
Treehouse: A Case For Carbon-Aware Datacenter Software

Thomas Anderson1, Adam Belay2, Mosharaf Chowdhury3, Asaf Cidon4, and Irene Zhang1,5

1University of Washington-Seattle, 2MIT, 3University of Michigan, 4Columbia University, 5Microsoft Research

Abstract

The end of Dennard scaling and the slowing of Moore’s Law
has put the energy use of datacenters on an unsustainable path.
Datacenters are already a significant fraction of worldwide
electricity use, with application demand scaling at a rapid rate.
We argue that substantial reductions in the carbon intensity
of datacenter computing are possible with a software-centric
approach: by making energy and carbon visible to application
developers on a fine-grained basis, by modifying system APIs
to make it possible to make informed trade offs between per-
formance and carbon emissions, and by raising the level of
application programming to allow for flexible use of more en-
ergy efficient means of compute and storage. We also lay out
a research agenda for systems software to reduce the carbon
footprint of datacenter computing.1

1 Introduction
The pressing need for society to address global climate change
has caused many large organizations to begin to track and
report their aggregate greenhouse gas emissions, both directly
caused by their operations and indirectly caused through
energy use and by supply chains [24]. However, there are no
standard software mechanisms in place to track and and control
emissions from information technology (IT). This lack of
visibility is especially acute where multiple applications share
the same physical hardware, such as datacenters, since carbon
emissions today can only be accounted for at the server or
processor chip level, not at the software and application level.

In aggregate, datacenters represent a large and growing
source of carbon emissions; estimates place datacenters as
responsible for 1-2% of aggregate worldwide electricity
consumption [32, 54]. Given rapidly-increasing demand for
computing and data analysis [48, 66], continual improvements
are needed in the carbon efficiency of computing to keep the cli-
mate impact of computing from skyrocketing [32, 54, 55]. The
end of Dennard scaling means that exponential improvements
in energy efficiency are no longer an automatic consequence
of Moore’s Law. Over the past few years, various technologies
have been introduced to improve matters—for example, server

1To appear, Proceedings of HotCarbon 2022: First Workshop on Sustainable
Computer System Design and Implementation, July 2022.

Co
m

pu
te

/M
W

 (l
og

)
1980 1990 2000 2010 2020 2030 2040

Slowing Moore’s Law →

End of
Dennard scaling

Application
Demand

Power distribution, server consolidation

Treehouse: Provenance, software bloat,
resource stranding, efficient hardware

Energy as a design discipline

NEED CONTINUOUS ENERGY IMPROVEMENT OVER TIME

Figure 1: Application demand for computing is growing faster than
circuit-level energy efficiency. Treehouse takes a software-centric
approach to reduce this gap.

consolidation and improvements in power distribution. How-
ever, these steps will not be enough going forward (Figure 1).

For cloud datacenter operators, a popular option is to
construct datacenters in locations with inexpensive, renewable
power generation. Although a step forward, this is unlikely
to be a complete solution for several reasons. First, hardware
manufacturing, assembly and transportation, as well as the con-
struction and maintenance of the datacenter itself, are all energy
and greenhouse gas intensive. In fact, chip manufacturing alone
is a significant and growing source of the lifecycle greenhouse
gas emissions of hyperscalar datacenters [27]. Thus, we need
to be efficient in both datacenter energy use and utilization.
The most carbon efficient datacenter is one you don’t need
to build. Second, edge computing—placing computing near
customers—is increasingly popular as a way to improve
application responsiveness; these smaller scale datacenters
are often located in or near cities without access to dedicated
green power sources.2 Because power is often much slower to
provision than other parts of IT, unconstrained use of energy by
the computing industry could outstrip our ability to build out
and connect green power sources. For example, provisioning
interstate power lines to access remote green energy often
requires many years of advance planning. Finally, many com-
panies continue to operate their own on-premise datacenters;
any solution must work for those deployments as well.

We propose Treehouse, a project whose goal is to build the
foundations for a new software infrastructure that treats energy
and carbon as a first-class resource, alongside traditional

2About a half acre of solar panels, plus batteries, are needed to fully power
a single 24x7 server rack [51].

computing resources like compute, memory, and storage.
Today, developers have almost no way to know how their
engineering decisions affect the climate. The goal of Treehouse
is to enable developers and operators to understand and reduce
greenhouse gases from datacenter sources. We target all
datacenter environments, including cloud, edge computing,
and on-premise environments.

We identify three new abstractions needed to enable
developers to optimize their carbon footprint: (1) energy
provenance, a mechanism to track energy usage, (2) an
interface for expressing applications’ service-level agreements
(SLAs) to allow operators to trade off performance and carbon
consumption, and (3) µfunctions, a fungible fine-grained unit
of execution that enables more efficient hardware utilization.
We also lay out a research agenda to develop mechanisms for
reducing carbon footprint by: (1) reducing software bloat, (2)
interchanging computational resources, and (3) interchanging
memory resources. and (4) energy-aware scheduling policies.
Beyond our direct research agenda, we hope our efforts can
inspire the broader software systems community to focus much
more on datacenter carbon reduction.

2 Towards Carbon-Aware Datacenter Software
Application developers today have few tools at their disposal
to write energy and carbon-efficient applications. First, they
have no good way to account for the amount of carbon their
applications are emitting. In addition, it is not clear what the
carbon implications would be of particular design choices
(e.g., shifting their application from a dedicated server to
a shared server, or moving their storage from disk to flash).
While many cloud users do optimize for lower cloud costs,
cost does not equate to carbon impact. For example, while an
HDD is much cheaper to run than an SSD, it is far more energy
intensive. Similarly, FPGAs often provide only a small speedup
relative to CPU cores, but a factor of 10-70 improvement in
energy efficiency for a range of computationally intensive
applications [10, 11, 52, 57, 58, 63, 71].

Second, from the standpoint of the operator (e.g., the cloud
provider or a devops engineer in an on-premises data center),
even if they have some understanding of the energy consump-
tion of particular hardware resources (e.g., servers), reducing
the energy or carbon footprint of a workload may reduce
performance. To avoid hurting applications that are highly
performance sensitive, operators must be overly conservative.

Third, software applications today are typically provisioned
in a static set of bundled resources, which make it difficult to
optimize for higher resource utilization. For example, virtual
machines or containers typically come pre-allocated with a
set of CPU cores, memory capacity, and network and disk
bandwidth. As modern datacenter applications typically exhibit
bursty and unpredictable patterns at the microsecond-scale,
this bundling of resources causes applications to be inefficient
and resource-wasteful.

In this section, we introduce a set of abstractions that we

believe will lay the foundations for solving these problems, to
address these problems. allow developers to track and optimize
the energy and carbon footprints of their applications.

2.1 Energy Provenance
In order to track and account for carbon emissions at the
software level, we need the ability to measure the energy
provenance—the direct and indirect energy use— of each
application. Of course, energy is not the only issue; other
researchers are developing complementary tools for tracking
the carbon intensity of energy in different locations as well as
the carbon impact of device fabrication [26].

An application not only directly consumes energy when
it is running user-level code, but it also consumes energy in
the operating system, in storage devices, and in the network
interface and switches along its path when it is communicating
with a remote server, as well as the energy used on its behalf
at the remote server.

Since it is difficult to directly measure the lifecycle energy of
individual applications through hardware mechanisms alone,
we believe it will be necessary to use machine learning to es-
timate the energy provenance of the application, given its re-
source usage. The input (or features) of the model will be met-
rics that are easily measured in software, including the network
bandwidth (for switches and network interface cards), bytes
of storage and storage bandwidth (for memory and persistent
storage) and accelerator cycles, as well as the type and topology
of hardware the application runs on. The model could be trained
and validated by carefully measuring in a lab environment how
these performance metrics affect system-level energy usage.
Armed with accurate single-node energy provenance estimates,
we plan to annotate data center communication, such as remote
procedure calls (RPCs),much as cloud providers annotate RPCs
with debugging information today [19]. These lifecycle per-
application energy estimates, combined with estimates of the
carbon intensity of power generation in each location and the
embodied carbon for device fabrication, would give developers
the needed visibility into the impact of their design decisions.
This is a necessary first step to enlisting the developer commu-
nity in achieving computational energy and carbon efficiency.

2.2 Exposing Application-Level SLAs
Another barrier to carbon-efficient computing is that optimiza-
tions that improve energy efficiency often hurt performance.
Disabling processor boost mode; moving less frequently used
data from high power DRAM to lower power non-volatile
memory or solid-state storage; turning off underutilized mem-
ory chips; moving computation from power-hungry general
purpose processors to more efficient dedicated hardware
accelerators; powering down a fraction of the network when
it is not needed—these steps save energy but very often come
at the cost of worse system and application performance.

For application code, provided we address energy prove-
nance, the application developer can decide on the right tradeoff
that meets user performance expectations in the most energy-

microseconds milliseconds seconds minutes hours days

Real-time workloads;
OLTP;

Streaming;
AI/ML Inference

Interactive analytics;
OLAP;

Batch analytics;
Background jobs;

AI/ML Training

Our focus

Figure 2: Treehouse focuses on reducing the carbon footprint for tasks
with sub-second SLAs, with optimizations within the same datacenter.
Prior work has considered relocating batch jobs (e.g., analytics) to dat-
acenters with greener sources of power or to greener periods of the day.

and carbon-efficient manner possible. These optimizations
are harder for systems code that lacks any direct knowledge of
application intent. Traditionally, system designs have been eval-
uated in terms of response times and throughput, and designers
have been willing to use all available resources regardless of the
energy or carbon cost. While these designs are often optimal
for performance, they sacrifice energy and carbon efficiency.

To address this challenge, we aim to provide a way for
application developers to convey to systems code their
tolerance (and/or desire) for energy-saving optimizations. This
is the equivalent of eco-mode when driving a car. Together
with data on the energy impact of using different resources, the
system designer and operator can make informed choices as
to how to schedule and place workloads. Once system code
can optimize its behavior along the energy-performance Pareto
curve, application developers can make informed choices to
meet their users’ carbon reduction goals.

To this end, we believe we need to develop a new interface
to expose application-level performance constraints (Service
Level Agreements, or SLAs) to systems software. This will
enable a new class of energy-aware systems-level optimizations.
For highly latency-sensitive operations, it may still make sense
to use the highest-performance solutions, even at high energy
cost. But where there is available slack in user expectations,
we can use that flexibility to choose the most energy-efficient
solution consistent with meeting user needs.

There is a large body of work on shifting long-running batch
jobs (e.g., MapReduce-style analytics) to a cleaner sources
of energy [13–15, 36, 37, 44, 49]. These type of tasks are the
extreme end of the SLA spectrum (depicted in Figure 2), and
typically operate at time scales of hours or even days. This
provides enough slack to shift them to geographically-remote
datacenters or to different times of the day, to take advantage of
spatial or temporal availability of clean energy (e.g., wind and
solar). Our focus is on energy optimizations that can also apply
to applications with much tighter SLAs, at the millisecond and
even single-digit microsecond scale. For these applications,
it isn’t feasible to move the work to remote datacenters or to
periods of off-peak electricity generation.

2.3 Microfunctions

Despite the fact that many applications have highly dynamic
resource usage, cloud applications today are often provisioned

for peak resource usage in coarse-grained and static ways.
For example, a virtual machine, container, or even serverless
compute engine will be provisioned statically, with, say, 4 cores,
32 GB of memory, etc., for seconds, minutes and hours at a time,
while application demand varies at much finer time-scales.

This leads to a high degree of resource stranding—compute,
memory, and storage that is only lightly utilized, but which
cannot be used for other applications. Although many hardware
devices have low power modes, these are only of partial benefit.
Even at low load, power consumption is often half of the
high load case [7], in addition to the environmental impact of
fabricating devices that on average sit idle. Power efficiency per
unit of application work is maximized when system software
keeps resources fully utilized.

Further, the most carbon-efficient option is to avoid doing
work that wasn’t needed in the first place. Existing datacenter
software stacks are bloated, with layers of functionality added
over time and kept for programmer speed and convenience
rather than refactored down to their essential purpose. In the old
era of Dennard scaling, inefficient layering could be addressed
with time—every year, faster and more energy-efficient
computers would become available to hide the impact of
software bloat. With the end of Dennard scaling, however,
keeping old, inefficient software layers adds up.

We believe we need a new abstraction to address both soft-
ware bloat and resource stranding. First, we need a lightweight
way to provision resources at much finer time scales, choosing
the most energy efficient option that meets each application’s
SLA. Second, to achieve high utilization, we need to aggregate
application resource demands more effectively.

A New Abstraction for Fungible Compute Modern datacen-
ter applications are distributed at extremely fine granularities.
For example, each user-facing HTTP request received by Face-
book or Twitter spawns requests to dozens of microservices that
lead to thousands of individual RPCs to servers. As datacenter
networks get faster and in-memory microservices become more
efficient (e.g.,by using kernel-bypass),datacenter servers can in-
creasingly process and respond to requests in microseconds [8].

To accommodate microsecond-scale datacenter applications,
we need a new programming model with fine-grained resource
allocation and low provisioning overheads. It must be efficient
enough to make adjustments at the microsecond-scale, so it can
respond to sudden workload changes [30, 46]. Reflecting its
scale, we call this abstraction for general-purpose fine-grained
application provisioning microfunctions. Microfunctions are
large enough to do useful work (i.e., a few thousand cycles),
while small enough to balance resource usage quickly as shifts
in load occur.

We plan to use an RPC-based API for µfunctions, including
an interface for the user to define SLAs, as well as an energy or
carbon budget. We also foresee opportunities to further increase
efficiency through computation shipping, allowing us to im-
prove locality and reduce data movement [38,68]. Dynamically
deciding when to move data or computation will also enable

new efficiency vs. performance tradeoffs. Building upon the
recent trend toward microservices, we envision that full applica-
tions can be constructed by partitioning their components into
fine-grained units and running them as independent µfunctions.

FaaS (Function-as-a-Service) or serverless frameworks, such
as AWS Lambda [6] share a similar notion by allowing develop-
ers to express their jobs and get billed at the granularity of indi-
vidual function invocations. However, FaaS still operates on top
of statically allocated resource containers, making it difficult to
bin pack the right combination of functions—in the face of vari-
able resource usage—to achieve high utilization. Some cloud
providers compensate by overcommitting functions to contain-
ers, but this leads to inconsistent per-function performance [67].
In addition, FaaS suffers from software bloat and high func-
tion startup times. The “cold start” problem, in particular, can
cause FaaS to take hundreds of milliseconds or more to invoke
a function [61]. This timescale is many orders of magnitude too
coarse to achieve balance during fine-grained shifts in resource
demand, while incurring far higher energy and resource utiliza-
tion overhead than is necessary. Finally, FaaS is only designed
to operate on a specific type of compute and memory (namely,
CPU and DRAM). It cannot take advantage of more energy ef-
ficient options such as accelerators (e.g., GPUs, FPGAs, NICs)
and heterogeneous forms of memory (e.g., persistent memory).

Our goal for µfunctions is to provide a lightweight function
abstraction, which is decoupled from any static grouping of
resources, such as a container or a VM. Instead, we aim to
make µfunctions completely fungible, consuming resources
on-demand as they are needed, with the ability to run on
heterogeneous computing resources.

Microsecond Scale Performance In order to exploit
fine-grained variations in resource usage and concurrency, we
plan to support microsecond-scale invocations of µfunctions,
an improvement of several orders of magnitude over existing
serverless systems. We must tackle two research challenges
to spawn µfunctions this quickly.

First, the cold start problem must be addressed to speed
up invocations on machines that have not recently executed a
particular function. One barrier is the high initialization cost of
existing isolation mechanisms. For example, even after sophisti-
cated optimizations, Amazon’s Firecracker still requires at least
125 milliseconds to start executing a function environment [1].
Second, we must ensure that µfunction invocations themselves
can start extremely quickly. A major barrier to fast function
invocation in existing FaaS systems is that they rely on
inefficient RPC protocols built on top of HTTP. In addition,
existing FaaS systems require a complex tier of dedicated load
balancing servers [1], which leads to significant delays.

Resource Disaggregation Resource disaggregation poses
a solution to the fixed bundling of resources (in servers, virtual
machines or containers). While microsecond resource alloca-
tion helps to minimize the resources stranded by overprovision-
ing, it does not solve the problem of bin packing application

𝝁function
scheduler

Application SLA and
performance metrics

CPUCPUCPUCPU

CPUCPUCPUFPGA

CPUCPUCPUDRAM

CPUCPUCPUNVM

Energy provenance

Disaggregated compute Disaggregated
memory/storage

Schedule memory
𝝁function

Schedule compute
𝝁function

Figure 3: Depiction of the Treehouse scheduler. The scheduler takes
as input the available hardware resources and the function’s SLA. It
then schedules in the most energy-efficient way while still meeting
SLAs, across the different clusters of disaggregated resources.

resource allocations onto servers, leaving some resources still
stranded. Disaggregating resources reduces resource stranding
at the cost of added latency. For applications whose SLAs are
designed to tolerate slightly longer latencies, disaggregation
enables the system to allocate exactly the amount of compute,
memory and storage each application requires at the moment,
from a shared pool. This allows idle resources to be powered off
to save energy without compromising application-level SLAs.

There has been some progress on disaggregating resources,
particularly for storage [4, 5, 21]. However, some resources,
such as memory and CPU, are still primarily consumed locally
on monolithic servers. While there is a large body of research
on trying to disaggregate these resources [2,3,20,25,40,59,62],
significant challenges remain for real-world adoption, includ-
ing: security [64], isolation [70], synchronization [45] and fault
tolerance [42]. These challenges are exacerbated especially in
low-latency (i.e., microsecond-scale) settings that are our focus.

Design Questions A key design question is whether to build
µfunctions on top of Linux, and whether µfunctions need to
be able to support POSIX. While running µfunctions on top of
Linux may make it easier for existing applications to transition
to µfunctions, it comes at a high cost. In particular, Linux
adds significant overhead to I/O operations, and it is not the
natural interface for writing a distributed application across
disaggregated resources. We plan to pursue in parallel both
research directions: (a) incrementally adapt Linux to be more
lightweight, as well as (b) pursue a clean-slate non-POSIX OS
design. We describe these efforts in Section 3.1.

2.4 Summary

To conclude, our three foundational abstractions allow develop-
ers to define µfunctions that can operate on fungible resources at
microsecond time-scales. Developers can define SLAs for these
µfunctions, allowing the cloud operator to navigate the energy-
performance Pareto curve. Finally, the energy provenance of
these µfunctions would be tracked and accounted for at all times.

This process is depicted in Figure 3, where the Treehouse
scheduler collects as input the energy provenance and the SLA
of the µfunctions, and schedules them on the resource at a

time that would still meet their SLA while minimizing overall
energy usage.

3 Research Agenda
We now describe a specific agenda that builds upon the Tree-
house foundational abstractions to reduce datacenter carbon
impact, by allowing software systems to make carbon-aware
decisions.

3.1 Minimizing Software Bloat

Inefficient software layers can be found in system-level
building blocks shared across applications, including data
movement, data (un)marshalling, memory allocation, and re-
mote procedure call handling. In a cluster-wide profiling study
at Google, it was found that these common building blocks
consume about 30% of all cycles; the Linux kernel, including
thread scheduling and network packet processing, consumes
an additional 20% of all cycles [33]. In other words, shared
software infrastructure is significant enough to account for
almost half of all CPU cycles available in a typical datacenter.

We propose two steps to address software bloat. The first
step is to continue optimizing the many layers of the IT
software stack that we have inherited. Many of these layers
were designed for systems where I/O took milliseconds to
complete. We need a fundamental redesign of the software
stack for fast I/O (networking and storage) devices.

One direction is to use Linux as a control plane for backward
compatibility, but allow applications efficient direct access
to I/O [9, 56]. Widely-used bypass technologies include
RDMA and DPDK [65] for network bypass as well as Optane
and SPDK [29] for storage bypass. Although more work is
needed to understand how best to integrate these technologies
with the kernel, studies have shown that operating system
overheads can be slashed while still providing traditional
kernel functions such as centralized scheduling, file system
semantics, and performance isolation [35, 39, 53, 69]. A
complementary approach is to move user-defined functions
written in a type-safe language into the Linux kernel, to allow
customization closer to the hardware [16, 22, 50, 72].

A longer-term solution is to offload parts of the data path
to more powerful and lower-energy I/O hardware. For example,
both Amazon and Microsoft Azure offload to hardware the
packet re-writing needed for cloud virtualization [18, 34]. This
minimizes the energy cost of the added abstraction. We need to
extend this approach to other layers of the systems stack to truly
reduce the software energy drain from management systems.
For example, we are designing an open-source, reconfigurable
hardware networking stack to reduce energy use of frequently
used operating system and runtime functions.

Ultimately, we believe we will need a new energy-optimized
operating system kernel and runtime system for datacenters
architected to take advantage of energy-efficient hardware
acceleration. This may be either as a clean-slate design or by
incrementally replacing parts of the Linux kernel [43]. By

Figure 4: Pareto frontier of energy usage-vs-tail latency. For example,
DRAM and SSD are located at opposite corners in this graph.

raising the level of abstraction from POSIX to µfunctions, we
make it easier to support these more radical designs.

3.2 Interchangeable Compute

Datacenter applications are often designed to take advantage of
a specific type of compute engine. Traditional applications typ-
ically assume they are running on CPUs, while many machine
learning applications rely on accelerators like GPUs, TPUs,
and FPGAs, with new options emerging every month. In many
cases, an application’s energy consumption can be significantly
reduced, while still meeting its SLA, if the application used
a different less energy-intensive computing resource.

For example, FPGAs are often much more energy efficient
than CPUs on the same computation. However, for highly
dynamic workloads with tight timing limits, CPUs are often
used instead because they can be quickly configured and/or
reallocated as demand changes. We believe we can obtain the
best of both worlds by making it possible to run µfunctions in
hybrid mode—using CPUs to meet transient and short-term
bursts with FPGAs used to meet the more stable and predictable
portion of the workload. Because FPGAs, like CPUs, are
at their peak energy efficiency at full utilization, this means
transparently scaling FPGAs up and down much like we do
today for CPUs. To reduce engineering costs of maintaining
multiple implementations, we aim to develop an intermediate
representation (IR) that can be converted to run on a broad
spectrum of accelerators (e.g., similar to what TVM [12] does
for machine learning); cloud customers will then be able to
tradeoff between agility and energy efficiency as they see fit.

3.3 Interchangeable Memory

Similar to interchangeable compute devices, DRAM, NVRAM,
SSD, and HDD can all be interchanged to some degree: while
DRAM is volatile, in many use cases non-volatility is not a
strict requirement. Each offers a different operating point in the
tradeoff between energy efficiency and tail latency, as shown
schematically in Figure 4. Even within a particular technology,
there are often energy tradeoffs, such as in the choice between
single and multi-level cell encodings on SSDs.

Another trend is towards microsecond-scale networks, such
as CXL and RDMA. This can allow memory resources to
be more effectively disaggregated, reducing both the cost

and energy waste of resource stranding. Combined with
high-performance storage technologies, such as 3D XPoint
(e.g., Intel Optane SSD [28]) or SLC NAND (e.g., Samsung
Z-SSD [60]) which offer microsecond-scale access times,
significant amounts of energy (and carbon) can be saved by
shifting data that is currently stored on DRAM to lower-power
nearby storage.

We propose to design a general-purpose system that
interchanges memory for lower power storage, without
affecting the application’s SLAs while staying within an energy
budget. Such a system would need to automatically identify
which data should sit in DRAM, and which part in storage,
based on the µfunction’s timeliness constraint, its read and
write access patterns, and its access granularity. In addition,
we can also employ intelligent caching and prefetching to mask
reduced DRAM use [47].

3.4 Energy-Aware Scheduling

So far, we have separately considered interchangeable compute
and interchangeable memory resources. For the most part, we
have also assumed that the total energy consumption is given
as a constraint for those optimizations. However, any realistic
application requires both computation and storage. We need
to consider how to find the Pareto frontier of an application’s
energy-performance curve by co-optimizing both sets of
interchangeable resources in a disaggregated environment,
while taking energy sources and µfunction SLAs into account.

Given that a µfunction can run on multiple interchangeable
compute devices and the computation device may have choices
to use one of the many storage mediums, one direction would be
extending well-known multi-commodity flow-based resource
allocation formulations [17, 31, 41] for determining the best
combination of interchangeable resources to use. Figure 5 gives
a simple example. There are µfunctions from three applications:
A1, A2, and A3 (three commodities with different colors), each
of which can run on one of the five compute resources (R1...R5)
with different – already-profiled and known – speedups. At
time t, each µfunction can read and write pertinent data (e.g.,,
A1 needs three objects A11–A13) from/to two interchangeable
storage devices (the availability of data for reading can be
captured by the presence/absence of edges between a compute
device and corresponding data in that storage medium). Now
one can represent the problem of optimizing for total energy
consumption for these simple µfunctions as the sum of all edge
costs for each µfunction (with appropriate constraints to avoid
oversubscribing each compute device) – minimizing the total
cost across all µfunctions will ensure that the overall energy
consumption is minimized. By appropriately setting the costs
of the edges and objective functions, we can consider trading
off energy consumption for application performance and vice
versa. The primary challenge of such optimization-based ap-
proaches is the speed at which we can determine placements—a
few microseconds may not be enough. Approximation- and/or
memoization-based are more likely to succeed.

A1

A2

A3

R1

R2

R3

R4

R5

A11

A12
A21

A13

A31

DRAM

A11

A12

A21

A13

A31

SSD

Interchangeable
Compute

Figure 5: An example multi-commodity flow-based formulation for
cost-performance optimization at time t.

What we highlighted so far deals only with assignments of
µfunctions to interchangeable compute and memory/storage at
a particular time instant. However, one-shot device assignment
is just the beginning of the scheduling problem; we must also
schedule µfunctions over time without violating their SLAs.
The key here will likely be to take advantage of deadline-based
and altruistic scheduling solutions [23] to effectively leverage
available slack. We can consider dividing time into fixed-length
scheduling windows, pack µfunctions with smaller slack within
the current window, and push µfunctions with larger slack into
future windows. This would maximize our ability to convert
application flexibility over timeliness into lower energy and
carbon use.

4 Conclusion
The end of Dennard scaling and the slowing of Moore’s Law
has led to an inflection point with respect to the impact the
computing industry on the world’s ecology. Computing is still a
small fraction of global energy use, but we can no longer count
on automatic advances in the energy-efficiency of computing
to compensate for the rapid upward spiral in computing
demand. To continue to reap the benefits of computing without
endangering the planet, we need to treat energy efficiency as
a first class design goal. The Treehouse project aims to address
this challenge by building tools that help application developers
understand the implications of their design decisions on energy
and carbon use, by adapting interfaces to make timeliness
requirements explicit to allow for informed system-level
tradeoffs of energy versus time, and by reducing the energy
cost of commonly used abstractions. More broadly, we believe
that the systems software research community can and must
play a constructive role in reducing the impact of computing on
the planet, as we make the transition to abundant carbon-free
energy over the next few decades.

Acknowledgments
We would like to thank Simon Peter for suggesting Figure 1.
This work is supported by grants from the National Science
Foundation (2104243, 2104292, 2104398, and 2104548),
VMware, and Cisco Systems.

References
[1] A. Agache, M. Brooker, A. Iordache, A. Liguori,

R. Neugebauer, P. Piwonka, and D. Popa. Firecracker:
Lightweight virtualization for serverless applications. In
USENIX NSDI, pages 419–434, 2020.

[2] M. K. Aguilera, N. Amit, I. Calciu, X. Deguillard,
J. Gandhi, S. Novaković, A. Ramanathan, P. Subrah-
manyam, L. Suresh, K. Tati, R. Venkatasubramanian,
and M. Wei. Remote Regions: A simple abstraction for
remote memory. In USENIX ATC, 2018.

[3] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout,
M. K. Aguilera, A. Panda, S. Ratnasamy, and S. Shenker.
Can far memory improve job throughput? In ACM
EuroSys, 2020.

[4] Amazon. Amazon Elastic Block Store. https:
//aws.amazon.com/ebs/.

[5] Amazon. Amazon Web Services. https:
//aws.amazon.com/s3/.

[6] AWS Lambda. https://aws.amazon.com/lambda/.

[7] L. A. Barroso and U. Hölzle. The case for energy-
proportional computing. Computer, 40(12):33–37, 2007.

[8] L. A. Barroso, M. Marty, D. A. Patterson, and P. Ran-
ganathan. Attack of the killer microseconds. Commun.
ACM, 60(4):48–54, 2017.

[9] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A protected dataplane
operating system for high throughput and low latency. In
USENIX OSDI, pages 49–65, 2014.

[10] D. Chen and D. Singh. Using OpenCL to evaluate the
efficiency of CPUs, GPUs and FPGAs for information
filtering. In FPL, pages 5–12, 2012.

[11] D. Chen and D. Singh. Fractal video compression in
OpenCL: An evaluation of CPUs,GPUs,and FPGAs as ac-
celeration platforms. In ASP-DAC, pages 297–304, 2013.

[12] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, et al. TVM: An
automated end-to-end optimizing compiler for deep
learning. In USENIX OSDI, pages 578–594, 2018.

[13] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz. Energy
efficiency for large-scale MapReduce workloads with
significant interactive analysis. In ACM EuroSys, pages
43–56, 2012.

[14] Y. Chen, A. Ganapathi, and R. H. Katz. To compress
or not to compress - compute vs. IO tradeoffs for
MapReduce energy efficiency. In ACM SIGCOMM
Workshop on Green networking, pages 23–28, 2010.

[15] D. Cheng, P. Lama, C. Jiang, and X. Zhou. Towards energy
efficiency in heterogeneous Hadoop clusters by adaptive
task assignment. In IEEE ICDCS, pages 359–368, 2015.

[16] P. Enberg, A. Rao, and S. Tarkoma. Partition-aware
packet steering using XDP and eBPF for improving
application-level parallelism. In Proceedings of the
1st ACM CoNEXT Workshop on Emerging in-Network
Computing Paradigms, pages 27–33, 2019.

[17] S. Even, A. Itai, and A. Shamir. On the complexity of
time table and multi-commodity flow problems. In IEEE
FOCS, pages 184–193, 1975.

[18] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chaturmo-
hta, M. Humphrey, J. Lavier, N. Lam, F. Liu, K. Ovtcharov,
J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma,
Q. Zuhair, D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and
A. Greenberg. Azure accelerated networking: SmartNICs
in the public cloud. In USENIX NSDI, 2018.

[19] R. Fonseca, G. Porter, R. H. Katz, and S. Shenker. X-trace:
A pervasive network tracing framework. In USENIX
NSDI, 2007.

[20] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han,
R. Agarwal, S. Ratnasamy, and S. Shenker. Network
requirements for resource disaggregation. In USENIX
OSDI, 2016.

[21] Y. Gao, Q. Li, L. Tang, Y. Xi, P. Zhang, W. Peng, B. Li,
Y. Wu, S. Liu, L. Yan, F. Feng, Y. Zhuang, F. Liu, P. Liu,
X. Liu, Z. Wu, J. Wu, Z. Cao, C. Tian, J. Wu, J. Zhu,
H. Wang, D. Cai, and J. Wu. When cloud storage meets
RDMA. In USENIX NSDI, 2021.

[22] Y. Ghigoff, J. Sopena, K. Lazri, A. Blin, and G. Muller.
BMC: Accelerating memcached using safe in-kernel
caching and pre-stack processing. In USENIX NSDI,
pages 487–501, 2021.

[23] R. Grandl, M. Chowdhury, A. Akella, and G. Anan-
thanarayanan. Altruistic scheduling in multi-resource
clusters. In USENIX OSDI, pages 65–80, 2016.

[24] Greenhouse gas corporate accounting and re-
porting standard. https://ghgprotocol.org/
corporate-standard, 2021.

[25] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with Infiniswap. In
USENIX NSDI, 2017.

https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/lambda/
https://ghgprotocol.org/corporate-standard
https://ghgprotocol.org/corporate-standard

[26] U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-H. S. Lee,
D. Brooks, and C.-J. Wu. ACT: Designing sustainable
computer systems with an architectural carbon modeling
tool. In ISCA, page 784–799, 2022.

[27] U. Gupta, Y. G. Kim, S. Lee, J. Tse, H.-H. S. Lee, G.-Y.
Wei, D. Brooks, and C.-J. Wu. Chasing carbon: The
elusive environmental footprint of computing, 2021.

[28] Intel Optane SSD 9 Series. https://www.
intel.com/content/www/us/en/products/
memory-storage/solid-state-drives/
consumer-ssds/optane-ssd-9-series.html.

[29] Intel Corporation. Storage performance development kit.
http://www.spdk.io.

[30] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Sya-
mala, V. R. Narasayya, H. Herodotou, P. Tomita, A. Chen,
J. Zhang, and J. Wang. PerfIso: Performance isolation
for commercial latency-sensitive services. In USENIX
ATC, pages 519–532, 2018.

[31] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg. Quincy: fair scheduling for distributed
computing clusters. In ACM SOSP, pages 261–276, 2009.

[32] N. Jones. How to stop data centres from gobbling up the
world’s electricity. Nature, 561(7722):163–167, 2018.

[33] S. Kanev, J. P. Darago, K. M. Hazelwood, P. Ranganathan,
T. Moseley, G. Wei, and D. M. Brooks. Profiling a
warehouse-scale computer. In ISCA, pages 158–169,
2015.

[34] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and
A. Krishnamurthy. High performance packet processing
with FlexNIC. In ACM ASPLOS, pages 67–81, 2016.

[35] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krish-
namurthy, and T. E. Anderson. TAS: TCP acceleration as
an OS service. In ACM EuroSys, pages 24:1–24:16, 2019.

[36] K. Kim, F. Yang, V. M. Zavala, and A. A. Chien. Data cen-
ters as dispatchable loads to harness stranded power. IEEE
Transactions on Sustainable Energy, 8(1):208–218, 2016.

[37] A. Krioukov, C. Goebel, S. Alspaugh, Y. Chen, D. E.
Culler, and R. H. Katz. Integrating renewable energy us-
ing data analytics systems: Challenges and opportunities.
IEEE Data Engineering Bulletin, 34(1):3–11, 2011.

[38] C. Kulkarni, S. Moore, M. Naqvi, T. Zhang, R. Ricci,
and R. Stutsman. Splinter: Bare-metal extensions for
multi-tenant low-latency storage. In USENIX OSDI,
pages 627–643, 2018.

[39] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and
T. Anderson. Strata: A cross media file system. In ACM
SOSP, Oct. 2017.

[40] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in
warehouse-scale computers. In ASPLOS, 2019.

[41] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu. AlloX:
Compute allocation in hybrid clusters. In ACM EuroSys,
pages 31:1–31:16, 2020.

[42] Y. Lee, H. A. Maruf, M. Chowdhury, A. Cidon, and K. G.
Shin. Hydra : Resilient and highly available remote
memory. In USENIX FAST, 2022.

[43] J. Li, S. Miller, D. Zhuo, A. Chen, J. Howell, and
T. Anderson. An incremental path towards a safer OS
kernel. In ACM HotOS, page 183–190, 2021.

[44] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew.
Greening geographical load balancing. ACM SIGMET-
RICS Performance Evaluation Review, 39(1):193–204,
2011.

[45] T. Ma, M. Zhang, K. Chen, Z. Song, Y. Wu, and X. Qian.
AsymNVM: An efficient framework for implementing
persistent data structures on asymmetric nvm architecture.
In ACM ASPLOS, pages 757–773, 2020.

[46] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans,
S. Gribble, N. Kidd, R. Kononov, G. Kumar, C. Mauer,
E. Musick, L. E. Olson, E. Rubow, M. Ryan, K. Spring-
born, P. Turner, V. Valancius, X. Wang, and A. Vahdat.
Snap: a microkernel approach to host networking. In
ACM SOSP, pages 399–413, 2019.

[47] H. A. Maruf and M. Chowdhury. Effectively prefetching
remote memory with leap. In USENIX ATC, 2020.

[48] E. Masanet, A. Shehabi, N. Lei, S. Smith, and J. Koomey.
Recalibrating global data center energy-use estimates.
Science, 367(6481):984–986, 2020.

[49] L. Mashayekhy, M. M. Nejad, D. Grosu, Q. Zhang, and
W. Shi. Energy-aware scheduling of MapReduce jobs
for big data applications. IEEE Transactions on Parallel
and Distributed Systems, 26(10):2720–2733, 2014.

[50] S. Miller, K. Zhang, M. Chen, R. Jennings, A. Chen,
D. Zhuo, and T. Anderson. High velocity kernel file
systems with Bento. In USENIX FAST, pages 65–79, Feb.
2021.

[51] National renewable energy laboratory: Land use by sys-
tem technology. https://www.nrel.gov/analysis/
tech-size.html.

https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series.html
https://www.intel.com/content/www/us/en/products/memory-storage/solid-state-drives/consumer-ssds/optane-ssd-9-series.html
http://www.spdk.io
https://www.nrel.gov/analysis/tech-size.html
https://www.nrel.gov/analysis/tech-size.html

[52] E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang,
J. Ong Gee Hock, Y. T. Liew, K. Srivatsan, D. Moss,
S. Subhaschandra, and G. Boudoukh. Can FPGAs
beat GPUs in accelerating next-generation deep neural
networks? In FPGA, page 5–14, 2017.

[53] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving high CPU
efficiency for latency-sensitive datacenter workloads. In
USENIX NSDI, pages 361–378, 2019.

[54] F. Pearce. Energy hogs: can world’s huge data centers
be made more efficient? Yale Environment, 360, 2018.

[55] M. Pesce. Cloud computing’s coming energy crisis.
IEEE Spectrum, 2021.

[56] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Arrakis:
The operating system is the control plane. In USENIX
OSDI, pages 1–16, 2014.

[57] A. Putnam, A. Caulfield, E. Chung, D. Chiou, K. Con-
stantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,
J.-Y. Kim, S. Lanka, E. Peterson, A. Smith, J. Thong,
P. Y. Xiao, D. Burger, J. Larus, G. P. Gopal, and S. Pope.
A reconfigurable fabric for accelerating large-scale
datacenter services. In ISCA, pages 13–24, June 2014.

[58] M. Qasaimeh, K. Denolf, J. Lo, K. A. Vissers, J. Zam-
breno, and P. H. Jones. Comparing energy efficiency
of CPU, GPU and FPGA implementations for vision
kernels. In ICESS, pages 1–8, 2019.

[59] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay.
AIFM: High-performance, application-integrated far
memory. In USENIX OSDI, pages 315–332, Nov. 2020.

[60] Samsung Z-SSD. https://www.samsung.com/
semiconductor/ssd/z-ssd/.

[61] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum,
J. Cooke, E. Laureano, C. Tresness, M. Russinovich,
and R. Bianchini. Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud
provider. In USENIX ATC, 2020.

[62] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In USENIX OSDI, 2018.

[63] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim,
C. Shao, A. Mishra, and H. Esmaeilzadeh. From
high-level deep neural models to FPGAs. In MICRO,
pages 1–12, 2016.

[64] A. K. Simpson, A. Szekeres, J. Nelson, and I. Zhang.
Securing RDMA for high-performance datacenter
storage systems. In USENIX HotCloud, July 2020.

[65] The Linux Foundation Projects. Data plane development
kit. https://www.dpdk.org/.

[66] A. Vahdat. Coming of Age in the Fifth Epoch of
Distributed Computing. https://www.youtube.com/
watch?v=27zuReojDVw.

[67] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. M. Swift.
Peeking behind the curtains of serverless platforms. In
USENIX ATC, pages 133–146, 2018.

[68] J. You, J. Wu, X. Jin, and M. Chowdhury. Ship compute
or ship data? Why not both? In USENIX NSDI, pages
633–651, 2021.

[69] I. Zhang, J. Liu, A. Austin, J. Stephenson, and A. Badam.
I’m not dead yet! the role of the operating system in a
kernel-bypass era. In ACM HotOS, April 2019.

[70] Y. Zhang, Y. Tan, B. Stephens, and M. Chowdhury. Justi-
tia: Software multi-tenancy in hardware kernel-bypass
networks. In USENIX NSDI, 2022.

[71] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and
J. Sherry. Achieving 100Gbps intrusion prevention on
a single server. In OSDI, pages 1083–1100, Nov. 2020.

[72] Y. Zhong, H. Wang, Y. J. Wu, A. Cidon, R. Stutsman,
A. Tai, and J. Yang. BPF for storage: An exokernel-
inspired approach. In ACM HotOS, 2021.

https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.samsung.com/semiconductor/ssd/z-ssd/
https://www.dpdk.org/
https://www.youtube.com/watch?v=27zuReojDVw
https://www.youtube.com/watch?v=27zuReojDVw

	Introduction
	Towards Carbon-Aware Datacenter Software
	Energy Provenance
	Exposing Application-Level SLAs
	Microfunctions
	Summary

	Research Agenda
	Minimizing Software Bloat
	Interchangeable Compute
	Interchangeable Memory
	Energy-Aware Scheduling

	Conclusion

