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Deep Learning is Ubiquitous Today

Image processing
Natural language processing
Speech synthesis
Intelligent assistants
Autonomous vehicles
Search
Video analytics
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Deep Learning Lifecycle from 10K Feet
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Hyperparameter
Tuning

Training Inference

Minimize makespan of 
exploring many configurations

Minimize 
completion time

Maximize throughput 
and meet deadline



Deep Learning is Repetitive
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Each iteration is predictable
• Duration
• Memory usage profile
• Communication characteristics

Number of iterations is unpredictable



Deep Learning is Computationally Heavy
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GPU
Deep 

Neural Networks

Inherently Parallel ✓ ✓

Matrix Operations ✓ ✓



GPU is King!
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Deep 
Neural Networks

Inherently Parallel ✓ ✓

Matrix Operations ✓ ✓

GPU



GPU Clusters
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And Other Compute Devices…
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TPUCPU FPGA XPUGPU

Techniques described in this talk are generalizable
• We assume the compute device(s) to be black box



1. Macro-Scale Challenges
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Performance
• Finish jobs quickly

Efficiency
• Use all devices

Fairness
• Share all resources equitably

GPU

GPUGPUGPU
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2. Micro-Scale Challenges
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Performance
• Finish jobs quickly

High Utilization
• Use all a device’s resources

Fairness
• Share all resources equitably

GPU



1.1 Macro-Scale Challenges
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Performance
• Finish jobs quickly

Efficiency
• Use all devices

Fairness
• Share all resources equitably

GPU

GPUGPUGPU

GPU GPU

GPUGPUGPU



Tiresias

w/ Juncheng Gu and many others

A GPU Cluster Manager for Distributed Deep Learning
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GPU Cluster
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Scheduler

Free GPU

Occupied GPU

4-GPU machine

N N-GPU job

142

Placement Scheme

Job Queue

1

1
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Lifecycle of a Job



Minimize the Average Job Completion Time
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Given
• Online job arrival
• Heterogeneous resource demands
• Unpredictable job duration
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Minimize the Average Job Completion Time
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Given
• Online job arrival
• Heterogeneous resource demands
• Unpredictable job duration
• Wide Spatiotemporal Variations
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…?

1. Spatial: number of GPUs
2. Temporal: executed time
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Time1 2 3 4 5 6 7 8 9 10 110

G1
G2
G3

Executed time

# of GPUs

Available Job Information

16



…?

1. Feedback queueing models for time-shared systems. JACM, 1968
2. Multi-armed bandit allocation indices. Wiley, 1989

Least-Attained Service1 (LAS) 
• Prioritize job that has the shortest executed time

Gittins Index policy2
• Need the distribution of job execution time
• Prioritize job that has the highest probability to complete in the near future

Time1 2 3 4 5 6 7 8 9 10 110

G1
G2
G3

Age (executed time)

# of GPUs # of GPUs
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Age-Based Schedulers



Age calculated by two-dimensional attained service
• A job’s total executed GPU time (# of GPUs × executed time)

No prior information
• 2D-LAS

With partial information: distribution of job GPU time  
• 2D-Gittins Index
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Two-Dimensional Age-Based Scheduler (2DAS)



# of GPUs Duration Attained Service Gittins Index

J1 2 2 0 0.25

J2 1 8 0 0.25

J3 2 6 0 0.25

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 0 0.25

J3 2 6 0 0.25

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 4 0.2

J3 2 6 0 0.25

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 4 0.2

J3 2 6 4 0.2

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 8 0.125

J3 2 6 4 0.2

# of GPUs Duration Attained Service Gittins Index

J1 2 2 4 0.2

J2 1 8 8 0.125

J3 2 6 12 N/A

(4, 8,12)

J1 end J2 end J3 end
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Job switch Job switch

Higher probability to complete (Gittins Index), higher priority
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2D-LAS None 11.7

Execution timeDistribution
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2D Gittins Index: Partial Information
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5.5X Improvement in Average JCT

Trace from a 2000-GPU cluster

Complete Knowledge

1.2X Improvement in Makespan

[OSDI’18]



1.2 Macro-Scale Challenges
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Performance
• Finish jobs quickly

Efficiency
• Use all devices

Fairness
• Share all resources equitably

TPU

CPUGPUTPU

CPU GPU

FPGACPUGPU



AlloX

w/ Tan Le, Xiao Sun, and Zhenhua Liu

Compute Allocation in Hybrid Clusters 
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Interchangeable Resources
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TPUCPU GPU FPGA



Distinct Speedup Rates
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Source: NVIDIA A100 News Release



How to Assign Jobs to Different Compute?
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Tiresias w/ Complete Info

J3

J4RY1

RY2

Optimal

J3

J4RX1

RX2

4X lower makespan

J1

J2

RX1

RX2

J2

J1RY1

RY2

2.5X lower avg. JCT

Resource-X 
compl. time 

Resource-Y 
compl. time

J1 10 20

J2 15 25

J3 20 100

J4 20 90



Minimize the Average JCT
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Given
• Offline job arrival
• Heterogeneous resource demands
• Interchangeable resources

Profile and Match
• Determine speedup ratios
• Solve a min-cost bipartite matching problem

Repeatedly apply the offline solution for online scenario



Maintain Fairness

27

Users may not be happy if they keep getting slower compute
Equalize progress of jobs
• Independent of resource

We also prove the following negative result
• No multi-configuration allocation can satisfy (1) pareto efficiency (PE) and 

sharing incentive (SI), and (2) strategyproofness (SP) simultaneously unless the 
relative speedup of the two resources is the same for all jobs. 
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TensorFlow CNN benchmarks

20X Average JCT Improvement and Fair
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Takeaways

29

Job duration is often unpredictable
Ø Scheduling based on the past can work well

Compute resources may have different speed
Ø Rethink existing schedulers for heterogeneity



2. Micro-Scale Challenges
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Performance
• Finish jobs quickly

High Utilization
• Use all a GPU’s resources

Fairness
• Share all resources equitably

GPU



Salus

w/ PeifengYu

Fine-grained GPU Sharing Primitives For Deep Learning
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Exclusive GPU Access
A GPU entirely belongs to one job
• Simple to reason about and deal with

Limits flexibility
• Expensive preemption

Leads to underutilization
• High variance model size
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Model Peak Memory Usage

VAE 28M

Super Resolution 529M

Deep Speech 3993M

Inception4 11355M



GPU Sharing
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Approach Efficiency
Dynamic
Memory

Flexible 
Scheduling

Static Partitioning (SP) No No Yes

Multi-Process Service (MPS) Yes No No

Salus Yes Yes Yes



GPU

User Script

DL Framework

Salus Adaptor

User Script

DL Framework
…

…

Salus Adaptor

Memory 
Manager

Session

Scheduler

Create session
Send computation graph
For each iteration
• Send input
• Check memory
• Queue in scheduler

Lifecycle of an Iteration
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Three types of memory
• Model
• Ephemeral
• Framework-internal

Model memory << GPU memory capacity
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GPU Memory Usage in Deep Learning



Fast Job Switching
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Job switching is done by determine which job’s iteration to run next
• Trade-off between maximum utilization and execution performance
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GPU Lane
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Lane 0

Lane 1

Job 3

Contiguous physical memory + GPU stream
• Time-slicing within lane, parallel across lanes
• Dynamic re-partitioning (lane assignment)
• Avoid in-lane fragmentation

Job 2
Job 1
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GPU Lane: Safety Conditions
A lane cannot accept arbitrary number of jobs
• The safety condition determines whether a job can go in a lane without deadlock
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High Utilization
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300 configurations in each job

Hyperparameter TuningPacking 42 Inference Models

14 CNN and RNN models; 3 copies of each



Low Overhead in Most Cases

40

*Outliers have significant CPU computation



Takeaways
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Device memory is often a limiting factor
Ø Distinguishing between ephemeral memory and the rest is critical for 

squeezing more out of it

Blackbox hardware put rigid constraints
Ø Software can provide flexibility and generality with little overhead



Summary
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Too much is unknown
• Blackbox hardware and unpredictable jobs

Resources are too expensive to waste
• We need resource management both at the cluster level1,2

and in individual devices3
• Both in homogeneous1,3 and heterogeneous2 settings with 

interchangeable resources
• To achieve performance,1,2 efficiency,1,3 and fairness2

Short-term certainty can be enough for long-term gains

Deep Learning 
Workload

Hardware for 
Deep Learning

Multi-Scale 
Resource 

Management

1. Tiresias: A GPU Cluster Manager for Distributed Deep Learning, NSDI’19
2. AlloX: Compute Allocation in Hybrid Clusters, EuroSys’20
3. Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications, MLSys’20

https://github.com/symbioticlab


