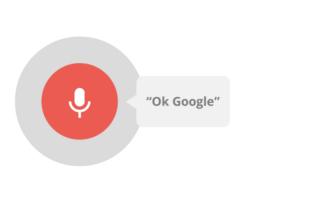
Multi-Scale GPU Resource Management for Deep Learning

Mosharaf Chowdhury

Deep Learning is Ubiquitous Today

Image processing Natural language processing Speech synthesis Intelligent assistants Autonomous vehicles Search Video analytics



Deep Learning Lifecycle from 10K Feet

Hyperparameter Tuning Inference

Minimize makespan of exploring many configurations

Minimize completion time

Maximize throughput and meet deadline

Deep Learning is Repetitive

Each iteration is predictable

- Duration
- Memory usage profile
- Communication characteristics

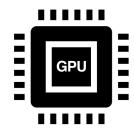
Number of iterations is unpredictable

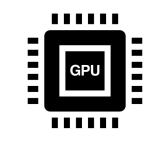
Deep Learning is Computationally Heavy

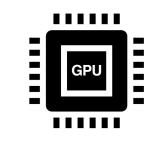
	Deep Neural Networks
Inherently Parallel	\checkmark
Matrix Operations	\checkmark

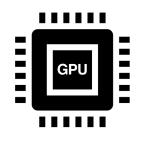
Deep Neural Networks Deep Neural Networks Inherently Parallel ✓ Matrix Operations ✓

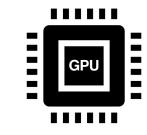
GPU Clusters

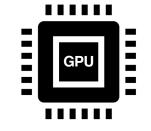


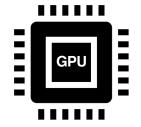


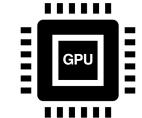






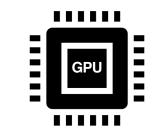


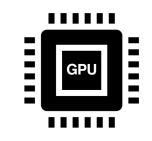


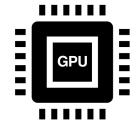


GPU

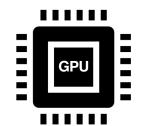


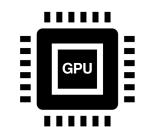


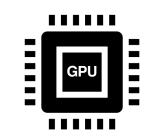


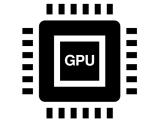


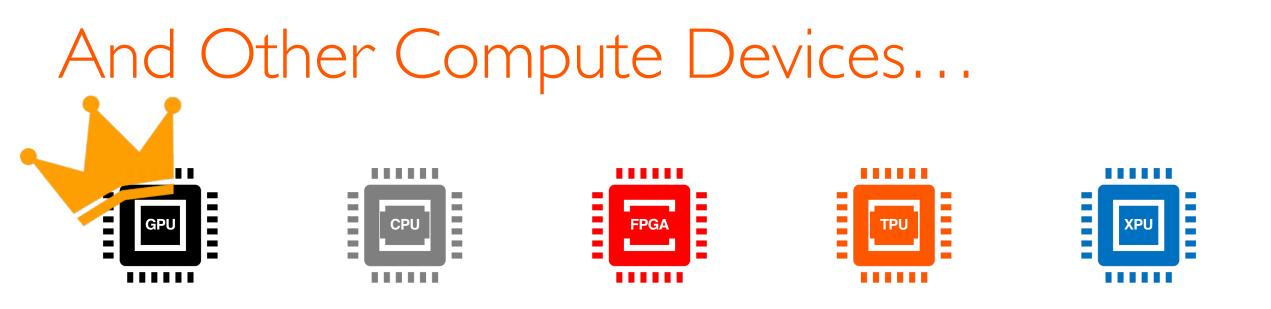








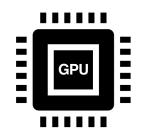


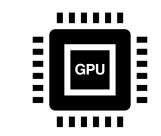


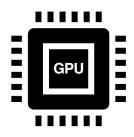
Techniques described in this talk are generalizable

• We assume the compute device(s) to be black box

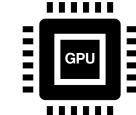
I. Macro-Scale Challenges

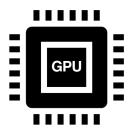






GPU





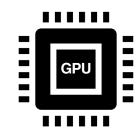
Performance

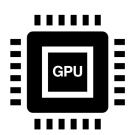
• Finish jobs quickly

Efficiency

• Use all devices

GPU

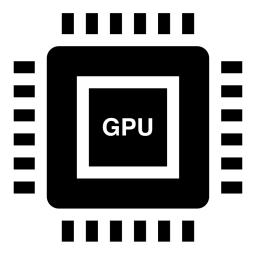




Fairness

• Share all resources equitably

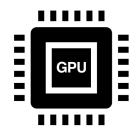
2. Micro-Scale Challenges

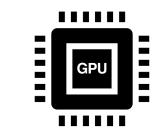


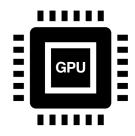
High Utilization

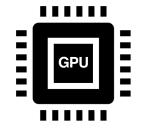
• Use all a device's resources

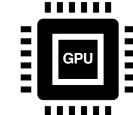
I.I Macro-Scale Challenges

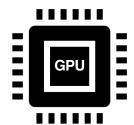










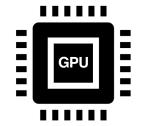


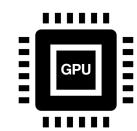
Performance

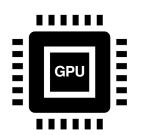
• Finish jobs quickly

Efficiency

• Use all devices



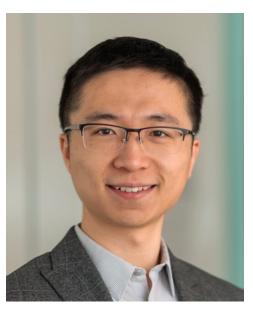




Fairness

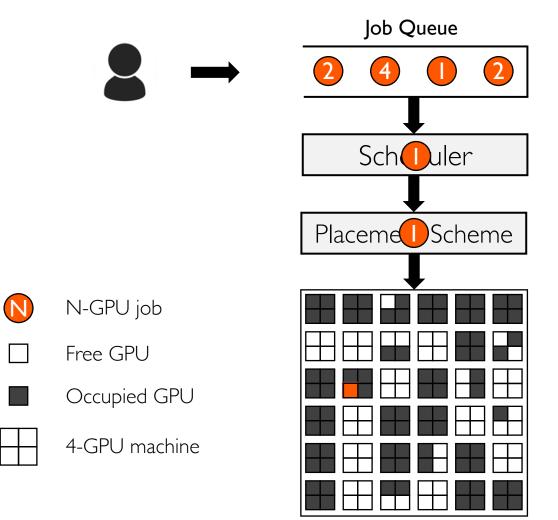
• Share all resources equitably

Tiresias A GPU Cluster Manager for Distributed Deep Learning



w/ Juncheng Gu and many others

Lifecycle of a Job

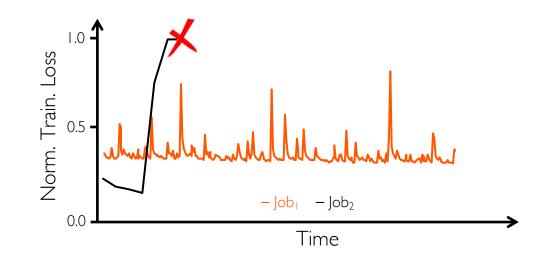


GPU Cluster

Minimize the Average Job Completion Time

Given

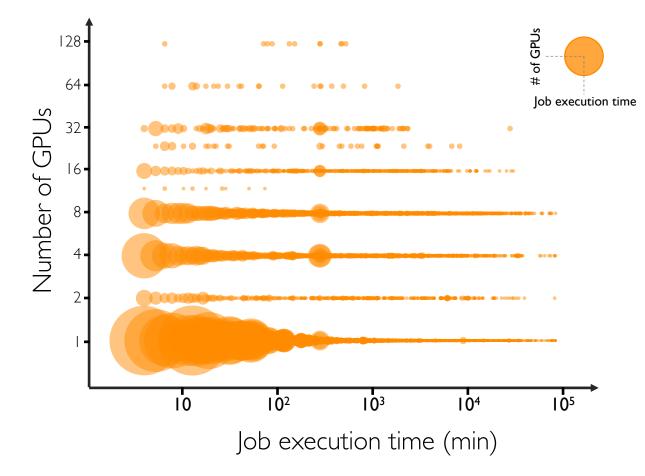
- Online job arrival
- Heterogeneous resource demands
- Unpredictable job duration



Minimize the Average Job Completion Time

Given

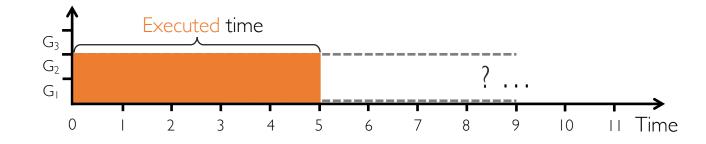
- Online job arrival
- Heterogeneous resource demands
- Unpredictable job duration
- Wide Spatiotemporal Variations



Trace from Microsoft's Philly cluster

Available Job Information

- I. Spatial: number of GPUs
- 2. Temporal: executed time



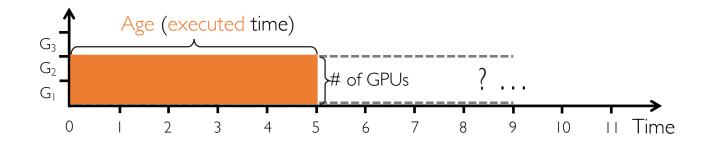
Age-Based Schedulers

Least-Attained Service (LAS)

• Prioritize job that has the shortest executed time

Gittins Index policy²

- Need the distribution of job execution time
- Prioritize job that has the highest probability to complete in the near future



Feedback queueing models for time-shared systems. JACM, 1968
 Multi-armed bandit allocation indices. Wiley, 1989

Two-Dimensional Age-Based Scheduler (2DAS)

Age calculated by two-dimensional attained service

• A job's total executed GPU time (# of GPUs × executed time)

No prior information

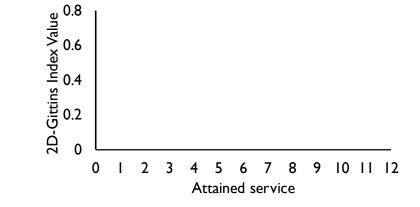
• 2D-LAS

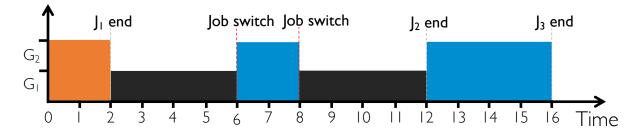
With partial information: distribution of job GPU time

• 2D-Gittins Index

2D Gittins Index: Partial Information

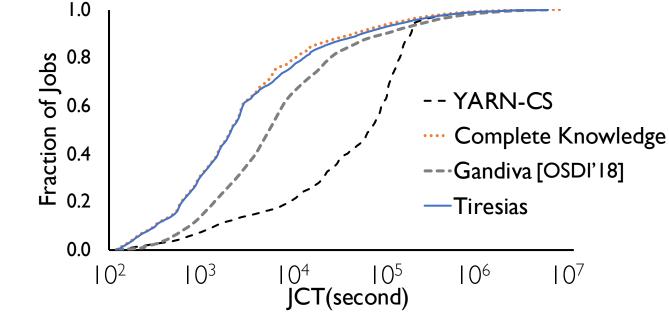
	# of GPUs	Distribution
J	2	2
J ₂	I	(4, 8, 12)
J ₃	2	6





Higher probability to complete (Gittins Index), higher priority

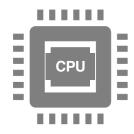
5.5X Improvement in Average JCT

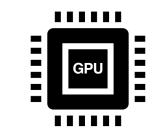


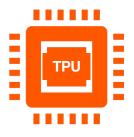
Trace from a 2000-GPU cluster

1.2X Improvement in Makespan

1.2 Macro-Scale Challenges

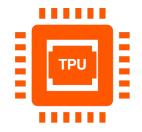


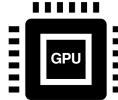




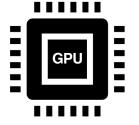
.

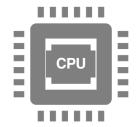
CPU





.....





Performance

• Finish jobs quickly

Efficiency

• Use all devices

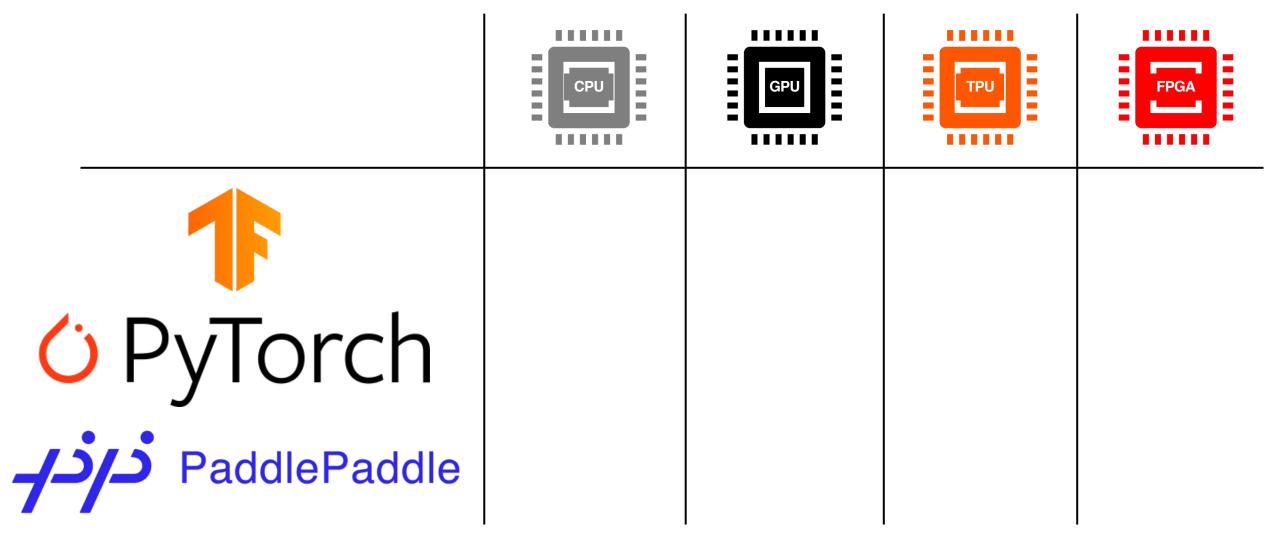
Fairness

• Share all resources equitably

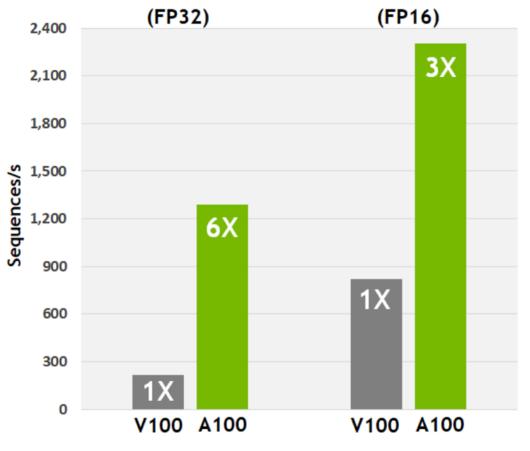
AlloX Compute Allocation in Hybrid Clusters

w/Tan Le, Xiao Sun, and Zhenhua Liu

Interchangeable Resources



Distinct Speedup Rates



BERT-LARGE TRAINING

Source: NVIDIA A 100 News Release

How to Assign Jobs to Different Compute?

RXI	JL		
RX2	J2		
RYI	J4		
RY2	J3		
		Optimal	4X lower makespan 2.5X lower avg. JCT
RXI	J4		
RX2	J3		
RYI	JI		
RY2	J2		

Tiresias w	/ Compl	ete Info
------------	---------	----------

	Resource-X compl. time	Resource-Y compl. time
JI	10	20
J2	15	25
J3	20	100
J4	20	90

Minimize the Average JCT

Given

- Offline job arrival
- Heterogeneous resource demands
- Interchangeable resources

Profile and Match

- Determine speedup ratios
- Solve a min-cost bipartite matching problem

Repeatedly apply the offline solution for online scenario

Maintain Fairness

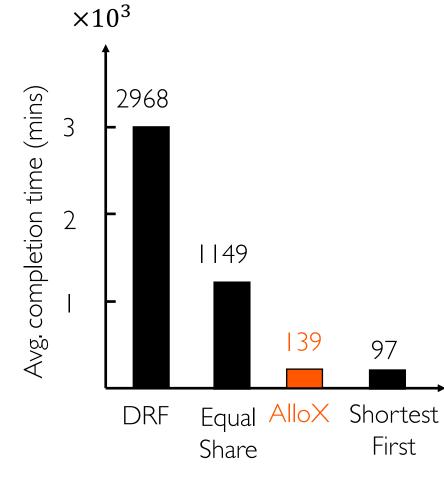
Users may not be happy if they keep getting slower compute Equalize progress of jobs

• Independent of resource

We also prove the following negative result

• No multi-configuration allocation can satisfy (1) pareto efficiency (PE) and sharing incentive (SI), and (2) strategyproofness (SP) simultaneously unless the relative speedup of the two resources is the same for all jobs.

20X Average JCT Improvement and Fair



TensorFlow CNN benchmarks

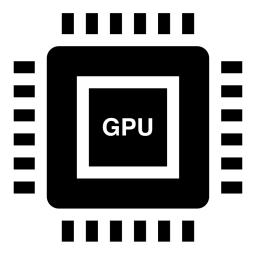
Job duration is often unpredictable

Scheduling based on the past can work well

Compute resources may have different speed

Rethink existing schedulers for heterogeneity

2. Micro-Scale Challenges



High Utilization

• Use all a GPU's resources

Salus

Fine-grained GPU Sharing Primitives For Deep Learning

w/ Peifeng Yu

Exclusive GPU Access

A GPU entirely belongs to one job

• Simple to reason about and deal with

Limits flexibility

• Expensive preemption

Leads to underutilization

• High variance model size

Model	Peak Memory Usage
VAE	28M
Super Resolution	529M
Deep Speech	3993M
Inception4	11355M

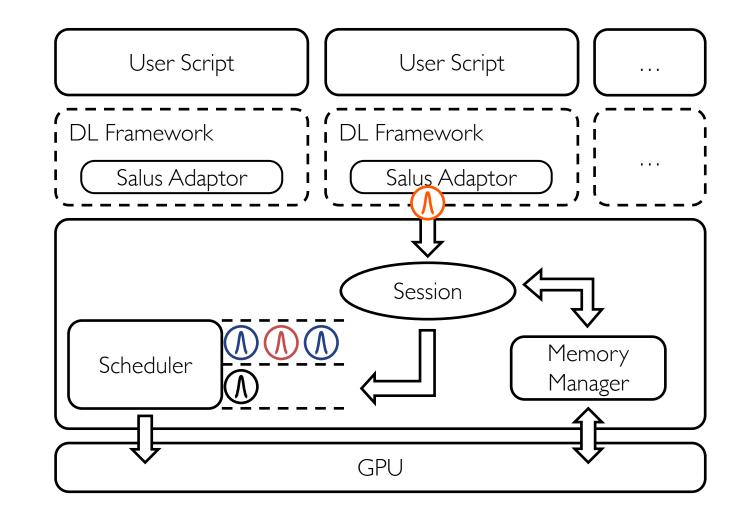
GPU Sharing

Approach	Efficiency	Dynamic Memory	Flexible Scheduling
Static Partitioning (SP)	No	No	Yes
Multi-Process Service (MPS)	Yes	No	No
Salus	Yes	Yes	Yes

Lifecycle of an Iteration

Create session Send computation graph For each iteration

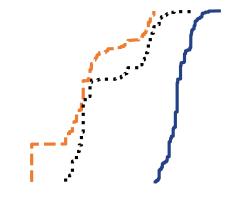
- Send input
- Check memory
- Queue in scheduler

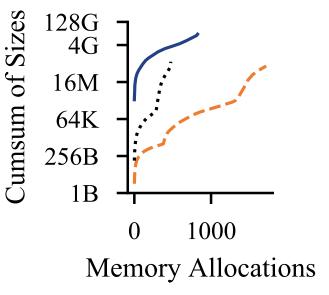


GPU Memory Usage in Deep Learning

Three types of memory

- Model
- Ephemeral
- Framework-internal



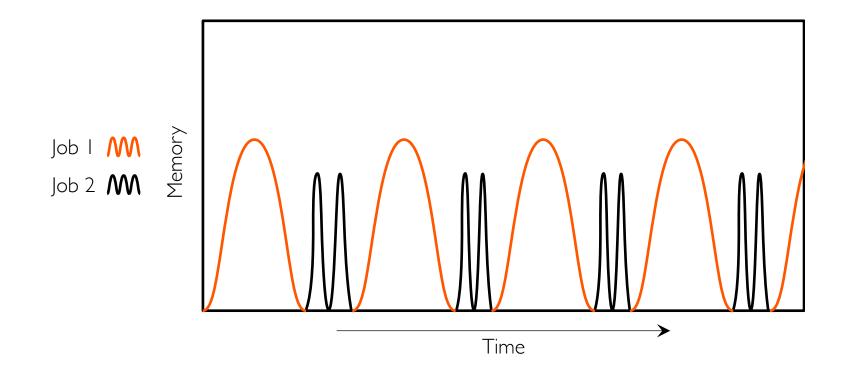


Model memory << GPU memory capacity

Fast Job Switching

Job switching is done by determine which job's iteration to run next

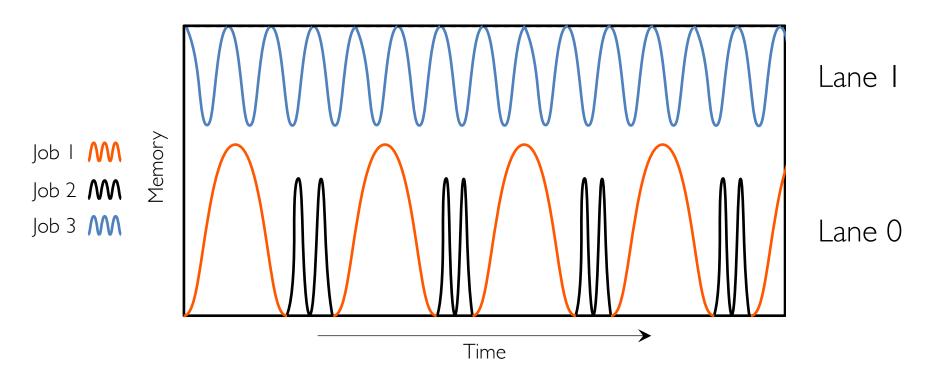
• Trade-off between maximum utilization and execution performance



GPU Lane

Contiguous physical memory + GPU stream

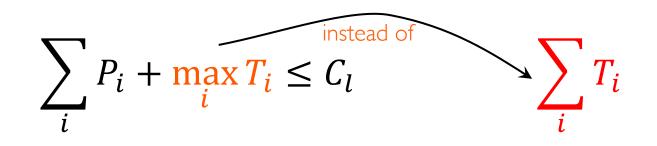
- Time-slicing within lane, parallel across lanes
- Dynamic re-partitioning (lane assignment)
- Avoid in-lane fragmentation



GPU Lane: Safety Conditions

A lane cannot accept arbitrary number of jobs

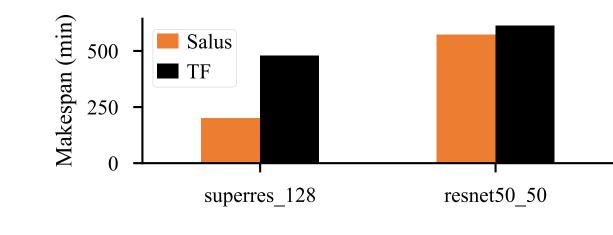
• The safety condition determines whether a job can go in a lane without deadlock



 P_i : Model and framework-internal memory for job i T_i : Ephemeral memory for job i C_l : Memory capacity of lane l

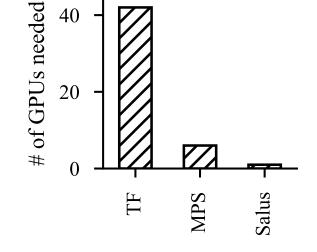
Packing 42 Inference Models

Hyperparameter Tuning



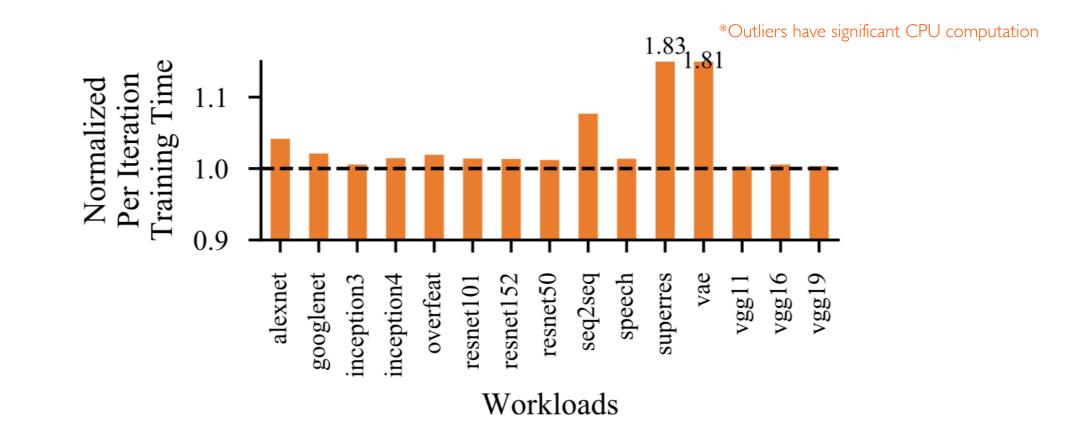
300 configurations in each job

40



14 CNN and RNN models; 3 copies of each

Low Overhead in Most Cases



Device memory is often a limiting factor

Distinguishing between ephemeral memory and the rest is critical for squeezing more out of it

Blackbox hardware put rigid constraints

Software can provide flexibility and generality with little overhead

Summary

Too much is unknown

• Blackbox hardware and unpredictable jobs

Resources are too expensive to waste

- We need resource management both at the cluster level^{1,2} and in individual devices³
- Both in homogeneous^{1,3} and heterogeneous² settings with interchangeable resources
- To achieve performance,^{1,2} efficiency,^{1,3} and fairness²

Deep Learning Workload

Multi-Scale Resource Management

Hardware for Deep Learning

Short-term certainty can be enough for long-term gains

I. Tiresias: A GPU Cluster Manager for Distributed Deep Learning, NSDI'19

^{2.} AlloX: Compute Allocation in Hybrid Clusters, EuroSys'20

^{3.} Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications, MLSys'20