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Deep Learning Lifecycle from 0K Feet
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Minimize makespan of Minimize Maximize throughput
exploring many configurations completion time and meet deadline




Deep Learning Is Repetitive

Each iteration is predictable
* Duration
* Memory usage profile
* Communication characteristics

Number of iterations is unpredictable



Deep Learning 1s Computationally Heavy
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GPUis King!
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And Other Compute Devices...
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Techniques described in this talk are generalizable

* We assume the compute device(s) to be black box
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|. Macro-Scale Challenges

Performance
* Finish jobs quickly

Efficiency

e Use all devices

Fairness
* Share all resources equrtably



2. Micro-Scale Challenges

High Utilization

e Use all a device's resources




.1 Macro-5Scale Challenges

Performance
* Finish jobs quickly

Efficiency

e Use all devices

Fairness
* Share all resources equrtably



Tiresias

A GPU Cluster Manager for Distributed Deep Learning

w/ Juncheng Gu and many others




Lifecycle of a Job

Job Queue
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Minimize the Average Job Completion Time
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Minimize the Average Job Completion Time

Given
* Online job arrival
* Heterogeneous resource demands
* Unpredictable job duration
* Wide Spatiotemporal Variations
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Avallable Job Information

|, Spatial: number of GPUs

2. Temporal: executed time

Fxecuted time
A




Age-Based Schedulers

Least-Attained Service' (LAS)

* Prioritize job that has the shortest executed time

Gittins Index policy”
* Need the distribution of job execution time
* Prioritize job that has the highest probability to complete in the near future

0 2 3 4 5 6 7 8 9 10 ' Time

|. Feedback queueing models for time-shared systems. JACM, 1968
2. Multi-armed bandit allocation indices. Wiley, 1989



Two-

Dimensional Age-Based Scheduler (2

Age calculated by two-dimensional attained service
* A job’s total executed GPU time (# of GPUs x executed time)

No prior information
¢ 2D-LAS

With partial information: distribution of job GPU time
* 2D-Gittins Index

DAS)



2D Gittins Index: Partial Information
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.2 Macro-5Scale Challenges
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Efficiency

e Use all devices
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AlloX

Compute Allocation in Hybrid Clusters

w/ Tan Le, Xiao Sun, and Zhenhua Liu
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Interchangeable Resources
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Distinct Speedup Rates

BERT-LARGE TRAINING
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How to Assign Jobs to Different Compute!

Tiresias w/ Complete Info
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Minimize the Average |CT

Given
* Offline job arrival
* Heterogeneous resource demands
* Interchangeable resources

Profile and Match

* Determine speedup ratios
* Solve a min-cost bipartite matching problem

Repeatedly apply the offline solution for online scenario

26



Maintain Fairness

Users may not be happy if they keep getting slower compute

Equalize progress of jobs
* Independent of resource

We also prove the following negative result
* No multi-configuration allocation can satisfy (|) pareto efficiency (PE) and
sharing incentive (SI), and (2) strategyproofness (SP) simultaneously unless the
relative speedup of the two resources is the same for all jobs.
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20X Average |CT Improvement and Fair
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|akeaways

Job duration is often unpredictable
» Scheduling based on the past can work well

Compute resources may have different speed
» Rethink existing schedulers for heterogeneity
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2. Micro-Scale Challenges

High Utilization

e Use all a GPU’s resources
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Salus

Fine-grained GPU Sharing Primitives For Deep Learning

w/ Peifeng Yu
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-xclusive GPU Access

A GPU entirely belongs to one job

* Simple to reason about and deal with

Limits flexibility

* Expensive preemption Peak Memory Usage

VAE 28M
Leads to underutilization |
, , , Super Resolution 529M
* High variance model size
Deep Speech 3993M

Inception4 | 1355M
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Dynamic Flexible
Approach Efficiency Schedullng

Static Partitioning (SP)

Multi-Process Service (MPS)

Salus

Yes
Yes

No
Yes

No
Yes



Lifecycle of an Iteration
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GPU Memory Usage In Deep Learning
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Model memory << GPU memory capacity
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Fast Job Switching

Job switching is done by determine which job’s iteration to run next
* Trade-off between maximum utilization and execution performance
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GPU Lane

Contiguous physical memory + GPU stream
* Time-slicing within lane, parallel across lanes
* Dynamic re-partitioning (lane assignment)
* Avoid in-lane fragmentation
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GPU Lane: Safety Conditions

A lane cannot accept arbitrary number of jobs
* The safety condition determines whether a job can go in a lane without deadlock

instead of
E Pi+m_aXTl-SCl E Ti
l
L [

P;: Model and framework-internal memory for job i
T;: Ephemeral memory for job i
C;: Memory capacity of lane [
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High Utilization

Packing 42 Inference Models Hyperparameter Tuning
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Low Overhead in Most Cases

*Qutliers have significant CPU computation
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[akeaways

Device memory is often a limiting factor
» Distinguishing between ephemeral memory and the rest is critical for
squeezing more out of it

Blackbox hardware put rigid constraints
» Software can provide flexibility and generality with little overhead
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S u m m a ry https://github.com/symbioticlab

Too much is unknown

* Blackbox hardware and unpredictable jobs Deep Learning
Workload
Resources are too expensive to waste Multi-Scale
* We need resource management both at the cluster level
and in individual devices’ Resource
* Both in homogeneous'~ and heterogeneous’ settings with Management

interchangeable resources

* To achieve performance,' efficiency,’” and fairness’

Hardware for

Deep Learning

Short-term certainty can be enough for long-term gains

|. Tiresias: A GPU Cluster Manager for Distributed Deep Learning, NSDI'19
2. AlloX: Compute Allocation in Hybrid Clusters, EuroSys'20

3. Salus: Fine-Grained GPU Sharing Primitives for Deep Learning Applications, MLSys"20 42



