

Table 1: Performance of an in-memory Memcached server
with and without INFINISWAP using remote memory.

0 20 40 60 80 100

Infiniswap
w/o Infiniswap

Cluster Memory Utilization (%)
(a) Cluster memory utilization

0
20
40
60
80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29M
em

or
y

U
til

. (
%

)
Rank of Machines

Infiniswap
w/o Infiniswap

(b) Memory utilization of individual machines

Figure 15: Using INFINISWAP, memory utilization increases
and memory imbalance decreases significantly. Error bars in
(a) show the maximum and the minimum across machines.

started at time zero with INFINISWAP hosting a large
number of remote slabs. We started a Memcached server
soon after and started performing the ETC workload.
Figure 14 shows how INFINISWAP daemon monitored lo-
cal memory usage and proactively evicted remote slabs
to make room – the white/empty region toward the top
represents the HeadRoom distance INFINISWAP strived
to maintain.

After about 120 seconds, when Memcached stopped
allocating memory for a while, INFINISWAP stopped
retreating as well. INFINISWAP resumed slab evictions
when Memcached’s allocation started growing again.

To understand whether INFINISWAP retreated fast
enough not to have any impact on Memcached perfor-
mance, we measured its throughput as well as median
and 99th-percentile latencies (Table 1), observing less
than 2% throughput loss and at most 4% increase in tail
latency. Results for the SYS workload were similar.

Time to Evict a Slab The median time to evict a slab
was 363 microseconds. A detailed breakdown of events
is provided in Appendix B.2.

The eviction speed of INFINISWAP daemon can keep
up with the rate of memory allocation in most cases. In
extreme cases, the impact on application performance
can be reduced by adjusting HeadRoom.

11

12
8 47

0

20
06

12
1 63

0 85
0

20
7 11

01

34
47

22
4

16
48

4590

10
69 13
54

0
1000
2000
3000
4000
5000

10
0%

75
%

50
%

10
0%

75
%

50
%

10
0%

75
%

50
%

10
0%

75
%

50
%

10
0%

75
%

VoltDB PowerGraph Memcached
ETC

Memcached
SYS

Spark

C
om

pl
et

io
n

tim
e (

s)

(a) Without INFINISWAP

11
6 38

2

46
3

78 23
2

33
3

20
9

41
1 59
3

22
8

39
9 10

08

10
78

11
50

0
1000
2000
3000
4000
5000

10
0%

75
%

50
%

10
0%

75
%

50
%

10
0%

75
%

50
%

10
0%

75
%

50
%

10
0%

75
%

VoltDB PowerGraph Memcached
ETC

Memcached
SYS

Spark

C
om

pl
et

io
n

tim
e (

s)

(b) INFINISWAP

Figure 16: Median completion times of containers for different configurations in the cluster experiment. INFINISWAP’s benefits
translate well to a larger scale in the presence of high application concurrency.

7.4 Cluster-Wide Performance

So far we have considered INFINISWAP’s performance
for individual applications and analyzed its components.
In this section, we deploy INFINISWAP on a 32-machine
RDMA cluster and observe whether these benefits hold
in the presence of concurrency and at scale.

Methodology. For this experiment, we used the same
applications, workloads, and configurations from Sec-
tion 7.2 to create about 90 containers. We created
an equal number of containers for each application-
workload combination. About 50% of them were using
the 100% configuration, close to 30% used the 75% con-
figuration, and the rest used the 50% configuration.

We placed these containers randomly across 32 ma-
chines to create an memory imbalance scenario similar
to those shown in Figure 2 and started all the contain-
ers at the same time. We measured completion times for
the workload running each container; for VoltDB and
Memcached completion time translates to transactions-
or operations-per-second.

7.4.1 Cluster Utilization

Figure 15a shows that INFINISWAP increased total clus-
ter memory utilization by 1.47× by increasing it to 60%
on average from 40.8%. Moreover, INFINISWAP sig-
nificantly decreased memory imbalance (Figure 15b):
the maximum-to-median utilization ratio decreased from
2.36× to 1.6× and the maximum-to-minimum utiliza-
tion ratio decreased from 22.5× to 2.7×.

Increase in Network Utilization. We also measured
the total amount of network traffic over RDMA in the
case of INFINISWAP. This amounted to less than 1.88 TB
over 1300 seconds across 32 machines or 380 Mbps on
average for each machine, which is less than 1% of each
machine’s 56 Gbps interface.

7.4.2 Application-Level Performance

Finally, Figure 16 shows the overall performance of IN-
FINISWAP. We observe that INFINISWAP’s benefits are
not restricted only to microbenchmarks, and it works
well in the presence of cluster dynamics of many applica-
tions. Although improvements are sometimes lower than
those observed in controlled microbenchmarks, INFIN-
ISWAP still provides 3×–6× improvements for the 50%
configurations.

8 Discussion and Future Work
Slab Size. For simplicity and efficiency, unlike some
remote paging systems [38], INFINISWAP uses moder-
ately large slabs (SlabSize), instead of individual pages,
for remote memory management. This reduces INFIN-
ISWAP’s meta-data management overhead. However, too
large a SlabSize can lower flexibility and decrease space
efficiency of remote memory. Selecting the optimal slab
size to find a good balance between management over-
head and memory efficiency is part of our future work.

Application-Aware Design. Although application
transparency in INFINISWAP provides many benefits, it
limits INFINISWAP’s performance for certain applica-
tions. For example, database applications have hot and
cold tables, and adapting to their memory access patterns
can bring considerable performance benefits [74]. It may
even be possible to automatically infer memory access
patterns to gain significant performance benefits [36].

OS-Aware Design. Relying on swapping allows IN-
FINISWAP to provide remote memory access without OS
modifications. However, swapping introduces unavoid-
able overheads, such as context switching. Furthermore,
the amount of swapped data can vary significantly over
time and across workloads even for the same application.
Currently, INFINISWAP cannot provide predictable per-
formance without any controllable swap mechanism in-
side the OS. We would like to explore what can be done
if we are allowed to modify OS-level decisions, such

12

as changing its memory allocator or not making context
switches due to swapping.

Application Differentiation. Currently, INFINISWAP
provides remote memory to all the applications running
on the machine. It cannot distinguish between pages
from specific applications. Also, there are no limitations
in remote memory usage for each application. Being able
to differentiate the source of a page will allow us to man-
age resources better and isolate applications.

Network Bottleneck. INFINISWAP assumes that it
does not have to compete with other applications for the
RDMA network; i.e., the network is not a bottleneck.
However, as the number of applications using RDMA
increases, contentions will increase as well. Addressing
this problem requires mechanisms to provide isolation in
the network among competing applications.

9 Related Work
Resource Disaggregation. To decouple resource scal-
ing and to increase datacenter efficiency, resource dis-
aggregation and rack-scale computing have received sig-
nificant attention in recent years, with memory disaggre-
gation being the primary focus [10–12, 33, 49, 56, 57].
Recent feasibility studies [42, 53, 70] have shown that
memory disaggregation may indeed be feasible even at
a large scale, modulo RDMA deployment at datacenter-
scale [48, 79]. INFINISWAP realizes this vision in prac-
tice and exposes the benefits of memory disaggregation
to any user application without modifications.

Remote Memory Paging. Paging out to remote mem-
ory instead of local disks is a known idea [25, 31, 37, 39–
41, 58, 64]. However, their performance and promises
were often limited by slow networks and high CPU over-
heads. Moreover, they rely on central coordination for
remote server selection, eviction, and load balancing. IN-
FINISWAP focuses on a decentralized solution for the
RDMA environment.

HPBD [55] and Mellanox nbdX [2] come the clos-
est to INFINISWAP. Both of them can be considered
as network-attached-storage (NAS) systems that use
RAMdisk on the server side and are deployed over
RDMA networks. However, there are several major dif-
ferences that make INFINISWAP more efficient, resilient,
and load balanced. First, they rely on remote RAMdisks,
and data copies to and from RAMdisks become CPU-
bound; in contrast, INFINISWAP does not involve remote
CPUs, which increases efficiency. Second, they do not
perform dynamic memory management, ignoring possi-
bilities of evictions and subsequent issues. Finally, they
do not consider fault tolerance nor do they attempt to
minimize the impact of failures.

Software Distributed Shared Memory (DSM). DSM
systems [29, 54, 65] expose a shared global address space

to user applications. Traditionally, these systems have
suffered from communication overheads to maintain co-
herence. To avoid coherence costs, the HPC commu-
nity has favored the Partitioned Global Address Space
(PGAS) model [30, 34] instead. However, PGAS systems
require complete rewriting of user applications with ex-
plicit awareness of remote data accesses. With the ad-
vent of RDMA, there has been a renewed interest in
DSM research, especially via the key-value interface
[35, 51, 60, 63, 66, 69]. However, most of these solutions
are either limited by their interface or require careful re-
thinking/rewriting of user applications. INFINISWAP, on
the contrary, is a transparent, efficient, and scalable solu-
tion that opportunistically leverages remote memory.

10 Conclusion
This paper rethinks the well-known remote memory pag-
ing problem in the context of RDMA. We have pre-
sented INFINISWAP, a pragmatic solution for memory
disaggregation without requiring any modifications to
applications, OSes, or hardware. Because CPUs are not
involved in INFINISWAP’s data plane, we have pro-
posed scalable, decentralized placement and eviction al-
gorithms leveraging the power of many choices. Our in-
depth evaluation of INFINISWAP on unmodified VoltDB,
Memcached, PowerGraph, GraphX, and Apache Spark
has demonstrated its advantages in substantially improv-
ing throughputs (up to 16.3×), median latencies (up
to 5.5×), and tail latencies (up to 58×) over disks. It
also provides benefits over existing RDMA-based remote
memory paging solutions by avoiding remote CPU in-
volvements. INFINISWAP increases the overall memory
utilization of a cluster, and its benefits hold at scale.

Acknowledgments
Special thanks go to the entire CloudLab team – es-
pecially Robert Ricci, Leigh Stoller, and Gary Wong
– for pooling together enough resources to make IN-
FINISWAP experiments possible. We would also like to
thank the anonymous reviewers and our shepherd, Mike
Dahlin, for their insightful comments and feedback that
helped improve the paper. This work was supported
in part by National Science Foundation grants CCF-
1629397, CNS-1563095, CNS-1617773, by the ONR
grant N00014-15-1-2163, and by an Intel grant on low-
latency storage systems.

References
[1] A Twitter Analog to PageRank.
http://thenoisychannel.com/2009/01/13/

a-twitter-analog-to-pagerank.

[2] Accelio based network block device.
https://github.com/accelio/NBDX.

13

http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank
http://thenoisychannel.com/2009/01/13/a-twitter-analog-to-pagerank
https://github.com/accelio/NBDX

[3] Amazon EC2 Pricing.
https://aws.amazon.com/ec2/pricing.
Accessed: 2017-02-02.

[4] Apache Hadoop NextGen MapReduce (YARN).
http://goo.gl/etTGA.

[5] CloudLab. https://www.cloudlab.us.

[6] Fio - Flexible I/O Tester.
https://github.com/axboe/fio.

[7] Google Compute Engine Pricing. https:
//cloud.google.com/compute/pricing.
Accessed: 2017-02-02.

[8] Google Container Engine. https:
//cloud.google.com/container-engine/.

[9] Graph Analytics Benchmark in CloudSuite. http:
//parsa.epfl.ch/cloudsuite/graph.html.

[10] HP Moonshot System: The world’s first
software-defined servers. http://h10032.www1.
hp.com/ctg/Manual/c03728406.pdf.

[11] HP: The Machine. http://www.labs.hpe.com/
research/themachine/.

[12] Intel RSA. http://www.intel.com/content/
www/us/en/architecture-and-technology/

rsa-demo-x264.html.

[13] Kubernetes. http://kubernetes.io.

[14] Linux memory management. http:
//www.tldp.org/LDP/tlk/mm/memory.html.

[15] Linux Multi-Queue Block IO Queueing
Mechanism (blk-mq).
https://www.thomas-krenn.com/en/wiki/

Linux_Multi-Queue_Block_IO_Queueing_

Mechanism_(blk-mq).

[16] Mellanox ConnectX-3 User Manual.
http://www.mellanox.com/related-docs/

user_manuals/ConnectX-3_VPI_Single_

and_Dual_QSFP_Port_Adapter_Card_User_

Manual.pdf.

[17] Mellanox SX6036G Specifications.
http://www.mellanox.com/related-docs/

prod_gateway_systems/PB_SX6036G.pdf.

[18] Memcached - A distributed memory object
caching system. http://memcached.org.

[19] Microsoft Azure Cloud Services Pricing.
https://azure.microsoft.com/en-us/

pricing/details/cloud-services/.
Accessed: 2017-02-02.

[20] Redis, an in-memory data structure store.
http://redis.io.

[21] Stackbd: Stacking a block device.
https://github.com/OrenKishon/stackbd.

[22] TPC Benchmark C (TPC-C).
http://www.tpc.org/tpcc/.

[23] VoltDB.
https://github.com/VoltDB/voltdb.

[24] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Effective Straggler Mitigation: Attack of
the Clones. In NSDI, 2013.

[25] E. A. Anderson and J. M. Neefe. An exploration
of network RAM. Technical Report
UCB/CSD-98-1000, EECS Department,
University of California, Berkeley, Dec 1994.

[26] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In SIGMETRICS, 2012.

[27] L. A. Barroso, J. Clidaras, and U. Hölzle. The
datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis
Lectures on Computer Architecture, 8(3):1–154,
2013.

[28] P. Bodik, I. Menache, M. Chowdhury, P. Mani,
D. Maltz, and I. Stoica. Surviving failures in
bandwidth-constrained datacenters. In
SIGCOMM, 2012.

[29] J. B. Carter, J. K. Bennett, and W. Zwaenepoel.
Implementation and performance of Munin. In
SOSP, 1991.

[30] B. L. Chamberlain, D. Callahan, and H. P. Zima.
Parallel programmability and the Chapel language.
International Journal of High Performance
Computing Applications, 21(3):291–312, 2007.

[31] H. Chen, Y. Luo, X. Wang, B. Zhang, Y. Sun, and
Z. Wang. A transparent remote paging model for
virtual machines. In International Workshop on
Virtualization Technology, 2008.

[32] M. Chowdhury, S. Kandula, and I. Stoica.
Leveraging endpoint flexibility in data-intensive
clusters. In SIGCOMM, 2013.

[33] P. Costa, H. Ballani, K. Razavi, and I. Kash.
R2C2: A network stack for rack-scale computers.
In SIGCOMM, 2015.

14

https://aws.amazon.com/ec2/pricing
http://goo.gl/etTGA
https://www.cloudlab.us
https://github.com/axboe/fio
https://cloud.google.com/compute/pricing
https://cloud.google.com/compute/pricing
https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/
http://parsa.epfl.ch/cloudsuite/graph.html
http://parsa.epfl.ch/cloudsuite/graph.html
http://h10032.www1.hp.com/ctg/Manual/c03728406.pdf
http://h10032.www1.hp.com/ctg/Manual/c03728406.pdf
http://www.labs.hpe.com/research/themachine/
http://www.labs.hpe.com/research/themachine/
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-demo-x264.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-demo-x264.html
http://www.intel.com/content/www/us/en/architecture-and-technology/rsa-demo-x264.html
http://kubernetes.io
http://www.tldp.org/LDP/tlk/mm/memory.html
http://www.tldp.org/LDP/tlk/mm/memory.html
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)
http://www.mellanox.com/related-docs/user_manuals/ConnectX-3_VPI_Single_and_Dual_QSFP_Port_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-3_VPI_Single_and_Dual_QSFP_Port_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-3_VPI_Single_and_Dual_QSFP_Port_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/user_manuals/ConnectX-3_VPI_Single_and_Dual_QSFP_Port_Adapter_Card_User_Manual.pdf
http://www.mellanox.com/related-docs/prod_gateway_systems/PB_SX6036G.pdf
http://www.mellanox.com/related-docs/prod_gateway_systems/PB_SX6036G.pdf
http://memcached.org
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
https://azure.microsoft.com/en-us/pricing/details/cloud-services/
http://redis.io
https://github.com/OrenKishon/stackbd
http://www.tpc.org/tpcc/
https://github.com/VoltDB/voltdb

[34] D. E. Culler, A. Dusseau, S. C. Goldstein,
A. Krishnamurthy, S. Lumetta, T. Von Eicken, and
K. Yelick. Parallel programming in Split-C. In
Supercomputing, 1993.

[35] A. Dragojević, D. Narayanan, O. Hodson, and
M. Castro. FaRM: Fast remote memory. In NSDI,
2014.

[36] S. R. Dulloor, A. Roy, Z. Zhao, N. Sundaram,
N. Satish, R. Sankaran, J. Jackson, and K. Schwan.
Data tiering in heterogeneous memory systems. In
EuroSys, 2016.

[37] S. Dwarkadas, N. Hardavellas, L. Kontothanassis,
R. Nikhil, and R. Stets. Cashmere-VLM: Remote
memory paging for software distributed shared
memory. In IPPS/SPDP, 1999.

[38] M. J. Feeley, W. E. Morgan, E. Pighin, A. R.
Karlin, H. M. Levy, and C. A. Thekkath.
Implementing global memory management in a
workstation cluster. In SOSP, 1995.

[39] M. J. Feeley, W. E. Morgan, E. Pighin, A. R.
Karlin, H. M. Levy, and C. A. Thekkath.
Implementing global memory management in a
workstation cluster. In ACM SIGOPS Operating
Systems Review, volume 29, pages 201–212.
ACM, 1995.

[40] E. W. Felten and J. Zahorjan. Issues in the
implementation of a remote memory paging
system. Technical Report 91-03-09, University of
Washington, Mar 1991.

[41] M. D. Flouris and E. P. Markatos. The network
RamDisk: Using remote memory on
heterogeneous NOWs. Journal of Cluster
Computing, 2(4):281–293, 1999.

[42] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker.
Network requirements for resource disaggregation.
In OSDI, 2016.

[43] A. Ghodsi, M. Zaharia, B. Hindman,
A. Konwinski, S. Shenker, and I. Stoica. Dominant
resource fairness: Fair allocation of multiple
resource types. In NSDI, 2011.

[44] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica.
Choosy: Max-min fair sharing for datacenter jobs
with constraints. In EuroSys, 2013.

[45] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed
graph-parallel computation on natural graphs. In
OSDI, 2012.

[46] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw,
M. J. Franklin, and I. Stoica. GraphX: Graph
processing in a distributed dataflow framework. In
OSDI, 2014.

[47] R. Grandl, G. Ananthanarayanan, S. Kandula,
S. Rao, and A. Akella. Multi-resource packing for
cluster schedulers. In SIGCOMM, 2014.

[48] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye,
and M. Lipshteyn. RDMA over commodity
Ethernet at scale. In SIGCOMM, 2016.

[49] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi,
and S. Shenker. Network support for resource
disaggregation in next-generation datacenters. In
HotNets, 2013.

[50] B. Hindman, A. Konwinski, M. Zaharia,
A. Ghodsi, A. Joseph, R. Katz, S. Shenker, and
I. Stoica. Mesos: A Platform for Fine-Grained
Resource Sharing in the Data Center. In NSDI,
2011.

[51] A. Kalia, M. Kaminsky, and D. G. Andersen.
Using RDMA efficiently for key-value services. In
SIGCOMM, 2014.

[52] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In
WWW, 2010.

[53] F. Li, S. Das, M. Syamala, and V. R. Narasayya.
Accelerating relational databases by leveraging
remote memory and RDMA. In SIGMOD, 2016.

[54] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM TOCS,
7(4):321–359, 1989.

[55] S. Liang, R. Noronha, and D. K. Panda. Swapping
to remote memory over Infiniband: An approach
using a high performance network block device. In
Cluster Computing, 2005.

[56] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K.
Reinhardt, and T. F. Wenisch. Disaggregated
memory for expansion and sharing in blade
servers. In ISCA, 2009.

[57] K. Lim, Y. Turner, J. R. Santos, A. AuYoung,
J. Chang, P. Ranganathan, and T. F. Wenisch.
System-level implications of disaggregated
memory. In HPCA, 2012.

[58] E. P. Markatos and G. Dramitinos. Implementation
of a reliable remote memory pager. In USENIX
ATC, 1996.

15

[59] F. Mietke, R. Rex, R. Baumgartl, T. Mehlan,
T. Hoefler, and W. Rehm. Analysis of the memory
registration process in the Mellanox Infiniband
software stack. In Euro-Par, 2006.

[60] C. Mitchell, Y. Geng, and J. Li. Using one-sided
RDMA reads to build a fast, CPU-efficient
key-value store. In USENIX ATC, 2013.

[61] R. Mittal, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall,
D. Zats, et al. TIMELY: RTT-based congestion
control for the datacenter. In SIGCOMM, 2015.

[62] M. Mitzenmacher, A. W. Richa, and R. Sitaraman.
The power of two random choices: A survey of
techniques and results. Handbook of Randomized
Computing, pages 255–312, 2001.

[63] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze,
S. Kahan, and M. Oskin. Latency-tolerant
software distributed shared memory. In USENIX
ATC, 2015.

[64] T. Newhall, S. Finney, K. Ganchev, and
M. Spiegel. Nswap: A network swapping module
for Linux clusters. In Euro-Par, 2003.

[65] B. Nitzberg and V. Lo. Distributed shared
memory: A survey of issues and algorithms.
Computer, 24(8):52–60, 1991.

[66] J. Ousterhout, P. Agrawal, D. Erickson,
C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra,
A. Narayanan, G. Parulkar, M. Rosenblum, S. M.
Rumble, E. Stratmann, and R. Stutsman. The case
for RAMClouds: Scalable high performance
storage entirely in DRAM. SIGOPS OSR, 43(4),
2010.

[67] K. Ousterhout, P. Wendell, M. Zaharia, and
I. Stoica. Sparrow: Distributed, low latency
scheduling. In SOSP, 2013.

[68] G. Park. Brief announcement: A generalization of
multiple choice balls-into-bins. In PODC, 2011.

[69] R. Power and J. Li. Piccolo: Building fast,
distributed programs with partitioned tables. In
OSDI, 2010.

[70] P. S. Rao and G. Porter. Is memory disaggregation
feasible?: A case study with Spark SQL. In ANCS,
2016.

[71] C. Reiss. Understanding Memory Configurations
for In-Memory Analytics. PhD thesis, EECS
Department, University of California, Berkeley,
Aug 2016.

[72] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz,
and M. A. Kozuch. Heterogeneity and dynamicity
of clouds at scale: Google trace analysis. In SoCC,
2012.

[73] M. Schwarzkopf, A. Konwinski,
M. Abd-El-Malek, and J. Wilkes. Omega: flexible,
scalable schedulers for large compute clusters. In
EuroSys, 2013.

[74] R. Stoica and A. Ailamaki. Enabling efficient OS
paging for main-memory OLTP databases. In
Ninth International Workshop on Data
Management on New Hardware, 2013.

[75] S. Venkataraman, A. Panda, G. Ananthanarayanan,
M. J. Franklin, and I. Stoica. The power of choice
in data-aware cluster scheduling. In OSDI, 2014.

[76] A. Verma, L. Pedrosa, M. Korupolu,
D. Oppenheimer, E. Tune, and J. Wilkes.
Large-scale cluster management at google with
Borg. In EuroSys, 2015.

[77] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[78] Q. Zhang, M. F. Zhani, S. Zhang, Q. Zhu,
R. Boutaba, and J. L. Hellerstein. Dynamic
energy-aware capacity provisioning for cloud
computing environments. In ICAC, 2012.

[79] Y. Zhu, H. Eran, D. Firestone, C. Guo,
M. Lipshteyn, Y. Liron, J. Padhye, S. Raindel,
M. H. Yahia, and M. Zhang. Congestion control
for large-scale RDMA deployments. In
SIGCOMM, 2015.

A Characteristics of the Benchmarks
We ran each benchmark application in separate contain-
ers with 16 GB memory (32 GB only for Spark) and mea-
sured their real-time CPU and memory utilizations from
cold start. We make the following observations from
these experiments.

First, while memory utilizations of all applications in-
creased gradually before plateauing, Spark has signifi-
cantly higher memory utilization along with very high
CPU usage (Figure 17a). This is perhaps one of the pri-
mary reasons why Spark starts thrashing when it cannot
keep its working set in memory (i.e., in 75% and 50%
configurations). While GraphX exhibits a similar trend
(Figure 17e), its completion time is much smaller for
the same workload. Even though it starts thrashing in the

16

0
20
40
60
80

100

0 100 200 300 400 500

U
ti

li
za

ti
o
n

 (
%

)

Time (s)

CPU Memory

(a) Spark

0
20
40
60
80

100

0 100 200 300

U
ti

li
za

ti
o
n

 (
%

)

Time (s)

(b) Memcached-ETC

0
20
40
60
80

100

0 100 200 300

U
ti

li
za

ti
o
n

 (
%

)

Time (s)

(c) Memcached-SYS

0
20
40
60
80

100

0 100 200

U
ti

li
za

ti
o
n

 (
%

)

Time (s)

(d) VoltDB

0
20
40
60
80

100

0 100 200

U
ti

li
za

ti
o
n

 (
%

)

Time (s)

(e) GraphX

0
20
40
60
80

100

0 100

U
ti

li
za

ti
o
n

 (
%

)

Time (s)

(f) PowerGraph

Figure 17: CPU and memory usage characteristics of the
benchmarked applications and workloads running on contain-
ers with 16 GB memory (32 GB only for Spark). Note the in-
creasingly smaller timescales in different X-axes due to smaller
completion times of each workload.

50% configuration, it can eventually complete before spi-
raling out of control.

Infiniswap
Daemon 1

Infiniswap
Block Device 1

QUERY_MEM

FREE_MEM

MAP

MR_INFO

Decide where to place

Register preallocated
memory to RDMA
connection

QUERY_MEM

FREE_MEM

Infiniswap
Daemon 2

Update mapping

(a) Sequence diagram during placement

Infiniswap
Block

Device 2
Infiniswap
Daemon 1

CHECK_ACTIVITY

ACTIVITY

EVICT

DONE

Decide which slabs
to evict

Process EVICT message;
Context switch;
Handle in-flight requests

CHECK_ACTIVITY

ACTIVITY

Infiniswap
Block

Device 3

Release memory

Infiniswap
Block

Device 1

(b) Sequence diagram during eviction

Figure 18: Decentralized placement and eviction in INFIN-
ISWAP. (a) INFINISWAP block devices use the power of two
choices to select machines with the most available memory to
place each slab. (b) INFINISWAP daemons use the power of
many choices to select slab(s) to evict; in this case, the daemon
is contacting 3 block devices to evict 2 slabs.

Second, other than Spark and GraphX, VoltDB has
at least 3× higher average CPU utilization than other
benchmarks (Figure 17d). This is one posible explana-
tion of its smaller improvements with INFINISWAP for
the 50% and 75% cases in comparison to other less CPU-
heavy applications – overheads of paging (e.g., context
switch) was possibly a considerable fraction of VoltDB’s
runtimes.

Third, both ETC and SYS workloads gradually allo-
cate more memory over time, but ETC plateaus early
because it has mostly GET operations (Figure 17b),
whereas SYS keeps increasing because of its large num-
ber of SET operations (Figure 17c).

Finally, PowerGraph is the most efficient of the work-
loads we considered (Figure 17f). It completes faster and
has the smallest resource usage footprint, both of which
contribute to its consistent performances using INFIN-
ISWAP across all configurations.

B Control Plane Details
B.1 Control Messages

INFINISWAP components use message passing to transfer
memory information and memory service agreements.

17

0 0.26 54.25

Send QUERY_MEM messages

Receive FREE_MEM from both daemons
pick one and send MAP

RDMA register at daemon
and receive MR_INFO

Time (ms)

(a) Timing diagram of placement

0 2 176 189 363349
Time (us)

Receive CHECK_ACTIVITY
Reply back with ACTIVITY

Receive EVICT
Context switch and
process EVICT

Wait for in-flight
requests to complete

DONE

(b) Timing diagram of eviction

Figure 19: Timing diagrams (not drawn to scale) from a INFIN-
ISWAP block device’s perspective during decentralized place-
ment and eviction events.

There are eight message types; the first four of them are
used by the placement algorithm (Figure 18a) and the
rest are used by the eviction algorithm (Figure 18b).
1. QUERY MEM: Block devices send it to get the num-

ber of available memory slabs on the daemon.
2. FREE MEM: Daemons respond to QUERY MEM re-

quests with the number of available memory slabs.
3. MAP: Block device confirms that it has decided to

use one memory slab from this daemon.
4. MR INFO: Daemon sends memory registration in-

formation (rkey, addr, len) of an available memory
slab to the block device in response to MAP.

5. CHECK ACTIVITY: Daemons use this message to
ask for paging activities of specific memory slab(s).

6. ACTIVITY: Block device’s response to the
CHECK ACTIVITY messages.

7. EVICT: Daemons alert the block device which mem-
ory slab(s) it has selected to evict.

8. DONE: After completely redirecting the requests to
the to-be-evicted memory slab(s), block device re-
sponds with this message so that the daemon can
safely evict and return physical memory to its local
OS.

B.2 Breakdown of Control Plane Timings

Here we breakdown the timing results from Section 7.3.
Figures 19a and 19b provide details of placement and
eviction timings from a INFINISWAP block device’s per-
spective.

Parameter Value
Datacenter OPEX $0.04/W/month
Electricity Cost $0.067/kWh

InfiniBand NIC Power 8.41W [16]
InfiniBand Switch Power 231W [17]

Power Usage Effectiveness (PUE) 1.1

Table 2: Cost Model Parameters [27].

9.0%

24.7% 22.4%

2.0% 2.6%
0%

10%

20%

30%

Google Amazon Microsoft

R
em

ot
e

M
em

or
y

Be
ne

fit Regular
Discounted

Figure 20: Revenue increases with INFINISWAP under three
different cloud vendors’ regular and discounted pricing models.

C Cost-Benefit Analysis
In many production clusters, memory and CPU usages
are unevenly distributed across machines (§2.3) and re-
sources are often underutilized [72, 78]. Using mem-
ory disaggregation via INFINISWAP, machines with high
memory demands can use idle memory from other ma-
chines, thus enabling more applications to run simultane-
ously on a cluster and providing more economic benefits.
Here we perform a simple cost-benefit analysis to get a
better understanding of such benefits.

We limit our analysis only to RDMA-enabled clusters,
and therefore, do not consider capital expenditure and de-
preciation cost of acquiring RDMA hardware. The major
source of operational expenditure (OPEX) comes from
the energy consumption of Infiniband devices – the pa-
rameters of our cost model are listed in Table 2. The av-
erage cost of INFINISWAP for a single machine is around
$1.45 per month.

We also assume that there are more idle CPUs than
idle memory in the cluster, and INFINISWAP’s benefits
are limited by the latter. For example, on average, about
40% and 30% of allocated CPUs and memory are re-
ported to remain unused in Google clusters [72]. We use
the price lists from Google Cloud Compute [7], Ama-
zon EC2 [3], and Microsoft Azure [19] to build the ben-
efit model. INFINISWAP is found to increase total clus-
ter memory utilization by around 20% (7.4.1), varying
slightly across different application deployment scenar-
ios. We assume that there are 20% physical memory on
each machine that has been allocated to local applica-
tions but the remainder is used as remote memory via
INFINISWAP. The additional benefit is then the price of

18

20% physical memory after deducting the cost of operat-
ing Infiniband.

There are several price models from different vendors.
In a model we call the regular pricing model, resource
availability is strictly guaranteed. In another model from
Google (preemptible instance) and Amazon (spot in-
stance), resource can be preempted or become unavail-
able based on resource availability in a cluster. Of course,
the resource price in the latter model is much lower

than the regular model. We call it the discounted pricing
model.

If INFINISWAP can ensure unnoticeable performance
degradation to applications, remote memory can be
counted under regular pricing; otherwise, discounted
pricing should be used. Figure 20 shows benefits of IN-
FINISWAP. With an ideal INFINISWAP, cluster vendors
can gain up to 24.7% additional revenue. If we apply the
discounted model, then it decreases to around 2%.

19

	Introduction
	Motivation
	Background
	Potential Benefits
	Characteristics of Memory Imbalance

	Infiniswap Overview
	Problem Statement
	Architectural Overview

	Efficient Memory Disaggregation via Infiniswap Block Device
	Slab Management
	Remote Slab Placement
	I/O Pipelines
	Handling Slab Evictions
	Handling Remote Failures

	Transparent Remote Memory Reclamation via Infiniswap Daemon
	Memory Management
	Decentralized Slab Eviction

	Implementation
	Evaluation
	Infiniswap Performance as a Block Device
	Infiniswap's Impact on Applications
	VoltDB
	Memcached
	PowerGraph
	GraphX and Apache Spark

	Performance of Infiniswap Components
	Infiniswap Block Device
	Infiniswap Daemon

	Cluster-Wide Performance
	Cluster Utilization
	Application-Level Performance

	Discussion and Future Work
	Related Work
	Conclusion
	Characteristics of the Benchmarks
	Control Plane Details
	Control Messages
	Breakdown of Control Plane Timings

	Cost-Benefit Analysis

