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ABSTRACT
Although the MapReduce programming model has so far
been highly successful, not all applications are well suited
to this model. Spark bridges this gap by providing seam-
less support for iterative and interactive jobs that are hard
to express using the acyclic data flow model pioneered by
MapReduce. While benchmarking Spark, we identified that
the default broadcast mechanism implemented in the Spark
prototype is a hindrance toward its scalability.

In this report, we implement, evaluate, and compare four
different broadcast mechanisms (including the default one)
for Spark. We outline the basic requirements of a broad-
cast mechanism for Spark and analyze each of the compared
broadcast mechanisms under that guideline. Our experi-
ments in high-speed, low-latency, and cooperative data cen-
ter environments also shed light on characteristics of multi-
cast and broadcast mechanisms in data centers in general.

1. INTRODUCTION
With the advent of MapReduce [12] and similar frame-

works as well as of cloud services like Amazon’s EC2 [1], a
new model of cluster computing has become mainstream in
recent years. In this model, data-parallel computations are
executed on commodity clusters by systems that automati-
cally provide locality-aware scheduling, fault tolerance, and
load balancing. MapReduce [12] pioneered this model, while
systems like Dryad [13] and Map-Reduce-Merge [16] gener-
alized the types of data flows supported. These systems
achieve their scalability and fault tolerance by providing a
programming model where the user creates acyclic data flow
graphs to pass input data through a set of operators. This
allows the underlying system to manage scheduling and to
react to faults without user intervention.

Although this programming model has been highly suc-
cessful, some applications cannot be expressed efficiently as
acyclic data flows. Spark [17] is a framework optimized for
one such type of applications - iterative jobs, where a dataset
is shared across multiple parallel operations. Spark provides
a functional programming model similar to MapReduce, but
also lets users ask for data to be cached between iterations,
leading to up to 10x better performance than Hadoop on
some jobs. This is achieved without sacrificing MapReduce’s
fault tolerance. Moreover, the ability of Spark to load a
dataset into memory and query it repeatedly makes it espe-
cially suitable for interactive analysis of big datasets.

While benchmarking Spark against Hadoop, we observed
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that the default broadcast mechanism (CHB1) in its proto-
type implementation is an impediment toward its scalabil-
ity. Specifically, the default broadcast implementation takes
a centralized approach where the broadcast variable is seri-
alized and written to the HDFS by the sender and all the
receivers read and deserialize it to reconstruct the variable -
essentially creating a bottleneck at the HDFS. Further pon-
dering revealed that in addition to scalability, performance,
fault tolerance, and adaptability to unstructured clusters
are three more major requirements for a viable broadcast
mechanism for Spark and similar frameworks running on
commodity clusters.

In this report, we consider three more broadcast mech-
anisms: Chained Streaming Broadcast (CSB), BitTorrent
Broadcast (BTB), and SplitStream Broadcast (SSB), each
with diverse characteristics. We have implemented, evalu-
ated, and compared them to identify the better choice for
broadcast in data center environments. While multicast and
broadcast are well understood topics in computer networks,
to the best of our knowledge, all of them assume that nodes
are distributed across the Internet; whereas, we are con-
cerned about high-speed, low-latency, and cooperative data
center environments. From that perspective, in addition to
making Spark more scalable, we expect our work to enrich
the networking literature as well.

The remainder of the report is organized as follows. Sec-
tion 2 provides an overview of the Spark framework along
with several working examples of iterative jobs written in
Spark. In Section 3, we examine performance and scalabil-
ity characteristics of Spark and identify broadcast as a po-
tential candidate for improving Spark scalability. Section 4
lists the requirements of an efficient and scalable broadcast
mechanism for Spark and similar frameworks that run in a
shared data center environment. In Section 5, we describe
four different broadcast mechanisms accompanied by their
evaluation results and analyze how each of them fulfill the
requirements. Section 6 presents more experimental results
on the performance and scalability of CSB, which we have
found to be the best of the four compared mechanisms. We
conclude with a discussion of future work in Section 7.

2. AN OVERVIEW OF SPARK
In this section, we provide an overview of Spark objectives,

job execution model, and its programming model. We also
highlight different aspects Spark using three examples. Of
them, the alternating least squares method example (Sec-

1CHB stands for Centralized HDFS Broadcast.
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Figure 1: Comparison of job execution in Spark and
Hadoop/Dryad models. In Spark, the same worker
processes are reused across iterations and reads only
happen once.

tion 2.4.3) is used for benchmarking purposes throughout
the rest of this report.

2.1 Objectives
Spark is designed with two specific types of jobs in mind

that the existing acyclic data flow-based programming mod-
els are not good at. These are:

1. Iterative jobs: Many common machine learning algo-
rithms apply a function repeatedly to the same dataset
to optimize a parameter (e.g., through gradient de-
scent). While each iteration can be expressed as a
MapReduce/Dryad job, each job must reload the data
from disk, incurring a significant performance penalty.

2. Interactive analysis: Hadoop is often used to per-
form ad-hoc exploratory queries on big datasets using
SQL interfaces such as Pig [14] and Hive [2]. Ideally,
a user would be able to load a dataset of interest into
memory across a number of machines and query it re-
peatedly. However, with Hadoop, each query incurs
significant latency (tens of seconds) because it runs as
a separate MapReduce job and reads data from disk.

While providing better support for these jobs, Spark wants
to leverage the functional programming interface of Scala to
provide a clean, integrated programming experience to end
users.

Finally, we want to retain the fine grained fault tolerance
model of MapReduce in Spark.

2.2 Job Execution Model
To use Spark, developers write a driver program that im-

plements the high-level control flow of a Spark job. This
driver program runs in the master node of a Spark cluster
and launches various operations in parallel when program-
mers invoke operations like map, filter and reduce (explained
later) by passing closures (functions) to the slaves (also re-
ferred to as workers).

As is typical in functional programming, these closures
can refer to variables in the scope where they are created.
Normally, when Spark runs a closure on a worker node,
these variables are copied to the worker. In addition, users

can manually broadcast variables (detailed later) to worker
nodes that are not contained within the closure and instruct
the workers to cache them.

What sets Spark apart from MapReduce-like frameworks
is that in Spark the same worker nodes are reused across iter-
ations. The workers hold onto the cached variables and reuse
them without reading from the file system or re-receiving
from the master. In comparison, standard MapReduce (con-
sequently, Hadoop) does not support multi-stage jobs, so the
only way of supporting iterative jobs is to store results in
the file system at the end of every iteration and read stored
results in the next iteration. Dryad, on the other hand, sup-
ports the notion of multi-stage jobs, but there is no support
for cross-iteration data persistence and broadcast variables.

2.3 Programming Model
Spark provides two main abstractions for parallel pro-

gramming: resilient distributed datasets and parallel oper-
ations on these datasets (invoked by passing a function to
apply on a dataset). In addition, Spark supports two re-
stricted types of shared variables that can be used in func-
tions running on the cluster.

2.3.1 Resilient Distributed Datasets (RDDs)
A resilient distributed dataset (RDD) is a read-only collec-

tion of objects partitioned across a set of machines that can
be rebuilt if a partition is lost. The elements of an RDD need
not exist in physical storage; instead, a handle to an RDD
contains enough information to compute the RDD starting
from data in reliable storage. This means that RDDs can
always be reconstructed if nodes fail.

In Spark, each RDD is represented by a Scala object.
Spark lets programmers construct RDDs in four ways:

• From a file in a shared file system, such as the Hadoop
Distributed File System (HDFS).

• By “parallelizing” a Scala collection (e.g., an array) in
the driver program, which means dividing it into a
number of slices that will be sent to multiple nodes.

• By transforming an existing RDD. A dataset with ele-
ments of type A can be transformed into a dataset with
elements of type B using an operation called flatMap,
which passes each element through a user-provided
function of type A⇒ List[B].2 Other transformations
can be expressed using flatMap, including map (pass
elements through a function of type A⇒ B) and filter
(pick elements matching a predicate).

• By changing the persistence of an existing RDD. By
default, RDDs are lazy and ephemeral. That is, par-
titions of a dataset are materialized on demand when
they are used in a parallel operation (e.g., by passing
a block of a file through a map function), and are dis-
carded from memory after use.3 However, a user can
alter the persistence of an RDD through two actions:

– The cache action leaves the dataset lazy, but hints
that it should be kept in memory after the first
time it is computed, because it will be reused.

2flatMap has the same semantics as the map in MapReduce,
but map is usually used to refer to a one-to-one function of
type A⇒ B in Scala.
3Similar to“distributed collections” function in DryadLINQ.



– The save action evaluates the dataset and writes
it to a distributed filesystem such as HDFS. The
saved version is used in future operations on it.

2.3.2 Parallel Operations
Several parallel operations can be performed on RDDs:

• reduce: Combines dataset elements using an associa-
tive function to produce a result at the driver program.

• collect : Sends all elements of the dataset to the driver
program. For example, an easy way to update an array
in parallel is to parallelize, map and collect the array.

• foreach: Passes each element through a user provided
function. This is only done for the side effects of the
function (which might be to copy data to another sys-
tem or to update a shared variable as explained below).

Spark does not currently support a grouped reduce op-
eration as in MapReduce; reduce results are only collected
at one process (the driver)4. We plan to support grouped
reductions in the future using a “shuffle” transformation on
distributed datasets. However, even using a single reducer is
enough to express a variety of useful algorithms. For exam-
ple, a recent paper on MapReduce for machine learning on
multi-core systems [11] implemented ten learning algorithms
without supporting parallel reduction.

2.3.3 Shared Variables
Spark allows programmers create two restricted types of

shared variables to support two simple but common usage
patterns:

• Broadcast variables: If a large read-only piece of data
(e.g., a lookup table) is used in multiple parallel oper-
ations, it is preferable to distribute it to the workers
only once instead of packaging it with every closure.
Spark lets the programmer create a “broadcast vari-
able” object that wraps the value and ensures that it
is only copied to each worker once.

• Accumulators: These are variables that workers can
only “add” to using an associative operation, and that
only the driver can read. They can be used to im-
plement counters as in MapReduce and to provide a
more imperative syntax for parallel sums. Accumu-
lators can be defined for any type that has an “add”
operation and a “zero” value. Due to their “add-only”
semantics, they are easy to make fault-tolerant.

2.4 Examples
We now show some sample Spark programs. Note that we

omit variable types because Scala uses type inference, but
Scala is statically typed and performs comparably to Java.

2.4.1 Text Search
Suppose that we wish to count the lines containing errors

in a large log file stored in HDFS. This can be implemented
by starting with a file dataset object as follows:

val file = spark.textFile("hdfs://...")

val errs = file.filter(_.contains("ERROR"))

val ones = errs.map(_ => 1)

val count = ones.reduce(_+_)

4Local reductions are first performed at each node, however.

We first create a distributed dataset called file that rep-
resents the HDFS file as a collection of lines. We transform
this dataset to create the set of lines containing “ERROR”
(errs), and then map each line to a 1 and add up these ones
using reduce. The arguments to filter, map and reduce are
Scala syntax for function literals.

Note that errs and ones are lazy RDDs that are never
materialized. Instead, when reduce is called, each worker
node scans input blocks in a streaming manner to evaluate
ones, adds these to perform a local reduce, and sends its
local count to the driver. When used with lazy datasets in
this manner, Spark closely emulates MapReduce.

Where Spark differs from other frameworks is that it can
make some of the intermediate datasets persist across oper-
ations. For example, if wanted to reuse the errs dataset,
we could create a cached RDD from it as follows:

val cachedErrs = errs.cache()

We would now be able to invoke parallel operations on
cachedErrs or on datasets derived from it as usual, but
nodes would cache partitions of cachedErrs in memory af-
ter the first time they compute them, greatly speeding up
subsequent operations on it.

2.4.2 Logistic Regression
The following program implements logistic regression [7],

an iterative classification algorithm that attempts to find
a hyperplane w that best separates two sets of points. The
algorithm performs gradient descent: it starts w at a random
value, and on each iteration, it sums a function of w over
the data to move w in a direction that improves it. It thus
benefits greatly from caching the data in memory across
iterations. We do not explain logistic regression in detail,
but we use it to show a few new Spark features.

// Read points from a text file and cache them

val points = spark.textFile(...)

.map(parsePoint).cache()

// Initialize w to a random D-dimensional vector

var w = Vector.random(D)

// Run multiple iterations to update w

for (i <- 1 to ITERATIONS) {

val gradient = spark.accumulator(new Vector(D))

for (p <- points) { // Runs in parallel

val s = (1/(1+exp(-p.y*(w dot p.x)))-1)*p.y

gradient += s * p.x

}

w -= gradient.value

}

First, although we create an RDD called points, we pro-
cess it by running a for loop over it. The for keyword in
Scala is syntactic sugar for invoking the foreach method of
a collection with the loop body as a closure. That is, the
code for(p <- points){body} in this case is equivalent to
points.foreach(p => {body}). Therefore, we are invoking
Spark’s parallel foreach operation.

Second, to sum up the gradient, we use an accumulator
variable called gradient (with a value of type V ector). Note
that the loop adds to gradient using an overloaded += op-
erator. The combination of accumulators and for syntax
allows Spark programs to look much like imperative serial
programs. Indeed, this example differs from a serial version
of logistic regression in only three lines.



2.4.3 Alternating Least Squares
Our final example is an algorithm called alternating least

squares (ALS). ALS is used for collaborative filtering prob-
lems, such as predicting users’ ratings for movies that they
have not seen based on their movie rating history (as in the
Netflix Challenge). Unlike our previous examples, ALS is
CPU-intensive rather than data-intensive.

We briefly sketch ALS and refer the reader to [18] for
details. Suppose that we wanted to predict the ratings of u
users for m movies, and that we had a partially filled matrix
R containing the known ratings for some user-movie pairs.
ALS models R as the product of two matrices M and U
of dimensions m × k and k × u respectively; that is, each
user and each movie has a k-dimensional “feature vector”
describing its characteristics, and a user’s rating for a movie
is the dot product of its feature vector and the movie’s.
ALS solves for M and U using the known ratings and then
computes M ×U to predict the unknown ones. This is done
using the following iterative process:

1. Initialize M to a random value.

2. Optimize U given M to minimize error on R.

3. Optimize M given U to minimize error on R.

4. Repeat steps 2 and 3 until convergence.

ALS can be parallelized by updating different users /
movies on each node in steps 2 and 3. However, because
all of the steps use R, it is helpful to make R a broadcast
variable so that it does not get re-sent to each node on each
step. A Spark implementation of ALS that does is shown
below. Note that we parallelize the collection 0 until u (a
Scala range object) and collect it to update each array:

val Rb = spark.broadcast(R)

for (i <- 1 to ITERATIONS) {

U = spark.parallelize(0 until u)

.map(j => updateUser(j, Rb, M))

.collect()

M = spark.parallelize(0 until m)

.map(j => updateUser(j, Rb, U))

.collect()

}

3. MEASUREMENTS & IMPLICATIONS
In this section, we present a comparative performance

measurement of Spark against Hadoop on a large logistic
regression job and a detailed analysis of Spark scalability
characteristics on an ALS job using the Netflix dataset [5].
Our work in this report is motivated by our findings from
the breakdown of the later job.

3.1 Logistic Regression
We compared the performance of the logistic regression

job in Section 2.4.2 to an implementation of logistic regres-
sion for Hadoop, using a 29 GB dataset on m1.xlarge EC2
nodes with 4 cores each. The results are shown in Figure 2.
With Hadoop, each iteration takes 127s, because it runs as
an independent MapReduce job. With Spark, the first iter-
ation takes 174s (likely due to using Scala instead of Java),
but subsequent iterations take only 6s, each because they
reuse cached data. This allows the job to run up to 10×
faster.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 5 10 20 30

R
u

n
n

in
g

 T
im

e
 (

s)

Number of Iterations

Hadoop Spark

127 s / iteration

first iteration 174 s
further iterations 6 s

Figure 2: Logistic regression performance in Hadoop
and Spark (29GB dataset. All nodes: m1.xlarge
EC2 instances).

3.2 Alternating Least Squares
We have implemented the alternating least squares job

in Section 2.4.3 to measure the benefit of broadcast vari-
ables for iterative jobs that copy a shared dataset to multi-
ple worker nodes. We found that without using broadcast
variables, the time to resend the ratings matrix R on each
iteration dominated the job’s running time.

Figure 3 shows the performance of the ALS job using
the default file system-based broadcast implementation (de-
tailed later) in Spark. In the first iteration, we have to
broadcast large static matrices that are used across different
iterations. In each of the later iterations, matrices of rela-
tively smaller size (≈ 230MB) are broadcast. We noticed
that the time for completion for the first iteration decreases
up to a certain number of nodes and then increases, whereas
the time for completion for later iterations keep decreasing
for larger number of nodes.

A breakdown of the computation and communication costs
in each iteration (shown in Figure 4) unveiled that while the
computation time was predictably decreasing with increas-
ing number of workers, the broadcast times grew linearly
with the number of nodes, limiting the scalability of the
job. It became apparent that the default broadcast imple-
mentation was the biggest impediment against large-scale
Spark jobs that use broadcast variables.

4. BROADCAST REQUIREMENTS
Based on our experience with Spark, we conclude that any

broadcast mechanism for Spark should at least satisfy the
following requirements:

• Performance: It must be able to minimize the max-
imum time to broadcast a particular variable to each
individual worker. The objective is to bring that mini-
mum value as close as possible to the line speed inside
the data center (theoretically, 1Gbps shared, but on
the average 550-600Mbps point-to-point speed is ob-
served in EC2).

• Scalability: A broadcast mechanism must scale up
to 1000s of nodes (if not 10000s), where each node has
multi- to many-cores with minimal overhead. Ideally,
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in Figure 3.

broadcast time vs number of nodes graph should be
a line parallel to the x-axis (as oppose to the linear
increase observed in Figures 3 and 4).

• Fault tolerance: It must be able to withstand and
gracefully handle faults in worker nodes. It would be
great to be able to handle faults in master as well; how-
ever, most data-parallel systems (e.g., Hadoop, Dryad,
and Spark) with “stateful” masters are known to be
not-so-good at handling and recovering from master
failures.

• Topology independence: Unlike high performance
computing systems, clusters for data-parallel jobs are
allocated in an ad hoc, per-job basis. As a result, there
is no structured physical topology that a broadcast
mechanism can take advantage of. However, a broad-
cast mechanism can create logical overlays over the
unstructured cluster to manage itself.

5. BROADCAST MECHANISMS CONSID-
ERED FOR SPARK

In this section, we present an overview of four different
broadcast mechanisms that we have considered and eval-
uated for Spark in this report. These include the default
centralized implementation, referred to as the Centralized
HDFS Broadcast (CSB), a straightforward but very effective
Chained Streaming Broadcast (CSB), and two experimental
mechanisms: BitTorrent Broadcast (BTB) and SplitStream
Broadcast (SSB). In general, none of these mechanisms make
any assumptions about the physical topology or structure of
the cluster.

5.1 Centralized HDFS Broadcast (CHB)

5.1.1 Overview
Broadcast variables are implemented using classes with

custom serialization formats. When one creates a broadcast
variable b with a value v, v is saved to a file in a shared file
system, which can be HDFS or NFS. The serialized form of
b is a path to this file. When b’s value is queried on a worker
node, Spark first checks whether v is in a local cache; if it
is not, then Spark reads it from HDFS. HDFS, by default,
keeps three replicas for any file for fault tolerance as well as
for performance. Workers read b from their corresponding
closest replicas.

5.1.2 Analysis

Performance.
Since each worker reads the broadcast variable from its

closest replica, observed performance of CHB is pretty good
(up to 160 Mbps) as long as it can scale. After that, HDFS
becomes the bottleneck.

Scalability.
We have seen in Figures 3 and 4, in CHB, broadcast time

increases linearly with the number of worker nodes that are
trying to simultaneously read the variable from the shared
storage system. Figure 5 presents the scalability character-
istics of CHB in an even larger scale. After 40 nodes, even
with multiple distributed replicas, CHB reaches a break-
down point and broadcast time increases super-linearly.

Fault tolerance.
CHB can handle faults very easily and robustly using the

multiple replicas stored for each broadcast variables.

5.2 Chained Streaming Broadcast (CSB)

5.2.1 Overview
For each broadcast variable b, the master serializes it using

a custom serialization mechanism, divides it into blocks, and
waits for slaves to connect. Initially, the master is the only
node with the complete copy of b. It puts itself in a priority
queue of source nodes that have some part of b (these are
called leechers) or the complete variable (these are seeds).

Whenever a slave requests for b, the master selects a source
from the priority queue, sends it to the slave that requested
b, and puts the slave in the priority queue as a source for
future requests. Effectively, a tree structure is formed with
the master at the root; the degree of this tree can be con-
trolled by system parameters and can possibly be changed
by the programmer. However, most of our experiments at
this point were limited to degrees 1 or 2.
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Once a slave completes receiving a broadcast, it becomes
a seed itself. This results in creation of multiple broadcast
trees (a forest) during the lifetime of a single broadcast.

The master node maintains a tracker for handling multiple
simultaneous broadcast variables. In effect, slaves request
for broadcast variables to the tracker, and the tracker hands
it off to appropriate handler for that variable in the mas-
ter, which then maintains the broadcast forest as described
earlier.

Selection of block size.
In order to decide the appropriate block size, we per-

formed an exhaustive search over the parameter space in
a spirit similar to auto-tuners. Figure 6 shows that 4MB
was the best choice for the EC2 cluster we were using. Note
that, this value can vary based on cluster type, cluster size,
and temporal as well as spatial conditions (since we are in a
shared cluster).

Policy for the prioritization.
We employed two different policies to prioritize sources in

the priority queue maintained by the master when forward-
ing a broadcast request:

1. Lowest leecher count first (LLCF): Using LLCF,
the master selects the source that are serving the least
number of slaves. One potential problem with this pol-
icy is that a slow source somewhere in the middle of
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Figure 7: Scalability and performance of CSB (All
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the broadcast tree can slow down everyone else under-
neath it.

2. Highest observed speed first (HOSF): In this
case, each slave sends back a feedback regarding the
observed speed for a particular source it received a
broadcast variable from. The master keeps a running
average of such observed speeds for each source and
prioritizes faster sources over their slower counterparts.
This essentially sends slower sources toward the leaves
of the broadcast tree and minimizes their slowdown
impact.

We mostly used LLCF in the experiments presented in
this report, because we came up with the HOSF policy much
later in the process while exploring the root cause of some
erratic behavior. However, barring some rare cases, nodes in
EC2 and data centers in general have more or less uniform
bandwidths. So using LLCF did not drastically affect CSB
performance.

5.2.2 Analysis

Performance.
Performance of CSB is comparable to CHB at up to 40

nodes and orders of magnitude better after that (since CHB
does not scale after that and CSB does). For a single node
broadcast, CHB can attain almost the full speed (close to
400Mbps for 1GB variable). But it rises significantly for
more than one node because, in such cases, a slave has to
receive a block, keep a copy for itself, and then forward that
block to its leechers. Since we perform these steps in Scala
in the application layer, there is a significant overhead.

Scalability.
It is evident from Figure 7 that CSB scales much better

than CHB due to the fact that broadcast load is distributed
across all the sources. However, there is still a sub-linear rise
of broadcast time as the number of slaves increases. A close
scrutiny revealed that this was due to a couple of slightly
slower receiving nodes. We intend to perform experiments
in even larger scale in the future.

Fault tolerance.
CSB is not free from the Achilles’ heel of any tree-based

distribution scheme: if an inner-node fails, every one else



in its sub-tree will be affected. In our case, whenever a
leecher notices that its source has unceremoniously closed
the connection, it tries to reconnect multiple times before
contacting the master for another source. Then it resumes
from where the previous source left off.

In case there is no source currently broadcasting that vari-
able (e.g., even the master has flushed that variable from its
memory), the master keeps a persistent of each broadcast
variable in the HDFS and refers to that. This scenario hap-
pens when a slave itself fails, loses its states, and is restarted
later. Unless there is a large-scale failure, this last resort
does not create a bottleneck.

5.3 BitTorrent Broadcast (BTB)

5.3.1 Overview
A BitTorrent [3] session distributes a file from the seed to

multiple receivers (leechers), which can join and leave the
session dynamically. When a receiver participates in a Bit-
Torrent session, it is forced to donate some of its upload
bandwidth to the session (using tit-for-tat strategy). The
file being distributed is typically divided into 256KB pieces.
For each piece, the seed computes an SHA1 hash and dis-
tributes them along with corresponding pieces for verifying
their integrity. Each piece is further divided into blocks,
typically of size 16KBytes. A receiver can download blocks
within the same piece from multiple peers simultaneously,
but it can relay blocks of a piece to other nodes only after
it receives and verifies the integrity of the entire piece.

A centralized tracker keeps track of all the peers who have
the file (both partially and completely) and lookup peers to
connect with one another for downloading and uploading.
In recent implementations, in addition to the centralized
tracker, DHT-based lookup mechanisms allow distributed
peer identification.

BitTorrent implements a choking (and unchoking) mech-
anism to discourage free-riders, to better match with TCP
congestion control, and to control the number of simultane-
ous downloads for better TCP performance.

While BitTorrent is widely popular for file and content dis-
tribution in the Internet, it is not well-studied in the data
center environment. The only known usage of BitTorrent
inside a data center is for software and server upgrade dis-
tributions inside Twitter data centers [8].

In our implementation (based on BitTornado [4]), the
master acts as the initial seed and the tracker and the slaves
act as the leechers. The variable to broadcast is serialized
into a file, turned into a .torrent file, and then normal Bit-
Torrent mechanism is used to transfer it to different slaves.

5.3.2 Analysis of Default BitTorrent

Performance.
Since BitTorrent is highly optimized for the Internet, the

performance of BTB inside high-speed, low-latency data cen-
ter is not comparable to that of CHB or CSB. Specially, the
default overhead of BitTorrent (for 1 node) is too high.

Scalability.
While in theory, BitTorrent (even the default one) should

be scalable inside data center, we observed sudden increase
in broadcast time after 30 nodes (Figure 8). We are not
completely sure exactly what caused this increase; it can be
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Figure 8: Scalability and performance of BitTorrent
with default settings (All nodes: m1.xlarge EC2 in-
stances).

an outcome of interactions between several BitTorrent pa-
rameters. We discuss the most important parameters later.

Fault tolerance.
BitTorrent is highly robust to failures as long as the tracker

(initial seed) is alive. A persistent copy similar to CSB can
be stored in HDFS to avoid tracker problems.

5.3.3 Modifications for the Data Center Environment
The following characteristics set data center networking

inside a cluster apart from networking in the Internet: (i) low
latency, (ii) high speed, (iii) absence of selfish and malicious
peers, and (iv) no data corruptions (normal corruptions will
be handled by link and network layers, and there is no ma-
licious corruptions).

Based on these observations, we identified the following
parameters that must be changed for better BTB perfor-
mance inside a data center:

1. Choking should be removed, because there are no free-
riders in Spark. If at all, there can be a reverse-choking
mechanism that provides bandwidth to slower nodes as
much as they can absorve.

2. Piece size and block size should be varied. Our micro-
experiments showed 4MB and 8MB to be the better
piece sizes (note that 4MB was found better for CSB
as well); but increased block size increases broadcast
time.

3. Extensive hashing is not required in our trusted envi-
ronment.

4. Unlike the default BitTorrent, there should not be any
manual upload or download limits. Every participat-
ing peer should be using its maximum capacities.

5. Number of simultaneous uploads should be increased,
because available bandwidth is higher; but it should
not be too high, because that will add TCP overhead.

In our current BTB implementation, piece size is set to
4MB, number of simultaneous uploads is 8, there is no down-
load or upload limits. But we have not removed hashing or
choking yet. Now, choking is not a big problem for us, be-
cause unless there is a really slow node (which is rare) we
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Figure 9: Scalability and performance of modified
BitTorrent (All nodes: m1.xlarge EC2 instances).

would not see it in experiments. Hashing does add some
overhead, but removing it would require changing the Bit-
Tornado library. We want to explore it in the future.

5.3.4 Analysis of Modified BitTorrent

Performance.
From Figure 9 we can see that the simple modifications

significantly changed the performance of BTB. While it is
still not as good as CHB or CSB, it is within the range and
with further study we should be able to find the best settings
for data centers.

Scalability.
The main reason behind our excitement about BitTorrent

is its excellent scalability characteristics. Figure 9 shows
that broadcast using BTB remains constant for increasing
number of nodes for smaller variables, and it increases slower
than CSB for larger variables.

Fault tolerance.
Fault tolerance characteristics for modified BTB is similar

to that of the default version.

5.4 SplitStream Broadcast (SSB)

5.4.1 Overview
SplitStream [9] splits the content into k stripes and mul-

ticast each stripe using a separate tree. Peers join as many
trees as there are stripes they wish to receive and they spec-
ify an upper bound on the number of stripes that they are
willing to forward. SplitStream constructs this forest of mul-
ticast trees in a way so that an interior node in one tree is a
leaf node in all the remaining trees and the bandwidth con-
straints specified by the nodes are satisfied. This ensures
that the forwarding load can be spread across all partici-
pating peers. SplitStream uses the Pastry [15] DHT and
Scribe [10] anycast system.

In case of SSB, all nodes wish to receive k stripes and they
are willing to forward k stripes. SplitStream constructs a
forest such that the forwarding load is evenly balanced across
all nodes while achieving low delay and link stress across
the system. Our implementation is based on FreePastry [6]
codebase, an open source implementation of Pastry, Scribe,

and SplitStream.

5.4.2 Analysis

Performance and scalability.
Theoretically, SplitStream has provably high utilization

of available upload bandwidth and is highly scalable. How-
ever, during experimentation, we found that it is highly opti-
mized for streaming (as in audio/video streaming), and even
if some blocks are dropped/missed (they actually do due to
some synchronization issues in distributed message passing),
the receivers can gracefully handle that. Unfortunately, SSB
cannot tolerate such failures, because a single dropped block
will result in a corrupted variable. To address this we are
currently designing an SSB protocol that is suited to our
needs.

Fault tolerance.
Striping across multiple trees increases SplitStream’s re-

silience to node failures. On the average, the failure of a
single node causes the temporary loss of at most one of the
stripes (in rest of the trees that node is a leaf and does
not affect anything). This can be masked or mitigated us-
ing proper data encodings while that particular tree is re-
paired [9]. Such encoding schemes often achieve partial or
full recovery by adding redundant information at the ex-
pense of bandwidth.

6. MORE CSB EVALUATION
In this section, we present additional CSB-based experi-

mental results demonstrating its performance on ALS jobs
and how EC2 attributes affect the performance of a broad-
cast strategy. We chose CSB for these experiments, because
it came out as the best of the four choices we have experi-
mented with so far.

6.1 ALS Performance
Figure 10 shows the performance of the ALS algorithm

using CSB as the broadcast mechanism. Note that, these
experiments do not use the Netflix data set, rather they use
synthetic data so that we can vary different parameters. The
values of m and u are set to 5000 and 15000 respectively in
this figure, but we have performed experiments by varying
them resulting in similar behavior. The biggest matrix to
broadcast at a time using m=5000 and u=15000 is approxi-
mately 600MB in size (in the first iteration). The increasing
value of k, super-linearly increases the amount of computa-
tion in each iteration.

Except for Figure 10(a) (with k=25), in all other cases, job
duration decreases with the increased number of slaves (as
expected). Table 2 summarizes the breakdown of computa-
tion and broadcast times in this case. While there are slight
variations in broadcast times (which is not unexpected in
a shared environment), the sudden increase of computation
time for 30 nodes is quite unexpected (each EC2 instance
runs inside virtual containers with strong isolation guaran-
tees). Right now we do not have any explanation for why
this happened other than attributing it to a possible mea-
surement error.

Figure 11 presents broadcast times in the first iterations
for each ALS job in Figure 10. We can see that broad-
cast times mostly remain the same with increasing number



Table 1: Summary of Different Broadcast Mechanisms

Broadcast Structure Performance Scalability Fault Topology Implementation

Mechanism (1GB to 40 nodes) (# nodes) Tolerance Independence

CHB Centralized 57s 40 Yes Yes 100 lines Scala +
Hadoop libraries

CSB Tree-based 53s 60+ Yes Yes 800 lines of Scala

BTB Unstructured 90s 40+ Yes Yes 100 lines of Shell Script +
BitTornado libraries

SSB Tree-based TBD TBD No Yes 400 lines Scala +
FreePastry librariesc1.xlarge M = 5000 U = 15000 F = 25
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Figure 10: ALS performance using Chained Streaming Broadcast for varying feature size (i.e., varying k)
(m=5000; u=15000; All nodes: c1.xlarge EC2 instances).

of slaves (as we have already seen for individual broadcast
experiments in Section 5.2).

6.2 Impact of Cluster Configuration
Figure 12 shows the difference between broadcast times

for the same workload running on clusters with different
configurations. Each of the m1.xlarge instances has 15GB
of memory and 8 EC2 compute units, whereas each c1.xlarge
ones has 7GB of memory and 20EC2 compute nodes.

We can see that the cluster with the higher processing ca-
pacity can complete broadcast faster than its slower coun-
terpart. As the number of nodes increase, the gap between
the two lines keeps increasing. The reason is that with in-
creased fire power, streaming nodes can minimize the over-

head of copying blocks from the input interface to the output
interface through the application layer.

We also believe that the spike at 10 nodes for the c1.xlarge
cluster can be due to some experimental or measurement
error; however, it is more likely to be caused by transient
congestion due to the shared nature of the EC2 cluster. The
fact that it is the highest value for any number of receivers
for the c1.xlarge cluster, makes it a bigger suspect. In any
case, we will rerun the experiment to investigate if we are
missing any underlying phenomenon.

7. CONCLUSIONS AND FUTURE WORK
We presented an in-depth overview of the Spark frame-

work along with multiple working examples. Based on our
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the ALS jobs in Figure 10.

Table 2: Breakdown of computation and broadcast
times for the first iteration of Figure 10(a)

# Nodes Computation (s) Broadcast (s)

1 82 9
5 24 19
10 19 15
20 18 17
30 21 19
40 16 20

Effect of instance types
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Figure 12: Impact on CSB broadcast time for dif-
ferent EC2 instance types (Variable size: 400MB).

experiments with Spark, we identified the default broadcast
mechanism (CHB) to have potential room for improvement.
We outlined the requirements of a broadcast mechanism
for Spark and similar frameworks running on commodity
clusters, and implemented, evaluated on EC2, and finally,
compared the default mechanism with three other broadcast
mechanisms (CSB, BTB, and SSB) using the requirements
guideline. Our experiments so far have pointed CSB to be
the better of the four choices.

There are several phenomena in this report that we could
not explain to our satisfaction. We will continue investi-
gating the root causes behind such unexplained behaviors.
In addition, we are working on creating a reliable SSB that
will be able to fully utilize the available bandwidth without
incurring additional coding overhead to provide robustness
against node failures. We expect this to outperform its coun-
terparts.
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